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If quantum mechanics hasn’t profoundly
shocked you yet, then you haven’t understood
it yet.

—Niels Bohr



References

Several textbooks, online courses/resourceswere referenced heavily (to the extend ofmak-
ing this text completely unoriginal, yet hopefully helpful for revision) throughout thewrit-
ing of these lecture notes. Using a typical bibliography (research paper style) would be
a formidable task.Pinpointing exactly where each reference as been used is quite difficult
for such a large and well-referenced subject, and would probably change the writing style
to a far too formal one for lecture notes. Therefore we instead list the most relevant below
giving a brief comment on which topics they were mostly used for:

• OU textbooks

While probably not available online (and thus not very useful to the reader), I found
these textbooks to be very helpful as a resource to understand the basics, though
some parts of these notes definitely go beyond what is required in SM358. Many
images that would be hard to draw by myself on Illustrator are also included from
these textbooks.

• R. Shankar, "Principles of Quantum Mechanics"

This is a fantastic pedagogical text, the perfect fit for a first introduction. It contains
a short introduction to bra-ket notation and the linear algebra needed for QMwhich
I found to be very useful. The only topics this text wasn’t referenced for were those
on quantum information, molecular/solid state physics, and the adiabatic approxi-
mation. Shankar was especially helpful while typesetting part I.

• D. Griffiths, "Introduction to Quantum Mechanics"

Another great first introduction to the subject, although perhaps it leaves the alge-
bra of QM hidden for too long. Consequently it mostly presents a wave-function
approach to the subject, complementing Shankar’s matrix algebra approach.

• L. Landau and E. Lifshitz, "Quantum mechanics: non-relativistic theory"

A classic, advanced and comprehensive text written by one of the “greats”. This text
was mostly used for part IV of this text, especially atomic/molecular physics.

• John J. Sakurai and J. Napolitano, "Modern Quantum Mechanics"

Much like Landau & Lifshitz. a classic, advanced and comprehensive text. It was
especially helpful for approximation methods and the more advanced, group the-

− .3 −



oretical aspect of QM. Definitely not introductory, but I found it enlightening for a
second course on QM.

• J. Binney "The Physics of Quantum Mechanics" Really nice textbooks. I enjoyed it
especially for its alternative algebraic derivation of the Hydrogen energy levels. I
used it mostly for the chapter on quantum informaion and part IV. Great for a first
introduction.

• MIT OpenCourseWare 8.04-8.06 courses

A great lecture series, following more or less the same structure as these notes. One
who sits all three courses would (imo) have a sound undergraduate knowledge of
QM. 8.04 and 8.05 cover parts I and II while 8.06 covers parts III and IV. The latter
two specifically were in many parts written while listening to the 8.06 lectures. Most
of chapter 2 was a copy of the first few lectures in 8.04 by Allan Adams.

• Course notes by D. Skinner on "Part II Principles of Quantum Mechanics"

The lecture notes were especially clear in explaining angular momentum and covers
parts II, III comprehensively. Good for a second introduction to QM.

• Course notes by B. Simons on "Part II Advanced Quantum Mechanics"

I found it very helpful for part IV and V. It is one of few course notes I have found dis-
cussing atomic/molecular physics at the right level to be included in a more broader
QM course, but that is not too superficial either. It has solutions to the problem sets
which are quite rare, so I’d recommend it for practice problems too.

− .4 −



Mathematical structure of Quantum
Mechanics (in progress)

Linear Spaces
We begin by defining a fundamental mathematical concept used in QM, the Linear Space
which was introduced in the linear algebra course. Classically speaking, vectors are de-
fined as objects with both a magnitude and direction. However, as we will see soon this
definition is very limited, and breaking beyond the barrier of arrows with lengths and
directions will enable us to create a mathematical structure for quantum mechanics.

Definition 1.1: Linear Space

A linear spaceH over a fieldK is a collection of vectors |xi〉 overwhich the opeartions
+, · are defined, such that ∀ |x1〉 , |x2〉 ∈ V and ∀α1, α2 ∈ K the following are satis-
fied:
(i) Closure under addition: |x1〉+ |x2〉 ∈ V
(ii) Closure under scalar multiplication: α1 |x1〉 ∈ V
(iii) Commutativity of addition: |x1〉+ |x2〉 = |x2〉+ |x1〉
(iv) Associativity of addition: |x1〉+ |x2〉
(vi) Associativity of addition: |x1〉+ (|x2〉+ |x3〉) = (|x1〉+ |x2〉) + |x3〉)
(vi) Associativity of scalar multiplication: α1(α2 |x1〉) = α1α2 |x1〉
(vii) Right-distributivity: (α1 + α2) |x1〉 = α1 |x1〉+ α2 |x1〉
(viii) Left-distributivity: α1(|x1〉+ |x2〉) = α1 |x1〉+ α1 |x2〉
(ix) Existence of zero vector: ∃ |0〉 ∈ V such that |x1〉+ |0〉 = |x1〉
(x) Existence of inverse under addition: ∃ |−x1〉 ∈ V such that |x1〉+ |−x1〉 = |0〉

For example, despite not having amagnitude nor direction, the set of all 2×2 real matrices
is a linear space over R (prove it)! Moreover, certain sets of functions may also be regarded
as linear spaces.

Example 1: Function spaces are Linear Spaces

The set Rn[x] = {f(x) =
∑n
i=0 aix

i : ai ∈ R, an 6= 0} is a linear space.

Proof.
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Linear (in)-dependence, bases and dimensions

Definition 2: Linear independence

A set of vectors |xi〉 ∈ V is linearly independent iff:

n∑
i=1

αi |xi〉 = |0〉 =⇒ αi = 0 (0.0.1)

Otherwise, the set of vectors is linearly dependent.

We remark an important consequence of this definition: if a set of vectors is linearly in-
dependent, then none of its members can be expressed using the other members of the
set and the standard +, · operations. Therefore, all of the vectors are individual and non-
reproducible from the others linearly.
Example 2: The vectors |1〉 = (1, 1, 1), |2〉 = (α, β, γ), |3〉 = (α2, β2, γ2) for distinct
α, β, γ ∈ R3 are linearly independent.

Proof. We consider c1 |1〉+ c2 |2〉+ c3 |3〉 = |0〉, then:

c1(1, 1, 1)+c2(α, β, γ)+c3(α2, β2, γ2) = (0, 0, 0) =⇒


c1 + c2α+ c3α

2 = 0
c1 + c2β + c3β

2 = 0
c1 + c2γ + c3γ

2 = 0
(0.0.2)

Subtracting the second equation from the first gives:

c2(β − α) + c3(β + α)(β − α) = 0 =⇒ c2 + c3(β + α) = 0 (0.0.3)

Similarly, for the other two combinations we get:

c2 + c3(γ + α) = 0
c2 + c3(β + γ) = 0

from which we get that c3(γ + α) = c3(γ + β) = c3(β + α) = 0 =⇒ c1 = c2 = c3 = 0
as desired.

Inner products
Subspaces, Direct sums and products
Linear Operators
A linear operator on a spaceH transforms kets in V into other kets inH linearly.
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Definition : Linear Operators

Let Ω̂ be a linear operator acting onH, and let α ∈ C. Then ∀ψ1, ψ2 ∈ V :

Q̂(α |ψ1〉+ |ψ2〉 = α(Q̂ |ψ1〉) + Q̂ |ψ2〉 (0.0.4)

So, if for a basis |i〉 ofH we have Ω̂ |j〉 = |j′〉 then, ∀ |ψ〉 ∈ H:

Ω̂ |ψ〉 =
∑
j

Ω̂aj |j〉 =
∑
j

Ω̂aj |j′〉 (0.0.5)

So the action of an operator on a vector preserves the same coordinates but over the trans-
formed basis.

Matrix representation of Linear Operators

It is a fundamental theorem in linear algebra that all linear operators can be represented
by a matrix. Consider an operator Ω̂ acting on some basis vector |i〉 giving |i′〉. Then the
projection of this transformed ket along |j〉 is:〈

j
∣∣ i′〉 =

〈
j
∣∣∣ Ω̂ ∣∣∣ i〉 ≡ Ωji (0.0.6)

If we consider Ω̂ |ψ〉 = |ψ′〉 then:

ψ′ =
〈
j
∣∣ψ′〉 =

〈
j
∣∣∣ Ω̂ ∣∣∣ψ〉 = 〈j| Ω̂

(∑
i

ψi |i〉
)

=
∑
i

ψi
〈
j
∣∣∣ Ω̂ ∣∣∣ i〉 =

∑
i

ψiΩji (0.0.7)

or in matrix form: 
ψ′

1
ψ′

2
...
ψ′
n

 =


〈1 |Ω | 1〉 〈1 |Ω | 2〉 . . . 〈1 |Ω |n〉
〈2 |Ω | 1〉 〈2 |Ω | 2〉 . . . 〈2 |Ω |n〉

...
... . . . ...

〈n |Ω | 1〉 〈n |Ω | 2〉 . . . 〈n |Ω |n〉



ψ1
ψ2
...
ψn

 (0.0.8)

Definition: Matrix representation of a linear operator

For a linear operator Ω mapping Vi to Vj with bases |i〉 and |j〉 respectively:〈
j
∣∣ i′〉 =

〈
j
∣∣∣ Ω̂ ∣∣∣ i〉 ≡ Ωji (0.0.9)

If Ω̂ |ψ〉 = |ψ′〉with |ψ〉 =
∑
i ψi |i〉 and |ψ〉 =

∑
j ψ

′
j |j〉 then:

ψ′ =
∑
i

ψiΩji (0.0.10)

− .7 −



Identity and Projection Operators

The projection operator can be defined as:

P̂i = |i〉 〈i| (0.0.11)

Its action on some vector |ψ〉 is to provide its projection along |i〉. Applying two projections
along two basis vectors gives:

P̂jP̂i = |j〉 〈j | i〉 〈i| = P̂iδji (0.0.12)

So if we first project some ket along |i〉, then applying P̂j will give zero if |i〉 6= |j〉, and will
do nothing if |i〉 = |j〉. In other words:

P̂iP̂i = P̂i. (0.0.13)

Let us then find the matrix elements of P̂i:

(P̂i)kl =
〈
k
∣∣∣ P̂i ∣∣∣ l〉 = 〈k | i〉 〈i | l〉 = δkiδil = δkl (0.0.14)

The identity operator acting on a ket should yield the very same ket. We can define the
operator as follows:

Î →
∑
i

|i〉 〈i| . (0.0.15)

Indeed

Î |ψ〉 =
∑
i

|i〉 〈i |ψ〉 =
∑
i

|i〉 〈i|
(∑

j

aj |j〉
)

=
∑
i

ai |i〉 = |ψ〉 (0.0.16)

Let us try to find the matrix representation of Î :〈
j
∣∣∣ Î ∣∣∣ i〉 = 〈j | i〉 = δji

1 (0.0.17)

The attentive reader may have caught onto the relationship tying these two operators.
Indeed:

Î |ψ〉 = Î
∑
i

ψi |i〉 =
∑
i

|i〉 〈i |ψ〉 =
∑
i

P̂i |ψ〉 =⇒ Î →
∑
i

P̂i (0.0.18)

1if one uses eq. 0.0.15 it is important to note that |i〉 in the definition is not equal to the |i〉 we’re acting on,
indeed only for one value of iwill they be equal.
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Products of Operators and Commutators

Taking the product of two operators is equivalent to applying one after the other to some
ket. For example, consider the product of two linear operators Ω̂ and Λ̂:

(Ω̂Λ̂)ji =
〈
j
∣∣∣ Ω̂Λ̂

∣∣∣ i〉 =
〈
j
∣∣∣ Ω̂ÎΛ̂

∣∣∣ i〉 (0.0.19)

=
∑
k

〈
j
∣∣∣ Ω̂ ∣∣∣ k〉〈k ∣∣∣ Λ̂ ∣∣∣ i〉 (0.0.20)

=
∑
k

ΩjkΛki (0.0.21)

Also, operators, unlike scalars, generally do not commute, although some do. So, it would
be useful to define some quantity that can tell us whether or not commutativity is present
for two operators. The commutator is defined as:

[Ω̂, Λ̂] = Ω̂Λ̂− Λ̂Ω̂ (0.0.22)

We summarize some important properties of commutators below:

Properties: Commutators

The commutator between linear operators has the following properties:
(i) [Ω̂, Λ̂] = Ω̂Λ̂− Λ̂Ω̂
(ii) [Ω̂ + Θ̂, Λ̂] = [Ω̂, Λ̂] + [Θ̂, Λ̂]
(iii) [Ω̂Θ̂, Λ̂] = [Ω̂, Λ̂]Θ̂ + Ω̂[Θ̂, Λ̂]
(iv) [Ω̂, Θ̂Λ̂] = [Ω̂, Θ̂]Λ̂ + Θ̂[Ω̂, Λ̂]

Hermitian adjoint operators

Recall that for a ket α |ψ〉 corresponds a bra α ∗ 〈ψ|. Similarly, for Ω̂ |ψ〉 corresponds a bra
〈ψ| Ω̂†, the operator Ω̂† is called the Hermitian adjoint:

(Ω̂†)ij =
〈
i
∣∣∣ Ω̂†

∣∣∣ j〉 =
〈
Ω̂i
∣∣∣ j〉 =

〈
j
∣∣∣ Ω̂i〉 ∗ = (Ω̂∗)ji (0.0.23)

from which it follows that the matrix representing the Hermitian adjoint of an operator is
the conjugate transpose of the original operator’s matrix.

Properties: Hermitian adjoint properties

For two linear operators Ω̂, Λ̂:

(Ω̂Λ̂)† = Λ̂†Ω̂† (0.0.24)
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Proof. Consider:

〈Ω̂Λ̂V | = 〈(Ω̂Λ̂)V | = 〈V | (Ω̂Λ̂)† (0.0.25)
〈Ω̂Λ̂V | = 〈Ω̂(Λ̂V )| = 〈Λ̂V | Ω̂† = 〈V | Λ̂†Ω̂† (0.0.26)

Definition: Hermitian and Unitary Operators

A linear operator Ω̂ is said to be:
(i) Hermitian iff Ω̂ = Ω̂†

(ii) anti-Hermitian iff Ω̂ = −Ω̂†

(i) unitary iff Ω̂Ω̂† =
.

Theorem: Properties of Unitary Operators

A unitary operator Û preserves the inner product of two vectors:〈
ψ
∣∣ψ′〉 =

〈
Ûψ

∣∣∣ Ûψ′
〉

(0.0.27)

Moreover the column kets (and the row bras) of a square matrix representing a
unitary operator form an orthonormal basis.

Proof. Consider: 〈
Ûψ

∣∣∣ Ûψ′
〉

=
〈
ψ
∣∣∣ Û †Û

∣∣∣ψ′
〉

=
〈
ψ
∣∣∣ Î ∣∣∣ψ′

〉
=
〈
ψ
∣∣ψ′〉 (0.0.28)

as desired. Also:

Û †Û = Î =⇒ δij =
〈
i
∣∣∣ Î ∣∣∣ j〉 =

〈
i
∣∣∣ Û †Û

∣∣∣ j〉 (0.0.29)

=
∑
k

〈
i
∣∣∣ Û †

∣∣∣ k〉〈k ∣∣∣ Û ∣∣∣ j〉 =
∑
k

(Û †)ik(Û)kj (0.0.30)

=
∑
k

(Û)∗
ki(Û)kj = 〈Ui |Uj〉 (0.0.31)

so the columns kets are indeed orthonormal. Starting with Û Û † = Î yields the same result
for row bras.

Eigen-everything
The eigenvalue problem

Consider a special ket |ω〉which, when acted upon by some operator Ω̂ is simply rescaled
by a factor ω. We can express this property as:

Ω̂ |ω〉 = ω |ω〉 ≡ (Ω̂− ωÎ) |ω〉 = |0〉 . (0.0.32)
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We call ω the eigenvalue and |phi〉 the corresponding eigenket of the operator. It can be
shown that this is equivalent to asserting that det(Ω− ωI) = 0. This is the characteristic
equation.

Theorem: Eigen-characteristics of Hermitian and Unitary oper-
ators

(I) The eigenvalues of a Hermitian operator Ω̂ are real and there exists an eigen-
basis formed by orthonormal eigenkets where the matrix representing Ω̂ is
diagonal with corresponding eigenvalues in its diagonal entries.

(II) The eigenvalues of a unitary operator Û are complex of unit modulus, and the
corresponding eigenkets are mutually orthogonal.

Proof. (I) Consider:

Ω̂ |ω〉 = ω |ω〉 =⇒
〈
ω
∣∣∣ Ω̂ ∣∣∣ω〉 = 〈ω |ω |ω〉 (0.0.33)〈

ω
∣∣∣ Ω̂†

∣∣∣ω〉 = 〈ω |ω∗ |ω〉 (0.0.34)

from which it follows due to the hermiticity of Ω̂ that (ω∗ − ω) 〈ω |ω〉 = 0 =⇒ ω∗ =
ω =⇒ ω ∈ R since |ω〉 6= |0〉 (which is a trivial eigenket).

Now consider an arbitrary eigenvalue ω1 for which there must exist |ω1〉, and the
spaceHn−1

⊥ consisting of all kets orthogonal to |ω1〉. Choosing as our basis {|ω1〉 , |ϕ1
⊥〉 , ..., |ϕ

n−1
⊥ 〉}

then
Ω =

(
ω1 0
0 A1

)
=⇒ (ω1 − ω) det(A1 − ωI) = 0 (0.0.35)

Again we choose ω2 such that det(A1 − ω2I) = 0 so that:

Ω =

ω1 0 0
0 ω2 0
0 0 A2

 =⇒ (ω1 − ω)(ω2 − ω) det(A2 − ωI) = 0 (0.0.36)

and repeat until we diagonalize completely Ω.

(ii) Let Û |ui〉 = ui |ui〉 and Û |uj〉 = uj |uj〉 =⇒ 〈uj | Û † = u∗
j 〈uj |. Hence:

〈uj | Û †Û |ui〉 = uiu
∗
j 〈uj |ui〉 =⇒ (1− uiu∗

j ) 〈ui |uj〉 = 0 (0.0.37)

It follows that if i = j then |ui|2 = 1 and so ui are unit complex eigenvalues. It follows
that if i 6= j then 〈ui |uj〉 = |0〉, so they eigenkets are mutually orthogonal.

Therefore, if Ω̂ is a Hermitian operator, then it is unitarily diagonalizable by transforming
to its eigenbasis. Recall from your Linear Algebra course that to transform a matrix from
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one basis (with representation Ω′) to another (with representation Ω), we must calculate:

Ω = U−1Ω′U (0.0.38)

In our case, since U is the matrix containing the eigenkets, it is also unitary 2 and thus we
find Ω = U †Ω′U .

Degeneracy

Simultaneous diagonalization

Generalizing to infinite dimensions
Functions of operators

Infinite kets

Integration will be herein assumed to run over a suitable interval, generally R if not speci-
fied.

The Dirac Delta Function

The analogue to the identity operator in the infinite limit is:

Î =
∑
i

|i〉 〈i| −→ Î =
ˆ ∞

−∞
|x′〉 〈x′| dx′ (0.0.39)

which is known as the completeness relation. The analogue to the decomposition of a ket
into its components in the infinite limit is:

|ψ〉 =
∑
i

ψi |i〉 −→ |ψ〉 =
ˆ ∞

−∞
〈x′| dx′ (0.0.40)

so that by definition the components are given by:

ψi = 〈i |ψ〉 −→ 〈x |ψ〉ψ(x) = 〈x |ψ〉 (0.0.41)

One can then see that to convert to the infinite dimensional limit it suffices to change all
sums over i with integrals in x, position. This is because unlike the discrete i index, x is
continuous.

Another consequence of this definition is that:

〈ψ |ϕ〉 =
ˆ ∞

−∞
〈ψ |x〉 〈x |ϕ〉 dx =

ˆ ∞

−∞
ψ∗(x)ϕ(x)dx (0.0.42)

What is the analogue of the Kronecker delta? Consider this:
〈
x
∣∣∣ Î ∣∣∣ψ〉 = ψ(x) =

ˆ ∞

−∞

〈
x
∣∣x′〉 〈x′ ∣∣ψ〉 dx′ =

ˆ ∞

−∞
δ(x, x′)ψ(x′)dx′ (0.0.43)

2the eigenkets are mutually orthonormal, by theorem: properties of unitary operators
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where we have defined δ(x, x′) ≡ 〈x |x′〉. It is then immediate that if x 6= x′ the orthogo-
nality requirement gives:

δ(x, x′) = 0 (0.0.44)

and if x = x′ then we integrate over an infinitesimally small interval J = [x − ϵ, x + ϵ] so
that ψ(x) may be regarded as constant:

ψ(x) = ψ(x)
ˆ

J
δ(x, x′)dx′ =⇒

ˆ
J
δ(x, x′)dx′ = 0 (0.0.45)

Noticing that δ(x, x′) only depends on x− x′ we may then write δ(x− x′) which is known
as the Dirac delta function. Similarly to the Kronecker delta, it acts as a sampler/sieve:

ˆ ∞

−∞
δ(x− x′)f(x′)dx′ = f(x) (0.0.46)

The Dirac delta function
The Dirac delta function satisfies:
(i) δx− x′ = 0 if x 6= x′

(ii)
´∞

−∞ δ(x− x′)dx = 1 if x = x′

(iii)
´∞

−∞ δ(x− x′)f(x′)dx′ = f(x)
(iv) δ(x− x′) = 1

2π
´∞

−∞ eik(x′−x) dk

The latter way to define the Dirac delta function is through Fourier analysis. For a given
continuous function ψ we define its Fourier transform to be:

ψ(k) = 1√
2π

ˆ ∞

−∞
e−ikxψ(x) dx (0.0.47)

and the inverse Fourier transform to be:

ψ(x′) = 1√
2π

ˆ ∞

−∞
eikx

′
ψ(k) dk (0.0.48)

Substituting one into the other gives:

ψ(x) = 1√
2π

ˆ ∞

−∞
eikx

′( 1√
2π

ˆ ∞

−∞
e−ikxψ(x) dx

)
dk (0.0.49)

= 1
2π

ˆ ∞

−∞

(ˆ ∞

−∞
eik(x′−x) dk

)
ψ(x)dx (0.0.50)

which implies that

δ(x− x′) = 1
2π

ˆ ∞

−∞
eik(x′−x) dk = F−1

( 1
2π
eikx

)
(0.0.51)

where F is the inverse Fourier transform.
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Finally let’s investigate the derivative of the Dirac delta function.
ˆ ∞

−∞
f(x′) ∂

∂x
δ(x− x′)dx′ = d

dx

ˆ ∞

−∞
f(x′)δ(x− x′)dx′ = df(x)

dx
=
ˆ ∞

−∞
δ(x− x′) df

dx′dx
′

(0.0.52)
so that: ˆ ∞

−∞
f(x′) ∂

∂x
δ(x− x′)dx′ =

ˆ ∞

−∞
δ(x− x′) df

dx′dx
′ (0.0.53)

Setting f(x′) = 1 then gives:
δ(x− x′) = xδ′(x− x′). (0.0.54)

Operators in infinite dimensions
Position operator x̂

Definition: The Position Operator

The position operator is defined as:

x̂ =
ˆ ∞

−∞
x |x〉 〈x| dx (0.0.55)

If we apply the position operator to some ket |ϕ〉 and get |ψ〉 = x̂ |ϕ〉, then:

ψ(x′) =
〈
x′ ∣∣ x̂ ∣∣ψ〉 =

ˆ ∞

−∞
x
〈
x′ ∣∣x〉 〈x |ϕ〉 dx =

ˆ ∞

−∞
xδ(x− x′)ϕ(x)dx = x′ϕ(x′) (0.0.56)

therefore we find that:
x̂ |x〉 = x |x〉 (0.0.57)

which is the solution to the eigenvalue problem for x̂. Similarly, for two states |ϕ〉 , |ψ〉 we
find:

〈ψ | x̂ |ϕ〉 =
ˆ ∞

−∞
〈ψ | x̂ |x〉 〈x |ϕ〉 dx =

ˆ ∞

−∞
ψ∗(x)xϕ(x)dx (0.0.58)

Clearly then, the position operator is Hermitian. Indeed:〈
x1
∣∣∣ x̂†

∣∣∣x2
〉

= 〈xx | x̂ |x1〉∗ = [x1δ(x1 − x2)]∗ = x1δ(x1 − x2) = 〈x1 | x̂ |x2〉 =⇒ x̂ = x̂†

(0.0.59)

Momentum operator p̂

Let us now investigate linear operators in infinite dimensional spaces. Consider D̂ = d
dx :〈

x
∣∣∣ D̂ ∣∣∣ψ〉 =

〈
x

∣∣∣∣ dψDx
〉

= dψ(x)
dx

(0.0.60)
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so

dψ(x)
dx

=
ˆ ∞

−∞

〈
x
∣∣∣ D̂ ∣∣∣x′

〉 〈
x′ ∣∣ψ〉 dx′ =

ˆ ∞

−∞
δ′(x− x′)ψ(x′)dx′ (0.0.61)

=⇒
〈
x
∣∣∣ D̂ ∣∣∣x′

〉
= δ(x− x′) d

dx′ = d

dx
(δ′(x− x′)) (0.0.62)

where we used the derivative of the Dirac delta (eq 0.0.53). For sake of brevity we shall
use Dxx′ =

〈
x
∣∣∣ D̂ ∣∣∣x′

〉
Let us now discuss the hermiticity of D̂. Consider:

D̂ = D̂† =⇒ Dxx′ = D∗
x′x (0.0.63)

However note that

Dxx′ = δ′(x− x′) and D∗
x′x = δ′(x′ − x)∗ = δ′(x′ − x) = −δ′(x− x′) = −Dxx′ (0.0.64)

Hence D̂ is anti-Hermitian and to make it Hermitian it suffices to multiply by some purely
complex number. For dimensional reasons3, we will multiply by ℏ

i = −iℏ then:

p̂ ≡ −iℏ d
dx

=⇒ p∗
x′x = iδ′(x′ − x) = −iδ′(x− x′) = pxx′ . (0.0.65)

But is it really Hermitian? Consider the following:

〈ψ | p̂ |ϕ〉 = −iℏ
ˆ ∞

−∞
ϕ∗(x)∂ψ

∂x
dx

= −iℏ
(

[ϕ∗ψ]∞−∞ −
ˆ ∞

−∞
ψ(x)∂ϕ

∗

∂x

)
= −iℏ[ϕ∗ψ]∞−∞ + (〈ψ | p̂ |ϕ〉)∗

so if the wave functions vanish at spatial infinity, then the term in the square brackets
vanishes and the momentum operator is Hermitian. The space of all functions normalize
to unity or the dirac delta function, that therefore vanish at infinity, is the Physical Hilbert
Space. All wave functions we will treat in QM belong to this vector space.

Definition: Momentum Operator and Physical Hilbert space

We define the momentum operator as:

p̂ ≡ −iℏ d
dx

(0.0.66)

which isHermitian in the physical Hilbert space, the space of all functions satisfying
the normalization condition.

3multiplying by ℏ gives the right dimensions for momentum
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Consider the eigenvalue problem for p̂:

p̂ |p〉 = p |p〉 =⇒ 〈x | p̂ | p〉 = p 〈x | p〉 (0.0.67)

=⇒
ˆ ∞

−∞

〈
x
∣∣ p̂ ∣∣x′〉 〈x′ ∣∣ p〉 dx′ = k 〈x | p〉 (0.0.68)

− iℏdψp(x)
dx

= kψp(x) (0.0.69)

where ϕp(x) ≡ 〈x | p〉. The general solution to the latter ODE is clearly:

ψp(x) = Ae
ipx/h =⇒ 〈x | p〉 = 1√

2πℏ
e

ipx/h (0.0.70)

Here we normalised as follows:

δ(p− p′) =
〈
p′ ∣∣ p〉 =

ˆ ∞

−∞

〈
p′ ∣∣x〉 〈x | p〉 dx = |A|2

ˆ ∞

−∞
e

i(p−p′)x
ℏ dx = 2πℏ|A|2δ(p− p′)

(0.0.71)
where we used the Fourier definition of the dirac delta function.

It then follows that:

ψ(p) = 〈p |ψ〉 =
ˆ ∞

−∞
〈p |x〉 〈p | f〉 dx = 1√

2π

ˆ ∞

−∞
e

− ipx/ℏψ(x)dx (0.0.72)

ψ(x) = 〈x |ψ〉 =
ˆ ∞

−∞
〈x | p〉 〈p |x〉 dp = 1√

2π

ˆ ∞

−∞
e

ipx/ℏψ(p)dp (0.0.73)

(0.0.74)

which are the Fourier transform relations! This means that Fourier transforms are just
passages from the position basis |x〉 to the momentum basis |p〉.

Reciprocity between Position and Momentum representations

The Fourier relation between the position and momentum representations suggest a strik-
ing symmetry between these two bases in theHilbert space. Indeed consider the following
table summarizing the properties of the position and momentum operators:

Operators such as these are known as reciprocal operators.
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Property Position x̂ Momentum p̂

Completeness
´∞

−∞ |x〉 〈x| dx = Î
´∞

−∞ |p〉 〈p| dp = Î

Orthogonality 〈x |x′〉 = δ(x− x′) 〈p | p′〉 = δ(p− p′)

Change of basis 〈x | p〉 = 1√
2πℏe

ipx
ℏ 〈p |x〉 = 1√

2πℏe
−ipx

ℏ

Diagonal representation x̂ =
´∞

−∞ x |x〉 〈x| dx p̂ =
´∞

−∞ p |p〉 〈p| dp

Matrix elements (diag.) 〈x | x̂ |x′〉 = xδ(x− x′) 〈p | p̂ | p′〉 = xδ(p− p′)

Cross representation x̂ =
´∞

−∞ 〈p | x̂ | p
′〉 |p〉 〈p′| dpdp′ p̂ =

´∞
−∞ 〈x | p̂ |x

′〉 |x〉 〈x′| dxdx′

Matrix elements (cross) 〈x | p̂ |x′〉 = −iℏ ∂
∂x(δ(x− x′)) 〈p | x̂ | p′〉 = iℏ ∂

∂p(δ(p− p′))
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1Reviewing Classical Mechanics

The goal of this chapter will be to revisit some classical results in Lagrangian and Hamil-
tonian mechanics. These will help us make the leap to Quantum Mechanics in an elegant
manner, using the Hamiltonian formulation as our starting point (the passage using La-
grangian mechanics was also done, and it is known as the Feynman path integral formu-
lation).

1.1 The first variation: deriving the Euler-Lagrange equation
Consider a systemofnparticleswith coordinates (x1, x2...xn) thenwe forman-dimensional
configuration space which configure the system unequivocally. Given a potential V (x),
and x(ti) = xi, x(tf ) = xf what makes the actual trajectory xcl in the configuration space
special compared to the infinitely many others? This is the question that Lagrange ad-
dressed in his formulation.

The first step is to recall that for a given function f(x)wherex is the position of the particle
in the configuration space, then forxmin to be aminimum, δf (1) = 0 for any small variation
x→ x + η. Therefore, taylor expanding gives:

f(x0 + η) = f(x0) +
n∑
i=1

∂f

∂xi

∣∣∣
x0
ηi +O(µ2

i ) (1.1.1)

and so:
δf (1) ≡

n∑
i=1

∂f

∂xi

∣∣∣
xmin

ηi = 0 =⇒ ∂f

∂xi
(xmin) = 0, ∀i = 1...n (1.1.2)

Let us apply this procedure to the following functional:

S[x] =
ˆ tf

ti

L(x, ẋ)dt (1.1.3)

called the action which we hypothesize to be an extremum along the classical path xcl(t)
and we consider a path in its vicinity xcl(t) + η(t) with the same start/end points. Then
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1.1. THE FIRST VARIATION: DERIVING THE EULER-LAGRANGE EQUATION

η(ti) = η(tf ) = 0 so that:

S[xcl(t) + η(t)] =
ˆ tf

ti

L(xcl(t) + η(t), ẋcl(t) + η̇(t))dt

=
ˆ tf

ti

L(xcl(t), ẋcl(t)) + ∂L
∂x(t)

∣∣∣
xcl

· η(t) + ∂L
∂ẋ(t)

∣∣∣
xcl

· η̇(t) +O(η2, η̇2)dt

= S[xcl(t)] + δS(1) +O(η2, η̇2)

so for S[xcl(t)] to be an extremum, we need as was shown before that:

δS(1) =
ˆ tf

ti

[
∂L
∂x(t)

∣∣∣
xcl

· η(t) + ∂L
∂ẋ(t)

∣∣∣
xcl

η̇(t)
]
dt = 0 (1.1.4)

Integrating the second term by parts gives:

ˆ tf

ti

[
∂L
∂x(t)

− d

dt

∂L
∂ẋ(t)

]
xcl

· η(t)dt = 0 (1.1.5)

We now state two results that will help us simplify this result.

Lemma 2.1 Let α, β ∈ R such that α < β. Then ∃ζ ∈ C2(R) for which:{
ζ > 0 ∀x ∈ (α, β)
ζ = 0 ∀x ∈ R \ (α, β)

(1.1.6)

This allows us to formulate the following theorem:

Extremal values of inner products

Assume 〈η, g〉 = 0, ∀η ∈ H . If g is continuous over D then g = 0 on D = [x0, x1].

Proof. Suppose g > 0 for some c ∈ D, then due to Lemma 2.1 ∃α, β such that x0 < α < c <
β < x1, g(x) > 0 ∀x ∈ (α, β) and g(x) = 0 ∀x ∈ D \ (α, β). Then:

〈η, g〉 =
ˆ x1

x0

η(x)g(x)dx =
ˆ β

α
η(x)g(x)dx > 0 (1.1.7)

but by assumption 〈η, g〉 = 0,∀g ∈ H . Therefore we must have that g = 0 everywhere on
D.

An immediate consequence of this theorem comes from noting that (1.1.4) can be written

as 〈η, g〉 = 0 with g =
[

∂L
∂x(t) −

d
dt

∂L
∂ẋ(t)

]
xcl

. Therefore we reach the famous Euler-Lagrange

equation:
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1.1. THE FIRST VARIATION: DERIVING THE EULER-LAGRANGE EQUATION

Lagrangian Formulation

Consider a particle in a configuration space moving from (ti, xi) to (tf , xf ), and
define the Lagrangian as a function L = T − V with T as kinetic energy and V as
potential energy. Let us then define the functional S[x(t)], called action as follows:

S[x(t)] =
ˆ tf

ti

L(x, ẋ)dt (1.1.8)

Then the action is extremal (or sometimes erroneously called minimised) for some
xcl(t) satisfying: [

∂L
∂x
− d

dt

∂L
∂ẋ

]
xcl

= 0 (1.1.9)

which is known as the Euler-Lagrange equation.

Note that this formulation reduces down to Newton’s Second Law assuming the potential
is velocity independent. However, for the electromagnetic force is velocity dependent, and
for this the Lagrangian will have to be modified so that the E-L equation reduces to the
Lorentz force, the appropriate force law.

We also note that the Lagrangian, as opposed to the Newtonian formulation, is scalar in
nature. Also, they are coordinate-independent, so any choice of independent coordinates
will yield the same results.

Definition 1:Canonical Force and Momentum

For a LagrangianL(q1, q̇1, ..., qn, q̇n), define the canonicalmomentumand the canon-
ical force conjugate to qi as :

pi = ∂L
∂q̇i

, Fi = ∂L
∂qi

(1.1.10)

Note that these are not always the same as the forces and momenta encountered in basic
classical mechanics. Indeed, any quantity such that

∂L
∂x

= d

dt

∂L
∂ẋ

(1.1.11)

has an associated conjugate force and momentum. For example, torque and angular mo-
mentum, in which case qi would be an angle.

Definition 2 : Cyclic Coordinates and Conservation Laws

Suppose that L is independent of a coordinate qi but dependent on q̇i. Then qi is
said to be a cyclic coordinate to which an associated conservation law reads:

d

dt

∂L
∂ẋ

= 0 (1.1.12)
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1.2. THE ELECTROMAGNETIC LAGRANGIAN

1.2 The Electromagnetic Lagrangian
The Lorentz force law gives the force acting on a charged particle moving through an elec-
tric field E and magnetic field B:

F = q
(
E + v

c
× B

)
(1.2.1)

Because the magnetic force depends on the velocity, we cannot use the typical L = T − V
mnemonic, we seek a new lagrangian.

Electromagnetic Lagrangian

The appropriate Lagrangian which reduces down to the correct force law turns out
to be

L = 1
2
mv · v− qϕ+ q

c
v ·A (1.2.2)

where E = −∇ϕ− 1
c
∂A
∂t and B = ∇×A.

Indeed, writing down the E-L equation:

d

dt
(mv) = −q∇ϕ+ q

c

[
∇(v ·A)− dA

dt

]
(1.2.3)

and by the chain rule: dAdt = ∂A
∂t + (v · ∇)A = ∂A

∂t +∇(v ·A)− v× (∇×A) so:

F = −q∇ϕ− q

c

[
v× B

]
= q

(
E + v

c
× B

)
(1.2.4)

Although it may seem very tempting, it is incorrect to interpret the second and third term
of the LHS in 1.2.1 to be the potential energy of the electromagnetic field. It would be
senseless to even define a potential Φ, since a velocity-dependent force is non-conservative
making Φ path dependent. We could solve this problem by finding Φ along the path of
the particle, but to find this path we first need to solve the E-L equation, which involves Φ.
Overall, the mathematically correct way to interpret the second and third terms of LHS of
the Lagrangian is to call them the generalised potential.

1.3 Hamiltonian Mechanics
The Hamiltonian formulation reverses the roles of q̇and p by introducing the Hamiltonian:
H(q, p) such that:

q̇i = ∂H
∂pi

(1.3.1)

which is completely analogous to ṗi = ∂L
∂qi

The transformation q̇i ←→ pi belongs to the
family of Legendre Transformations.
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1.3. HAMILTONIAN MECHANICS

Definition 3: The Legendre Transformations

Consider the function f(x) such that df
dx = u(x) with u(x) invertible. Let us then

define:
g(u) = u · x(u)− f(x(u)) =⇒ dg

du
= x(u) (1.3.2)

One calls f and g Legendre transforms of each other, and to transform from one to
the other we simply exchange x←→ u.

It is then clear that if we define:

q̇i = ∂H
∂pi

pi = ∂L
∂q̇i

, (1.3.3)

then H and L are Legendre transforms of each other with u = pi and x = q̇i. Using 1.3.1
we can then define:

H(q, p) =
n∑
i=1

piq̇i − L(q, q̇) (1.3.4)

where q̇i is a function of q, p.

We then get (note that in the second line we use the independence of q and p to eliminate
terms of the form : ∂L

∂qj

∂qj

∂pi
)

∂H
∂pi

= ∂

∂pi

(∑
j

pj q̇j − L
)

= q̇i +
∑
j

pj
∂q̇j
∂pi
−
∑
j

∂L
∂q̇j

∂q̇j
∂pi

= q̇i +
∑
j

pj
∂q̇j
∂pi
−
∑
j

pj
∂q̇j
∂pi

= q̇i

as required, as well as:

∂H
∂qi

=
∑
j

pj
∂q̇j
∂qj
− ∂L
∂qj
− sumjpj

∂L̇

∂q̇j

∂q̇j
∂qi

= −frac∂L∂qj = −ṗi (1.3.5)

which are the two canonical equations in Hamiltonian mechanics.

Hamiltonian Formulation
Consider a systemwith n degrees of freedom in a 2n-dimensional phase spacewith
coordinates (q, p). If we define the Hamiltonian to be:

H(q, p) =
n∑
i=1

piq̇i − L(q, q̇) (1.3.6)
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then the Canonical Hamiltonian Equations are:

∂H
∂qi

= −ṗi,
∂H
∂pi

= q̇i (1.3.7)

1.4 The Electromagnetic Hamiltonian
Recall the Electromagnetic Lagrangian:

L = 1
2
mv · v− qϕ+ q

c
v ·A (1.4.1)

so that p = mv + qA
c . Then using (1.3.3) we find that the Hamiltonian is:

H = p · v− L

=
p · (p− qA

c )
m

− 1
2
mv · v + qϕ− q

c
v ·A

=
p ·
(
p− qA

c

)
m

− 1
2m

(
p− qA

c

)2 + qϕ− q

c

(
p− qA

mc

)
·A

= 1
2m

(
p− qA

c

)2 + qA
mc

+ qϕ− q

c

(
p− qA

mc

)
·A

= 1
2m

(
p− qA

c

)2 + qϕ

Electromagnetic Hamiltonian

The Hamiltonian describing electromagnetic interactions of a particle of charge q in
an electromagnetic field is:

H =
(
¯
p− qA

c

)2
2m

+ qϕ (1.4.2)

Now that we have reviewed the state of physics near the end of the 19th century, we are
ready to delve into Quantum Mechanics.
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2Experimental Motivation

The history of QuantumMechanics can be dated back to the early 1900s, when theoretical
physics seemed to be at a dead end. As Lord Kelvin put it: There is nothing new to be
discovered in physics now. All that remains is more and more precise measurement.
However, this could not be farther from the truth. indeed, it was about at this time when
certain experiments had been performed whose results seemed to be inexplicable using
classical physics. The most important were:

(i) Spectral lines

(ii) Blackbody radiation

(iii) the Photoelectric effect

(iv) Radioactive decay phenomena

2.1 Physics is in Chaos
Spectral Lines

The first experiments related to the composition of chemical elements and the colors they
emitted were performed in the 1860s by Gustav Kirchhoff and Robert Bunsen. They found
that to each element was a designated spectral footprint or spectrum.

By 1885, Balmer had discovered empirically that the spectral lines of wavelength λ could
be written as:

1
λ

= R
(1

4
− 1
n2

)
(2.1.1)

where R ≈ 1.097 × 105cm−1 is the Rydberg constant, andd n is an integer greater than
2. However a key question still remained unanswered: why where the spectra made of
discrete lines, and not gradients? No classical theory could explain this result.

Blackbody radiation

Several experiments by Rayleigh, Jeans and others had shown that the intensity I of elec-
tromagnetic radiation emitted by a blackbody at temperature T of wavelength λ followed
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a certain distribution shown below. No physical model for a blackbody could fit the data
consistently.

On the one hand, therewas theRayleigh-Jeans approximation: I(λ) = C T
λ4 whichworked

well for long wavelengths, but horrendously at short wavelengths such as UV.

On the other hand,wehaveWien’s approximation: I(λ) = C exp
k

λT which insteadworked
well for short wavelengths, and blew up at longer wavelengths.

Neither however were able to consistently describe blackbody radiation over the entire
spectrum, this was known as the UV catastrophe.

The Photoelectric effect

Since 1888 another effect, called the photoelectric effect, had been under careful inves-
tigation. The effect consisted in the positive ionization of neutral metal zinc bars when
irradiated with UV rays. Not only, experiments also ascertained that this emission of elec-
trons was dependent on the frequency of incident radiation, which according to classical
electromagnetism, would not be the case.

Radioactivity

Thefinal nail in the coffinhas to dowith radioactive decay, discovered byErnest Rutherford
in 1900. Despite being completely identical, atomic nuclei will not decay at identical times,
but instead have a specific probability of decaying in a time interval δt. This probability is
given by λδt with λ defined as the decay constant, and varies across different isotopes.

Consider the following experiment: we take a box containing N0 identical isotopes, and
measure the number of remaining nuclei N(t) at every instant t. On average:

δN = −λNδt =⇒ dN

dt
= −λN (2.1.2)

whose solution is:
N(t) = N(0)e−λt (2.1.3)

One could know everything about the nucleus of a specific atom, and yet it would be
impossible to determine when it would decay. This undeterministic answer, which goes
entirely against classical physics, deeply troubled physicists at the time. These experiments
seem to suggest two fundamental aspects of nature: discreteness and indeterminism.

2.2 Discreteness: Bohr and Planck’s radical solutions
These problems would only be resolved with the radical idea of energy quantization, pro-
posed by Planck in 1900. Indeed, to create a mathematical model that would fit the ex-
perimental data for blackbody radiation, he hypothesized that the energy in this radiation
was quantized, and could only take discrete values given by:

E = hν (2.2.1)
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where h ≈ 6.626× 10−34Js−1 is Planck’s constant and ν is the frequency of the radiation.
These energy quanta are now known as photons. More often, ℏ = h

2π is used, in which
case:

E = ℏω (2.2.2)

with ω defined as the angular frequency. It then follows that the momentum of a photon
may be expressed as:

|p| = E

c
= h

λ
= ℏk (2.2.3)

where k = 2π
λ is the wave-number. More generally, Sommerfield and Wilson, noticing the

regularity in the quantization of quantities, proposed:

The Quantization Condition

For a system of momenta pi and corresponding coordinates qi:
˛
pidqi = nℏ (2.2.4)

where n is an integer. Energy and momentum quantization then give:

E = ℏω, p = ℏk (2.2.5)

This quantization however did not only solve the UV catastrophe, but also explained the
photoelectric effect, and the discreteness in atomic spectra.

Bohr’s Model

Consider the quantization condition for the coordinate ϕ and corresponding canonical an-
gular momentum l. Then, if we define the z-axis to lie normal to the plane in which the
nucleus and electron lie. Then we find:

˛
lzdϕ = l

ˆ 2π

0
dϕ = nh =⇒ l = nℏ (2.2.6)

So, for a hydrogen-like atom of atomic numberZ, we envision an electronmoving in circu-
lar orbits around the nucleus, analogous to the solar system. These orbits however are not
continuous. This is because as an electron orbits, it is accelerating and decelerating, emit-
ting electromagnetic radiation and losing energy. This forces the electron to move closer
and closer to the nucleus, eventually collapsing. To solve this issue, Bohr hypothesized
that the energy levels were discrete, and corresponded to orbits where the electron would
not collapse into the nucleus. We can thus define the potential to be:

V (r) = −Ze
2

r
(2.2.7)

with r, the radius from the nucleus, such that:

l = mvr = nℏ
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which is why the orbits are discrete. Using the centripetal force equation, one finds that:

1
2
mv2 = 1

2
Ze2

r2 =⇒ E = −1
2
mv2 = −1

2
Ze2

r2 (2.2.8)

multiplying bymr2 gives the values of the orbit radii:

m2v2r2 = mZe2r =⇒ r = ℏ
mZe2n

2 (2.2.9)

Interestingly, the distance from the nucleus increases quadratically. We also remark that
the Bohr radius, the radius of the first orbit in a hydrogen atom, is:

a0 = ℏ
me2 =⇒ r = n2

Z
a0 (2.2.10)

We can then write the energy levels of the hydrogen-like atom as:

E = −m
2e2

2a0

1
n2 (2.2.11)

This means that if an electron jumps from an energy level En′ to a lower level En, then the
energy of the emitted photon must be equal to the energy difference:

hc

λ
= En′ − En (2.2.12)

The Bohr model can be summarized as follows:

Bohr’s atomic model
The orbit radii of an electron for a hydrogen-like atom of atomic numberZ are given
by:

r = ℏ
mZe2n

2 = n2

Z
a0 (2.2.13)

and the corresponding energies are:

E = −m
2e2

2a0

1
n2 (2.2.14)

2.3 Indeterminacy: corpuscular and wave-like light
Although we have been using the terms light and particle, it is about time we actually
define these two objects.

Definition 1: Waves and Particles
A particle is a localized bundle of energy and momentum, described at any instant
by (q, p) (or (q, q̇)). Given a set of initial conditions, the entire future of the system
can be predictedwith perfect accuracy using Lagrangian orHamiltonianmechanics.
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There is no interference between particle.
A wave is a disturbance spread over space, and is described by a wave function
ψ(r, t). Solving the wave equation with appropriate boundary conditions we can
find the wave at all future times. There is interference between waves.

We will be specially interested in waves that are periodic with respect to both space and
time, called plane waves. They are expressible as:

ψ(x, t) = A exp
[
2πi

(x
λ
− t

T

)]
(2.3.1)

where λ is the wavelength and T its period. So the wave repeats itself every T seconds in
time, and every λ meters in space. Alternatively, defining the wavenumber k = 2π

λ and
angular frequency ω = 2π

T we can then write:

ψ(r, t) = Aei(k·r−ωt) (2.3.2)

We have seen how light behaves as a particle by looking at energy quanta, and phenomena
such as spectral lines, the photoelectric effect and blackbody radiation. Let us now look at
how light may behave as a wave.

Light as a wave

Consider the following experiment, we take a wave ψ = Aei(ky−wt) incident on a screen
with two slits, a distance a apart, with a rowof detectors a distance d from the slits. First we

(a) The interference patterns for the double slit
experiment using particles

(b) The interference patterns for the double slit
experiment using waves

keep S1 open, so that the wave will propagate and produce an intensity pattern I1 = |ψ1|2.
Similarly if we keep S2 open we get I2 = |ψ2|2. In both cases the wave is smooth, with a
clear peak near the slit.

Now we keep both slits opened. One would expect the new pattern to be I1+2 = I1 + I2,
but this is not the case. Instead I1+2 = |ψ1 + ψ2|2. This effect is due to the fact that the
waves have to travel different distances to arrive at some given point x on the detector. The
difference in phase between the two waves then produces an interference.
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More specifically, for maximum intensity we need the difference in the distances travelled
to be integer multiples of the wavelength, whereas for minimum intensity we need the
difference in the distance travelled to be an odd multiple of the half wavelength:

|d1 − d2| =
{
nλ for constructive interference
(2n+ 1)λ2 for destructive interference

(2.3.3)

Let us now repeat the very same experiment using particles, with I(x) defined as the num-
ber of particles detected per second. The pattern with just S1 or S2 open are similar, but
when they are both open, classical mechanics predicts that I1+2 = I1 + I2 unlike waves.
To avoid interactions between the particles themselves, they are sent one by one.

When we perform the double slit experiment with light, an interest result arises.

When light passes through the slits, in the case when only one slit is open, as well as when
both slits are open, the interference pattern of a wave is produced.

Now we repeat the experiment, this time using very low intensity light. Starting with just
S1 open, the energy exchange will not be continuous anymore. Instead, the energy will
arrive in bursts. After long enough, the envelope of I1 is clearly visible. If we now open
both slits however, we will not find I1+2 = I1 + I2 as is expected, but instead we get an
interference pattern for a wave! This rules out the possibility for light bundles, photons,
to move as particles, since if this were true, then a photon going through slit 1 would not
care about whether or not slit 2 is open, unlike a wave which interferes with itself. In other
words, consider a point of destructive interference, so that the number of photons arriving
are higher when either S1 or S2 is open thanwhen both are open. Thenwhywould adding
another pathway for photons by opening another slit reduce the photon count? Moreover,
since the particles are coming out one at a time, we can’t state that the photons through
slit 1 are interfering with those through slit 2. It’s as if the photons already knew where
the others would distribute themselves!

So is light a wave, or is it a particle? This is the so-called wave− particleduality of light.

2.4 Indeterminacy: corpuscular and wave-like electrons
The several experiments explained in the previous sections seem to support both a wave-
like and particle-like nature of matter. This was further evinced when diffraction was
achieved with electrons, suggesting that the wave-particle duality that had been already
accepted for electromagnetic radiation is perhaps relevant tomatter aswell. This waswhat
De Broglie conjectured in 1924, providing the De Broglie relations.

Definition 2: De Broglie relations

For any object we can associate awavelength λDB , called theDeBrogliewavelength
such that:

λDB = h

p
(2.4.1)
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Further evidence for the wave-particle duality of electrons was collected by Tonomura in
1989.

A beam of electrons is shot against a biprism, which plays the role of the two slits. The
electrons can pass on either side of the filament, and thendetected. The electrons produced
individual spots on the detector, but overall created an interference pattern.

(a) Experiment performed by Tonomura (b) Interference pattern formed from the wave
particle duality of electrons

So again we ask ourselves: is an electron a particle or a wave?

To answer this question, we will have to define the concept of superposition.

2.5 Understanding superposition
Consider two random properties of electrons:

(i) Colour: black or white

(ii) Hardness: hard or soft

which can be measured using the appropriate colour and hardness boxes. Obviously, if
an electron comes out of a colour box as black, then is is black, and when it is again put
in another colour box, there is 100% probability of it going out of the black exit. The same
goes for hardness. Colour and hardness are repeatable.

One natural question to ask is: are colour and hardness correlated? We will suppose that
if an electron going through a colour box comes out white, then if it is then sent into a
hardness box it has a 50% chance of being soft and 50% chance of being hard.

Figure 2.3. Hardness and colour are not correlated as shown

Now we perform the following experiment. A beam of electrons is sent to a colour box,
and thewhite output is then sent to a hardness box, where the soft output is sent to another
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colour box. Obviously, one expects the output to be 100% white, but instead it is 50% white
and 50% black!

This means that when we pass the electron beam through the colour box, and then the
hardness box, we loose all information about the colour! Similarly, if we had sent the
electron beam through the hardness box, and then the colour box, we would have lost all
information on hardness. In general, we can’t build a box giving both hardness and colour!

If we did try building such a box, took for example the soft-black output and sent it into a
colour box, one would find that only 50% are black!

Figure 2.4. Colour hardness box and the inconsistency in observing hardness and colour simulta-
neously

It is therefore a fundamental aspect of nature, called the uncertainty principle, that it is
impossible tomeasure certain couples of observables simultaneously, not becausewe can’t
measure them, but because it is meaningless to do so, just like the colour hardness box.

We now addmirrors to our apparatus, which will allow us to perform a set of experiments
that will drill in the concept of superposition even further. These mirrors do not affect the
observables in any way, if a beam of electrons is 100% white before the mirror, it is still
100% white after being reflected.

Experiment 1

Figure 2.5. Experiment 1, we measure the hardness and softness of white electrons twice

Clearly, onewould predict the electrons initially coming out hardwill come out hard again,
since colour measurement is repeatable. Same goes with white. Luckily, this prediction is
true!

Experiment 2

Again, we expect to find 50% black and 50% white. This corresponds with reality. W
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Figure 2.6. Experiment 2, we measure the colour of hard electrons

Experiment 3

Figure 2.7. Experiment 3, we measure the colour of white electrons going through a hardness box
first

Using our preceding arguments, one would expect 50% black and 50% white. However,
this is wrong! All of the electrons come out white! No matter whether they are hard or
soft, they are measured to be white.

Experiment 4

We modify the apparatus slightly by inserting a small movable barrier, which absorbs all
electrons incident upon it.

Now we run experiment 3 using the barriers.

Figure 2.8. Experiment 4 is similar to experiment 3 but with a barrier

Classically, one would expect from locality that if we place a barrier in the soft path, the
hard electrons won’t care. So if all the hard electrons in experiment 3 came out white, then
they should come out white again in this experiment.
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However, in reality the output is 50% black and 50%white! Howdid the electrons through
the hard path "know" that a barrier was placed in the soft path? This is a manifestation of
non-locality, which we will see later on with the collapse of the wave function.

Conclusions

So what path did the individual electron take in experiment 3? It can’t have taken the hard
path, because that was experiment 4 which had 50-50 ratio. However, it can’t have taken
the soft path either for the same reason. Could it have taken both paths? No, if we place
a detector on both paths, it has been empirically verified that each electron always always
takes one of the paths. You never see half an electron 1. So it took neither? If we place a
barrier in both paths however, nothing comes out, so it can’t be this either.

Definition 3 : Superposition state

Electrons exist in this new mode of being, it is a superposition. For example, an
initially white electron is in a superposition of 50% hard and 50% soft. It is neither
hard, nor soft, nor both, nor either. So, having a definite colour means having an
indefinite hardness, but being in a superposition of hard and soft.

2.6 The wave function
From all of these results, Born extrapolated one major idea, that of the wave function. He
concluded that with each system is an associated complex wave ψ(r, t) which encoded all
the information about this system.

Born’s Rule
The probability of finding a particle at time t in a volume δV centered at r is given
by:

P (δV ) = |ψ(r, t)|2δV (2.6.1)

We must now revisit our definition of a particle.

Definition 4: QM particle

In quantummechanics, a particle is an object which is found in only one place when
its position is measured.

In the case of the electron diffraction experiment, this definition is self-evident, because the
individual electrons appear as dots, despite travelling as a wave. What is truly happening
is the detection of the electron wave results in the collapse of the wave, so that only one
of the detector pixels is triggered, but leaving all the other pixels untouched. It’s as if the
responding pixel told the other pixels not to respond, this is quantum non-locality. This
collapse is believed to be an instantaneous event 2.

1how do we know that this is not the wave function collapsing?
2see https://iopscience.iop.org/article/10.1088/1742-6596/410/1/012153/pdf
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2.7. EXPLAINING ELECTRON INTERFERENCE

The De Broglie wave function

The wave function for a free particle is called the De Broglie wave function. For a free
particle moving in the positive x-direction with momentum p, this wave function must be
a momentum eigenstate, since it is a state of definite momentum. We know from chapter
1 that in the position representation this wave function can be expressed as a plane wave:

ψ(x) = Ae
ipx
ℏ (2.6.2)

As it turns out, to introduce time evolution, it suffices to multiply by e iEt
ℏ so that:

ψdB(x, t) = Aei(px−Et)/ℏ = Aei(kx−wt) (2.6.3)

is the De Broglie wave function, with the standard relation k = p
ℏ and ω = E

ℏ , where E in
this case is only the kinetic energy of the particle.

An important consequence of this is that the particle has the same probability of being
found in any small interval of length δx, since P (δx) = |ψ(x, t)|2δx = |A|2δx which is
constant along the entire x-axis.

2.6.1 Galilean transformations

It is interesting to see how the De Broglie relations hold for different Galilean observers.
Consider two frames S and S′ with aligned x-axes and with S′ moving to the right (+x
direction) relative to S with constant non-relativistic velocity v. If the origins coincide at
t = 0 then the frames are related by:

x′ = x− vt, t′ = t (2.6.4)

Now a particle with momentum p = mṽ in the S frame has velocity:

ṽ′ = ṽ − v =⇒ p′ = p−mv (2.6.5)

in the S′ frame. Therefore:
λ′ = h

p′ = h

p−mv
6= λ (2.6.6)

For normal waves, Galilean observers will find discrepancies in the frequency but not the
wavelength. Indeed, for waves like sound or water, the two observers need only to take a
picture of the wave at the same instant to find the wavelength. Clearly then a wave that is
not invariant under Galilean transformations must not be directly measurable.

2.7 Explaining electron interference
Let us denote the wave function from the two slits as ψ(r, t), and the wave function when
only slit 1 or slit 2 is open by ψ1(r, t), ψ2(r, t) respectively. The probability of finding an
electron in δV is then:

P (δV ) = |ψ1 + ψ2|2δV = |ψ1|2 + |ψ2|2 + ψ∗
1ψ2 + ψ∗

2ψ1︸ ︷︷ ︸
interference term

(2.7.1)
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It follows that destructive interference occurs at points where
phi1 = ϕ2 + π, and constructive interference occurs at points where ϕ1 = ϕ2. Here ϕ1,2 are
the phases of the two wave functions.

One fundamental aspect about the electron interference pattern is that when we observe
which slit the electron goes through, the interference pattern is destroyed, and we instead
get either ψ1 or ψ2.
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3The Four Postulates

The aim of this chapter will be to present the four fundamental postulates of Quantum
Mechanics and discuss their implications.

3.1 The Postulates
The Four Postulates of QM

For a single-particle system in one dimension the postulates in quantummechanics
are:

I. The state of a particle is represented by a vector |ψ(t)〉 in a Hilbert space that
is independent of time (this is called the Schrödinger picture).

II. The independent variables x and p of classical mechanics are represented by
Hermitian operators x̂ and p̂with the following matrix elements in the eigen-
basis of x̂:

〈x| x̂ |x′〉 = xδ(x− x′) (3.1.1)
〈x| p̂ |x′〉 = −iℏδ′(x− x′) (3.1.2)

III. If the particle is in a state |ψ(x, t)〉, the measurement of a variable represented
by Ω will yield one of the eigenvalues ωwith probability P(ω) ∝ | 〈ω |ψ〉 |2 and
the state of the system will change to |ω〉.

IV. The state vector ψ(t) obeys the Schrödinger equation:

iℏ
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 (3.1.3)

where Ĥ is the Hamiltonian operator in QM.

The first three postulates provide a description of how to interpret a system’s state at a
given time, like taking a snapshot of it. Instead, the last postulate tells us how the state
evolves in time.

3.2 The First Postulate: what is a quantum state
The first postulate tells us that the quantum state of a system is described by a complex
vector in a Hilbert space, the state vector |ψ〉. Because the system is described by a wave,
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the wave function, the number of degrees of freedom is no longer finite like in classical
mechanics, but infinite. This is highlighted by the fact that the state vector belongs to a
Hilbert space.

It then follows from the definition of vector space that if|ψ〉 and |ψ〉 represent possible
states, then any linear combination α |ψ〉+ β |ψ〉 is also a suitable combination. This is the
principle of superposition we introduced in chapter 2.

Superposition of states

If|ψ〉 and |ψ〉 represent possible quantum states, then any linear combination α |ψ〉+
β |ψ〉 for α, β ∈ C also represents a quantum state.

Aswas seen earlier, the probability that ameasurement of the position of the particle yields
a result in an interval dx is given by |ψ|2dx. Therefore, if we integrate over R we must get
1, since the particle must be somewhere.

Conditions for a wave function

For a suitable state vector |ψ(x, t)〉:

||ψ||2 =
ˆ ∞

−∞
|ψ(x, t)|2dx = 1 (3.2.1)

which implies :
(i) the square integrability of the wave function so that:

lim
x→∞

ψ(x, t) = 0, (3.2.2)

(ii) the continuity of the wave function,
(iii) the boundedness of the wave function
(iv) the boundedness of the first derivative of the wave function at infinity:

lim
x→∞

∂ψ(x, t)
∂x

<∞, (3.2.3)

(v) the single-valuedness of the wave function.

3.3 Second and Third Postulates: Measuring Observables
The second and third postulates provide information on observables and their measure-
ment in QM.

Suppose we are given some dynamical variable ω(x, p), which we want to measure for a
system in a state |ψ〉. The first step is to construct the quantum operator:

Ω̂ = ω(x→ x̂, p→ p̂) (3.3.1)
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The second step is to find the orthonormal eigenbasis {|ωi〉}with eigenvalues ωi of Ω. The
third step is to expand |ψ〉 in this basis and find the coordinate vector:

|ψ〉 =
∑
i

|ωi〉 〈ωi |ψ〉 (3.3.2)

Finally, the probability P(ω) that the eigenvalue ω is measured is proportional to the coor-
dinate/projection of ψ along ω. So:

P(ω) ∝ | 〈ω |ψ〉 |2 = | 〈ψ |ω〉 |2 = 〈ψ |ω〉 〈ω |ψ〉 = 〈ψ | p̂ωp̂ω |ψ〉 = 〈p̂ωψ | p̂ωψ〉 (3.3.3)

since the projection operator along ω is p̂ω = |ω〉 〈ω|.

Two important remarks must be made:

(i) If the quantum state is one of the eigenstates |ωi〉 then the measurement will defi-
nitely yield the measurement ωi.

(ii) Consider the superposition of two two eigenstates |ω1〉 and |ω2〉, such that the mea-
surement of an observable ω yields the measurements ω1, ω2 respectively:

|ϕ〉 = α |ω1〉+ β |ω2〉
(|α|2 + |β|2)

1
2

(3.3.4)

which is another suitable state vector (in general not an eigenstate). If we measure
the same observable for |ψ〉we can only find the values ω1, ω2 with respective prob-
abilities 1:

P1 = |α|2

|α|2 + |β|2
, P2 = |α|2

|α|2 + |β|2
(3.3.5)

No other measurements can be made. This is very different from our experience in
classical mechanics, where any measurement could be made.

How to construct the operator Ω̂

Because Hermitian operators generally do not commute, we must be careful when con-
structing them. For example, consider ω(x, p) = xp, is the corresponding operator Ω̂ = x̂p̂
or Ω̂ = p̂x̂? The rule of thumb is use the sum:

Ω̂ = x̂p̂+ p̂x̂

2
(3.3.6)

What if Ω̂ is degenerate?

Let ω1 = ω2 = ω be two eigenvalues of the operator Ω̂. We then select two orthonormal
vectors |ω, 1〉and |ω, 2〉, so that:

P(ω) = | 〈ω, 1 |ψ〉 |2 + | 〈ω, 2 |ψ〉 |2 (3.3.7)
1to find them simply dot to the left with 〈ω1| anad 〈ω2| and use the orthonormality of the eigenstates
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Alternatively we can use the expression for the projection p̂ along the eigenspace formed
by |ω, 1〉and |ω, 2〉, and find P(ω) ∝ 〈ψ | p̂ |ψ〉.

Collapse of the State Vector

Part of postulate three asserts that if we measure the variable represented by Ω̂ of a system
in a state |ψ〉 in a superposition of eigenstates:

|ψ〉 =
∑
ω

|ω〉 〈ω |ψ〉 (3.3.8)

then it will collapse into one of the eigenstates |ω〉 instantaneously. The acting operator is
the projection operator p̂ω which projects the state vector in the corresponding eigenspace
of eigenstate vectors.

Expectation values

Consider a large sample of particles in a state |ψ〉, the average measurement obtained by
operating ˆ̂Ω is the expectation value 〈Ω̂〉. Calculating:

〈Ω̂〉 =
∑
i

P(ωi)ωi =
∑
i

| 〈ωi |ψ〉 |2ωi

=
∑
i

〈ψ |ωi〉 〈ωi |ψ〉 =
∑
i

〈
ψ
∣∣∣ Ω̂ ∣∣∣ωi〉 〈ωi |ψ〉

=
〈
ψ
∣∣∣ Ω̂ ∣∣∣ψ〉

since I =
∑
i |ωi〉 〈ωi|. For an eigenstateω, the expectation value is obviouslyω, as required.

Expectation value

The expectation value of an operator Ω̂ acting on a state vector |ψ〉 is given by:

〈Ω̂〉 =
〈
ψ
∣∣∣ Ω̂ ∣∣∣ψ〉 (3.3.9)

3.4 The Fourth Postulate: Schrödinger’s Equation
The fourth postulate tells us that the state vector obeys the Schrödinger’s Equation (SE for
short):

iℏ
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 . (3.4.1)

The three parts to solving the SE are:

(i) Setting up the Hamiltonian

(ii) General approach to solution

(iii) Choosing a basis for the solution
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Setting up the Hamiltonian

We must make the substitution to construct the Hamiltonian operator:

Ĥ ↔ H(x→ x̂, p→ p̂). (3.4.2)

For example, the harmonic oscillator has classical Hamiltonian has corresponding Hamil-
tonian operator:

H = p2

2m
+ 1

2
mω2x2 ↔ Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (3.4.3)

For a single particle, the Hamiltonian particle in the position representation:

Ĥ = p̂2

2m
+ V (x̂) (3.4.4)

where 〈x |V (x̂) |ψ〉 = V (x)ψ(x). Does the Hamiltonian commute with the position oper-
ator? Consider:

[x̂, Ĥ] = [x̂, p̂
2

2m
] + [x̂, V (x̂)] = [x̂, p̂]p̂+ p̂[x̂, p̂]

2m
(3.4.5)

we therefore need to find [x̂, p̂]. Then:

〈x| [x̂, p̂] |ψ〉 = 〈x| (x̂p̂− p̂x̂ |ψ〉 = −iℏ
(
x
∂ψ

∂x
− ∂(xψ)

∂x

)
= iℏ 〈x |ψ〉 (3.4.6)

from which we find the canonical commutation relation

[x̂, p̂] = iℏ (3.4.7)

Canonical Commutator

Two operators Â, B̂ are said to be canonically conjugate if:

[Â, B̂] = ±iℏ (3.4.8)

One set of canonically conjugate operators are the position and momentum oper-
ators:

[x̂, p̂] = iℏ (3.4.9)

.

It follows that [x̂, Ĥ] = iℏ
m p̂.

General Approach to the Solution

Initially consider a time-independent Hamiltonian:

iℏ |ψ̇〉 = Ĥ |ψ〉 (3.4.10)
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which is analogous to the equation |ẍ〉 = Ω̂ |x〉 encountered in the mathematical prelimi-
naries. We can then write:

|ψ(t)〉 = Û(t) |ψ(0)〉 (3.4.11)

using the propagator formulation. To construct it, we must find the normalized eigenkets
|E〉 of Ĥ obeying the Time-independent SE (TISE).

Time-Independent Schrödinger Equation

The TISE equation is:
Ĥ |E〉 = E |E〉 (3.4.12)

Assume we have solved the TISE, and have found |E〉. Then:

|ψ(t)〉 =
∑
E

|E〉 〈E |ψ(t)〉 ≡
∑
E

aE(t) |E〉 (3.4.13)

where aE ≡ 〈E |ψ(x, t)〉 is the probability ofmeasuring the eigenstate |E〉. We then operate
(iℏ ∂

∂t − Ĥ) and find that:

0 = iℏ
∂

∂t
|ψ〉 − Ĥ |ψ〉 =

∑
E

(iℏȧE − EaE) |E〉 =⇒ iℏȧE = EaE (3.4.14)

which gives the solution:

aE(t) =
aE(0)︷ ︸︸ ︷

〈E |ψ(0)〉 e−iEt/ℏ =⇒ |ψ(t)〉 =
∑
E

|E〉 〈E |ψ(0)〉 e−iEt/ℏ (3.4.15)

hence the propagator operator can be written as:

Û(t) =
∑
E

|E〉 〈E| e−iEt/ℏ = e−iHt/ℏ (3.4.16)

where the latter expression works provided the exponential series converges. The corre-
sponding solutions are called stationary states, and calculating the probability distribution
for a variable ω:

P(ω, t) = | 〈ω |ψ〉 |2 = |
〈
ω
∣∣∣ψ(0)e−iHt/ℏ

〉
|2 = 〈ω |ψ(0)〉 = P(ω, 0). (3.4.17)

Stationary State Solutions

For a time-independent Hamiltonian the stationary state solutions are the energy
eigenstates of Ĥ , they are therefore the family of solutions:

|ψ(t)〉 = |ψ(0)〉 e−iHt/ℏ =
∑
E

aE(0)e− iEt/ℏ |E〉 (3.4.18)

which have time-independent probability densities. Since Ĥ is Hermitian, Û(t) is
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unitary and the propagator/time evolution of the state |ψ〉 is represented as a rota-
tion in the Hilbert space.

Once we have found the propagator, we can then write:

ψ(x, t) = 〈x |ψ(t)〉 =
〈
x
∣∣∣ Û(t)

∣∣∣ψ(0)
〉

(3.4.19)

=
ˆ ∞

−∞

〈
x
∣∣∣ Û(t)

∣∣∣x′
〉 〈
x′ ∣∣ψ(0)

〉
dx′ (3.4.20)

=
ˆ ∞

−∞
U(t, x, x′)ψ(x′, 0)dx′ (3.4.21)

so the matrix elements of Û(t) act as a Green’s function for the Schrödinger equation. Ex-
panding Û(t, x, x′) we find:〈

x
∣∣∣ Û(t)

∣∣∣x′
〉

= 〈x|
∑
E

〈
E
∣∣x′〉 |E〉 e−iEt/ℏ| =

∑
E

〈x |E〉
〈
E
∣∣x′〉 e−iEt/ℏ (3.4.22)

so that

ψ(x, t) =
∑
E

(
ψ∗
E(x)e−iEt/ℏ

ˆ ∞

−∞
ψE(x′)ψ(x′, 0)dx′

)
(3.4.23)

is the solution, where ψE(x) is the wave function associated with the energy eigenstate
|E〉.

Alternatively, if we had chosen a different initial time t′ then:

U(x, t, x′, t′) =
〈
x
∣∣∣ Û(t− t′)

∣∣∣x′
〉

(3.4.24)

Choosing a Basis

The Schrödinger equation can of course be solved in any basis, but usually depending on
the form of the Hamiltonian one will be more efficient than the other. Consider the one
dimensional Hamiltonian:

Ĥ = p̂2

2m
+ V (x̂) (3.4.25)

If V (x̂) is simple, it is simpler to use the p̂ basis so that the matrix representation of the
momentum operator is diagonal. For example, the particle in a constant force field F has
Hamiltonian:

Ĥ = p̂2

2m
− fx̂ (3.4.26)

Clearly the momentum basis is much more advantageous, in it we get the equation:

( p2

2m
− iℏf d

dp

)
ψ(p) = Eψ(p) (3.4.27)

whereas in the position basis it would have been a second order ODE.
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3.5 The time-evolution operator
In this section we want to investigate time evolution in Quantum mechanics in general
terms using an equivalent approach to Schrödinger’s time-dependent equation. Suppose
a system starts out in a state |α, t0〉 at time t0, we ask ourselves what will the system’s
state |α, t0; t〉 be at time t > t0? This question is answered by the time-evolution operator
Û(t, t0)

|α, t0; t〉 = Û(t, t0) |α, t0〉 (3.5.1)

Since probability must be conserved, we require that the time-evolution operator be uni-
tary

〈α, t0; t |α, t0; t〉 = 〈α, t0 |α, t0〉 =⇒ U †(t, t0)Û(t, t0) = 1 (3.5.2)

It is clear that U †(t, t0) may be regarded as the time-devolution operator, it is the inverse of
the time-evolution operator and takes a state back in time rather than forwards. We should
also expect that time-evolution be composable, so that evolving a state from t0 to t1, then
from t1 to t2 is equivalent to evolving it from t0 to t2 directly. This leads to

Û(t2, t1)Û(t1, t0) = Û(t2, t0), t2 > t1 > t0 (3.5.3)

Since time is a continuous variable we can also consider infinitesimal time-evolutions,
where to first order in dtwe may write

Û(t0 + dt, t0) = 1− iΩ̂dt (3.5.4)

Note that the unitarity of U requires that Ω be hermitian:

(1 + iΩ̂†dt)(1− iΩ̂dt) = 1 + i(Ω̂† − Ω̂)dt = 1 =⇒ Ω̂† = Ω̂ (3.5.5)

The additivity property of U is also satisfied

Û(t0 + dt1 + dt2, t0 + dt1)Û(t0 + dt1, t0) = (1− iΩ̂dt2)(1− iΩ̂dt1) (3.5.6)
= 1− iΩ̂(dt1 + dt2) (3.5.7)
= Û(t0 + dt1 + dt2, t0) (3.5.8)

Recall from classicalmechanics that theHamiltonian is the generator of time-evolution. By
the correspondence principle we should expect the same to occur in quantum mechanics.
Therefore we may set ℏΩ̂ = Ĥ , implying that

Û(t0 + dt, t0) = 1− iĤ

ℏ
dt (3.5.9)
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We can derive a fundamental equation for the time-evolution operator using this definition

Û(t+ dt, t0) = Û(t+ dt, t)Û(t, t0) =
(
1− iĤ

ℏ
dt

)
Û(t, t0) (3.5.10)

=⇒ Û(t+ dt, t0)− Û(t, t0) = − iĤ
ℏ
dtÛ(t, t0) (3.5.11)

=⇒ iℏ
∂

∂t
Û(t, t0) = ĤÛ(t, t0) (3.5.12)

This equation is the Schrödinger equation for the time-evolution operator, and can be
shown to be equivalent to the original Schroedinger equation. Indeed substituting

Û(t, t0) = |α, t0; t〉 〈α, t0| (3.5.13)

into (3.5.12) we find that

iℏ
∂

∂t
(|α, t0; t〉 〈α, t0|) = H 〈α, t0; t| |α, t0〉 (3.5.14)

=⇒ iℏ
∂

∂t
|α, t0; t〉 = H |α, t0; t〉 (3.5.15)

as desired. We have thus derived the time dependent Schrödinger equation by simply
assuming that the Hamiltonian operator is the generator of time-translations.

Time-independent hamiltonian

If the Hamiltonian is time-independent, then a simple expression can be found for Û(t, t0).
Indeed we can decompose the time evolution of a state from t0 to t intoN →∞ infinitesi-
mal steps of width dt so that t = t0 +Ndt, as shown below

t0
Û(t0+dt,t0)−−−−−−−→ t0 + dt

Û(t0+2dt,t0+dt)−−−−−−−−−−→ t0 + 2dt −−−→ . . .
Û(t,t−dt)−−−−−−→ t

It follows that

Û(t, t0) = lim
N→∞

N∏
m=1

Û(t0 +mdt, t0 + (m− 1)dt) (3.5.16)

= lim
N→∞

(
1− iĤ

h
dt

)N
(3.5.17)

and since dt = (t−t0)
N we find that

Û(t, t0) = exp
(
− iĤ

ℏ
(t− t0)

)
(3.5.18)
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Commuting time-dependent hamiltonian

If instead theHamiltonian is time-dependent, but theHamiltonians at different times com-
mute, then

Û(t, t0) = lim
N→∞

N∏
m=1

Û(t0 +mdt, t0 + (m− 1)dt) (3.5.19)

= lim
N→∞

N∏
m=1

exp
(
− iĤ(t0 +mdt)

ℏ
dt

)
(3.5.20)

= lim
N→∞

exp
(
− i

ℏ

N∑
m=1

Ĥ(t0 +mdt)dt
)

(3.5.21)

where in the last step we had to assume that the Hamiltonians at different times commute.
Taking the N →∞ limit we get that

Û(t, t0) = exp
(
− i

ℏ

ˆ t

t0

Ĥ(t′) dt′
)

(3.5.22)

General time-independent hamiltonian

Let’s integrate (3.5.12):

iℏ
ˆ t

t0

dt′
∂

∂t′
Û(t′, t0) =

ˆ t

t0

dt′Ĥ(t′)Û(t′, t0) (3.5.23)

=⇒ Û(t, t0) = 1− i

ℏ

ˆ t

t0

dt′Ĥ(t′)Û(t′, t0) (3.5.24)

Substituting (3.5.24) back into (3.5.23) yields

Û(t, t0) = 1− i

ℏ

ˆ t

t0

dt′Ĥ(t′) +
(
i

ℏ

)2 ˆ t

t0

dt′
ˆ t′

t0

dt′′H(t′)H(t′′)U(t′′, t0) (3.5.25)

Reiterating this process ad infinitum we arrive at a power-series expansion of the type

Û(t, t0) =1− i

ℏ

ˆ t

t0

dt′Ĥ(t′) +
(
i

ℏ

)2 ˆ t

t0

dt′
ˆ t′

t0

dt′′H(t′)H(t′′) (3.5.26)

+ ...+
(
i

ℏ

)n ˆ t

t0

dt1

ˆ t1

t0

dt2...

ˆ tn−1

t0

dtnH(t1)H(t2)...H(tn) + ...

These integrals are all time-ordered, with the each integral running over t smaller than
whatever t′ contribution of the next outer integral is being evaluated. If we define a time-
ordering operator T so that

T [H(t1)H(t2)] =
{
H(t1)H(t2), for t1 ≥ t2
H(t2)H(t1), for t1 < t2

(3.5.27)
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Hence for example
ˆ t

t0

dt′
ˆ t

t0

dt′′T [H(t′)H(t′′)] =
ˆ t

t0

dt′
ˆ t′

t0

dt′′H(t′)H(t′′) +
ˆ t

t0

dt′′
ˆ t′′

t0

dt′H(t′′)H(t′)

(3.5.28)

= 2
ˆ t

t0

dt′
ˆ t′

t0

dt′′H(t′)H(t′′) (3.5.29)

or more generally
ˆ t

t0

dt1...

ˆ t

t0

dtnT [H(t1)...H(tn)] = 1
n!

(
i

ℏ

)n ˆ t

t0

dt1...

ˆ t

t0

dtnT [H(t1)...H(tn)] (3.5.30)

Using this result we may write (3.5.26) then

Û(t, t0) =1− i

ℏ

ˆ t

t0

dt′Ĥ(t′) + 1
2

(
i

ℏ

)2 ˆ t

t0

dt′
ˆ t

t0

dt′′T [H(t′)H(t′′)] (3.5.31)

+ ...+ 1
n!

(
i

ℏ

)n ˆ t

t0

dt1

ˆ t

t0

dt2...

ˆ t

t0

dtnT [H(t1)H(t2)...H(tn)] + ...

or in even more compact notation

Û(t, t0) = T
[

exp
(
− i

ℏ

ˆ t

t0

dt′Ĥ(t′)
)]

(3.5.32)

This is known as the Dyson series. In practice only the first few terms of (3.5.31) are
calculated in the perturbative limit.

3.6 The pictures of quantum mechanics
In the previous section we have looked at states in the Hilbert space as varying with
time, while the operators acting on them remained constant and time-independent (ex-
cept when they had explicit time-dependence built into them). Geometrically this corre-
sponds to viewing the states as vectors rotating under the action of U(t, t0). However, one
may instead wish to view the states as fixed, with the operators acting on them as chang-
ing with time. It is well known that one can perform changes of basis on matrices, so if
one wishes to maintain the basis fixed then it suffices to perform a time-dependent change
of basis on the operators. Finally, in some instances it may be more favourable to let the
state evolve under one portion of the Hamiltonian, and the operators evolve on another.
These three correspond to different equivalent pictures in quantum mechanics, known as
the Schrödinger, Heisenberg and interaction picture.
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Schrödinger’s picture

This is the picture we are most familiar with. If we consider a state |ψ(t0)〉 then it will
evolve under the propagator as

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 (3.6.1)

In the Schrödinger picture the operators ÂS corresponding to physical observables are
time-independent, so that the expectation values are

〈A〉 (t) ≡
〈
ψ(t)

∣∣∣ ÂS ∣∣∣ψ(t)
〉

=
〈
ψ(t0)

∣∣∣ Û †(t, t0)Â_ShatU(t, t0)
∣∣∣ψ(t0)

〉
(3.6.2)

Assuming |ψ(t0)〉 is an eigenstate |E〉 of the Hamiltonian then

〈A〉 (t) =
〈
ψ(t0)

∣∣∣ eiEt/ℏÂSe−iEt/ℏ
∣∣∣ψ(t0)

〉
= 〈A〉 (t0) (3.6.3)

implying that the expectation value of any time-independent operator will be stationary.
It is for this reason that energy eigenstates are often referred to as statioanry states, as
mentioned previously.

Heisenberg’s picture

It is evident from (3.6.2) that if we wish to keep the states time-independent, then one
should evolve the operators as

ÂH(t) = Û †(t, t0)ÂSÛ(t, t0) (3.6.4)

This change in perspective will yield a different set of equations of motion. It no longer
makes sense to think of Schrödinger’s equation as the states are time-independent, instead
we should try looking at the time-evolution of the operators:

dÂH(t)
dt

= d

dt
(Û †(t, t0)ÂSÛ(t, t0)) (3.6.5)

= ∂Û †(t, t0)
∂t

ÂSÛ(t, t0) + Û †(t, t0)ÂS
∂Û(t, t0)

∂t
(3.6.6)

= i

ℏ

(
Û †(t, t0)ĤÂSÛ(t, t0)− Û †(t, t0)ÂSĤÛ(t, t0)

)
(3.6.7)

=⇒ dÂH(t)
dt

= i

ℏ
[ĤH , ÂH ] (3.6.8)

where we defined ĤH to be the Hamiltonian in the Heisenberg picture. In most practi-
cal applications where Ĥ is time-independent note that [Ĥ, Û(t, t0)] = 0 so that ĤH =
Ĥ . Equation (3.6.8) is known as Heisenberg’s equation of motion. Its equivalence to
Schrödinger’s equation is manifest from the fact that we used (3.5.12) in going from the
second to third line.
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Interaction picture

In some instances it may be that the time-evolution is very simple for one part H0 of the
hamiltonian H (for example if it is diagonalisable in a simple basis) but is complicated in
another part V . Let’s consider as an example the following Schrödinger picture hamilto-
nian

ĤS = Ĥ0
S + V̂S(t) (3.6.9)

where H0
S is time-independent and exactly solvable, while VS(t) is a more complicated,

time-dependent term. Let us define the interactionpicture state to be related to the Schrödinger
picture states via

|ψI(t)〉 = eiĤ
0
St/ℏ |ψS(t)〉 (3.6.10)

and similarly for the operators

ÂI(t) = eiĤ
0
St/ℏÂS(t)e−iĤ0

St/ℏ (3.6.11)

Most importantly, this means that

ĤI = Ĥ0
S + e−iĤ0

St/ℏV̂S(t)eiĤ0
St/ℏ (3.6.12)

since Ĥ0
S = Ĥ0

I . Lets verify what the resulting equations of motion are. For the states we
find that

∂

∂t
|ψI(t)〉 = ∂

∂t
(eiĤ0

St/ℏ |ψS(t)〉) = iH0
S

ℏ
eiH

0
St/ℏ |ψS(t)〉+ eiH

0
St/ℏ

∂

∂t
|ψS(t)〉 (3.6.13)

= iH0
S

ℏ
eiH

0
St/ℏ |ψS(t)〉 − i

ℏ
eiH

0
St/ℏ(H0

S + VS(t))e−iH0
St/ℏ |ψI(t)〉 (3.6.14)

= 1
iℏ
V̂I(t) |ψI(t)〉 =⇒ iℏ

∂

∂t
|ψI(t)〉 = V̂I(t) |ψI(t)〉 (3.6.15)

For the operator, note that since HS
0 is time-independent, AI(t) = AH(t) and therefore

d

dt
AI(t) = i

ℏ
[Ĥ0

S , ÂI(t)] (3.6.16)

Equations (3.6.15) and (3.6.16) together are known as the interaction picture equations
ofmotion. It is evident from the table below that the interaction picture is intermediate be-
tween the Schrödinger and Heisenberg pictures Note that we may define a time-evolution

Schrödinger picture Interaction picture Heisenberg picture
State determined byH determined by V̂I(t) unchanged

Observable unchanged determined by H0 determined by H

operator ÛI(t, t0) in the interaction picture by

ÛI(t, t0) |ψI(t0)〉 = |ψI(t)〉 〈ψI(t0)| (3.6.17)
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Indeed dotting (3.6.15) to the left with 〈ψI(t0)|we see that

iℏ
∂ÛI(t, t0)

∂t
= V̂I(t)ÛI(t, t0) (3.6.18)

We already solved this problem in the previous section using the Dyson series, we quote
the result below:

UI(t, t0) = T
[

exp
(
− i

ℏ

ˆ t

t0

dt′ VI(t′)
)]

(3.6.19)
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4The Path-Integral formulation

This chapter contains a lot of advanced material and requires substantial information not
yet explained so it should be skipped at a first reading. However, logically it should fit in
this place in the textbook, hence why it is included so early in this volume.

4.1 Gaussian integrals
Before starting our discussion of path integrals we should prove a few results on Gaussian
integrals that will be very useful. We start by evaluating

I(a) =
ˆ ∞

−∞
e−ax2

dx, where a > 0 (4.1.1)

The trick for evaluating this Gaussian integral is noting that x is a dummy variable so
considering I2 then one integral can be integrated over xwhile the other over y

I2 =
( ˆ ∞

−∞
e−ax2

dx

)2
=
( ˆ ∞

−∞
e−ax2

dx

)(ˆ ∞

−∞
e−ay2

dy

)
(4.1.2)

Consequently, changing variables from (x, y) to (r, θ) then

I2 =
ˆ ∞

−∞

ˆ ∞

−∞
e−a(x2+y2) dxdy =

ˆ ∞

0
e−ar22πrdr = 2π

a

ˆ ∞

0
ρe−ρ2

dρ = π

a
(4.1.3)

so that
I(a) =

√
π

a
(4.1.4)

It follows immediately that ˆ ∞

−∞
e−a(x−c)2

dx =
√
π

a
(4.1.5)

Geometrically, we can understand this result by noting that the integrand is a gaussian bell
curve, so changing coordinates x 7→ x+ c simply shifts the center of the bell curve, but not
the area below it. We can generalise this result by computing

I(a, b) =
ˆ ∞

−∞
e−ax2+bx+c dx, where a > 0 (4.1.6)
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We do so by completing the square of the exponent

ax2 − bx− c = a

(
x− b

2a

)2
−
(
c+ b2

2a

)
(4.1.7)

implying that
I(a, b) = e−c−b2/2a

ˆ ∞

−∞
ea(x−b/2a)2

dx =
√
πaeb

2/2a+c (4.1.8)

These integrals are quite useful when considering 1D path integrals. In N-dimensions
there is a much more general class of Gaussian integrals. The equivalent of I(a) now be-
comes

I(A) =
ˆ

RN

e−xT Ax dNx (4.1.9)

where A is a symmetric positive-definite N × N matrix (this condition is equivalent to
saying a > 0 in the 1D case). The trick this time is to diagonalise the matrix A (which can
be diagonalised due to the spectral theorem) which will recast the matrix into the 1D form
we have already solved. More specifically, let

A = OTDO (4.1.10)

where O is an orthogonal matrix and D = diag(a1, a2, ..., aN ). Performing a change of
variables x 7→ y = Ox with unit Jacobian (since |det O| = 1), we find that

I(A) =
ˆ

RN

e−yT Dy dNy =
N∏
n=1

[ˆ
R
e−any2

ndyn

]
=
√

π

a1...aN
=

√
πN

det A (4.1.11)

Again, we can generalise these results by considering

I(A, J) =
ˆ

RN

e−xT Ax+JT x dNx (4.1.12)

This time we consider the change of coordinates x 7→ y = x− 1
2A−1J. Then

−xTAx + JT x = −(yT + 1
2
JTA−1)A(y + 1

2
A−1J) + JT (y + 1

2
A−1J) (4.1.13)

= −yTAy− 1
2
yT J− 1

2
JTy− 1

4
JTA−1J + JTy + 1

2
JTA−1J (4.1.14)

= −yTAy + 1
4
JTA−1J (4.1.15)

so
I(A, J) = e

1
4 J

T A−1J
ˆ

RN

e−yT Ay dNy (4.1.16)

implying that

I(A, J) = e
1
4 J

T A−1J

√
πN

det A (4.1.17)
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4.2 Path integral formulation
Our formulation of quantum mechanics thus far has been centered around the Hamil-
tonian. However, recall that in classical mechanics the Hamiltonian and Lagrangian for-
mulations of the equations of motion are equivalent. Can the same be said of quantum
mechanics, does the latter also have a Lagrangian formulation?

The answer turns out to be yes, there is a Lagrangian-based approach to quantum me-
chanics known as the path-integral formulation. Recall that in the differential formulation
of QM, one obtained the propagator by solving the differential equation

iℏ
d

dt
Û(t) = ĤÛ(t) (4.2.1)

Similarly, the path integral-formulation obtains the propagator by the use of an integral
equation

U(xN , x0, t) =
ˆ
D[x] eiS[x]/ℏ (4.2.2)

To understand where (4.2.2) comes from, let’s start by considering a time-independent
Hamiltonian

H = p2

2m
+ V (x) (4.2.3)

Then we see that the propagator reads

U(x′, x, t) =
〈

′
∣∣∣ e−iHt/ℏ

∣∣∣ x〉〈x′
∣∣∣∣∣ exp

(
− it

ℏ

( p2

2m
+ V (x)

)) ∣∣∣∣∣ x
〉

(4.2.4)

Now consider subdividing t into N intervals of width ε = t
N . Then we see that

exp
(
− it

ℏ

( p2

2m
+ V (x)

))
=
[

exp
(
− iϵ

ℏ

( p2

2m
+ V (x)

))]N
(4.2.5)

We can use the Bakker-Hausdorff identity

eÂeB̂ = eÂ+B̂+1/2[Â,B̂]+... (4.2.6)

and working to first order in ϵ (which we will take to approach 0) then

exp
(
− iϵ

ℏ

( p2

2m
+ V (x)

)
≈ exp

(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

)
(4.2.7)

Substituting this into (4.2.4) then

U(x′, x, t) =
〈
x′
∣∣∣∣∣
N∏
i=1

exp
(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ x
〉

(4.2.8)

− I.53 −



4.2. PATH INTEGRAL FORMULATION

4.2.1 Configuration space integral

We can simplify this expression (surprisingly) by introducing an identity resolution

1 =
ˆ
d3x |x〉 〈x| (4.2.9)

between each of the N terms in the product, yielding〈
x′
∣∣∣∣∣
ˆ N∏

i=1
d3xi

[
exp

(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ xi
〉
〈xi
]
|x〉 (4.2.10)

For example if N = 3 then we would find that

U(x3, x0, t) =
〈
x3

∣∣∣∣∣
2∏
i=1

ˆ
d3xi exp

(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ x2

〉
(4.2.11)

×
〈
x2

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ x1

〉
(4.2.12)

×
〈
x1

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ x0

〉
(4.2.13)

There is a nice physical interpretation to this equa-
tion. Each of the brakets (or better, their modulus
squared) evaluates the probability that the Hamil-
tonian takes a state from |xn−1〉 to |xn〉. Integrat-

ing over
N∏
i=1

d3xi is equivalent to integrating over all

paths in phase space with fixed endpoints at |x0〉
and |xN 〉. Consequently the sums of the probabili-
ties along all paths taking |x0〉 at time t = 0 to |xN 〉 at
time t gives the total probability of going from |x0〉
to |xN 〉. In other words, we may view a quantum
particle as taking all possible paths in configuration
space from an initial state to a final state, each being
weighed by the probability amplitude of this occur-
ring. But what is this weight factor and does it have
a physical significance?

Since |x〉 are eigenstates of V (x) we can write that the nth term will be〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

)
exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣∣ xn−1

〉
= exp

(
− iϵ
ℏ
V (xn−1)

)〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣ xn−1

〉
(4.2.14)

We can compute this matrix element by introducing yet another resolution of the identity

1 =
ˆ

d3p
(2πℏ)3 |p〉 〈p| (4.2.15)
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where 〈x |p〉 = eip·xℏ We find that〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣ xn−1

〉
=
〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣p
〉
p|xn−1 (4.2.16)

=
ˆ

d3p
(2πℏ)3 exp

(
− iϵ

ℏ
p2

2m
+ i

ℏ
p · (xn − xn−1)

)
(4.2.17)

Using the 3D Gaussian integral in (4.1.17) with J = i
ℏ(xn − xn−1) and A = iϵ

2mℏ1 we get
that〈

xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣ xn−1

〉
= 1

(2πℏ)3

(
π

iϵ/2mℏ

)3/2
exp

(
− 2mℏ

iϵ

1
4

(xn − xn−1)2

ℏ2

)
(4.2.18)

and therefore〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣ xn−1

〉
=
(

m

2πiℏε

)3/2
exp

(
im(xn − xn−1)2

2ℏϵ

)
(4.2.19)

To conclude we have that

U(xN , x0, t) =
(

m

2πiℏε

)3N/2 ˆ N−1∏
n=0

d3xi exp
( N∑
n=1

im(xn − xn−1)2

2ℏϵ
− iε

ℏ
V (xn−1)

)
(4.2.20)

To connect this expression to the classical analogue we define

ˆ
D[x] ≡

(
m

2πiℏε

)3N/2 ˆ N−1∏
n=0

d3xi (4.2.21)

to obtain

U(xN , x0, t) = lim
N→∞

ˆ
D[x] exp

[
iϵ

ℏ

( N∑
n=1

m(xn − xn−1)2

2ϵ2
− V (xn−1)

)
(4.2.22)

We recognise the classical action in a discretised form as

S[x] =
ˆ t

0

(
mẋ2

2
− V (x)

)
dt = lim

N→∞

N∑
n=1

(
m(xn − xn−1)2

2ϵ2
− V (xn−1)

)
ϵ (4.2.23)

which allows us to write
U(xN , x0, t) =

ˆ
D[x] eiS[x]/ℏ (4.2.24)

as desired. The weight for each path is therefore the total action along it.
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Path integral formulation

The general procedure to evaluate U(x, t, ;x′, t′) is to:
(i) fix the endpoints (x, t) and (x′, t′) and consider all paths x(t) connecting them.
(ii) find the action S[x(t)] for each path.
(iii) Up to a normalization factor:

U(xN , x0, t, t0) =
ˆ
D[x] eiS[x]/ℏ (4.2.25)

Configuration space integral

Instead of inserting an identity operator after each product in, let’s instead resolve the iden-
tity between every exponential. It will prove useful to resolve the identity in two different
ways using the real space and momentum space bases

1 =
ˆ

d3p
(2πℏ)3 |p〉 〈p| =

ˆ
d3x |x〉 〈x| (4.2.26)

We then find that〈
xN

∣∣∣∣∣∣
ˆ N∏

j=1

N−1∏
i=1

d3pi

(2πℏ)3 d
3xi

[
exp

(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣∣pi

〉〈
pi

∣∣∣∣ exp
(
− iϵ

ℏ
V (x)

) ∣∣∣∣ xi−1

〉
〈xi−1

]
|x0〉

(4.2.27)
For example if N = 3 then we would find that

U(x3, x0, t) =
〈
x3

∣∣∣∣∣∣
3∏
j=1

2∏
i=1

ˆ
d3pj

(2πℏ)3 d
3xi exp

(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣∣p3

〉〈
p3

∣∣∣∣ exp
(
− iϵ

ℏ
V (x)

) ∣∣∣∣ x2

〉
(4.2.28)

×
〈
x2

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣p2

〉〈
p2

∣∣∣∣ exp
(
− iϵ

ℏ
V (x)

) ∣∣∣∣ x1

〉
(4.2.29)

×
〈
x1

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣p1

〉〈
p1

∣∣∣∣ exp
(
− iϵ

ℏ
V (x)

) ∣∣∣∣ x0

〉
(4.2.30)

Using 〈
xn

∣∣∣∣∣ exp
(
− iϵ

ℏ
p2

2m

) ∣∣∣∣∣pn
〉

= exp
(
− iϵ

ℏ
p2
n

2m
+ i

ℏ
pn · x

)
(4.2.31)〈

pn
∣∣∣∣ exp

(
− iϵ

ℏ
V (x)

) ∣∣∣∣ xn−1

〉
= exp

(
− iϵ

ℏ
V (xn−1)− i

ℏ
pn · xn−1

)
(4.2.32)

it follows that

U(xN , x0, t) =
ˆ N∏

j=1

N−1∏
i=1

d3pi
(2πℏ)3 d

3xi exp
[
iϵ

ℏ

N∑
j=1

(pn · (xn − xn−1)
ϵ

− p2
n

2m
− V (xn)

)]
(4.2.33)
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It is easy to show that thiswill yield the same expression as the configuration space integral
(by integrating over the pi variables). Nevertheless the propagator in its current form is an
integral over phase space rather than configuration space (thus explaining the absence of
theweight factor (m/2πiℏϵ)1/2), so it is called thephase space integral. Indeed by defining

ˆ
D[x]D[p]←→ lim

N→∞

ˆ N∏
j=1

N−1∏
i=1

d3pi
(2πℏ)3 d

3xi, lim
N→∞

ϵ
N∑
i=1
→
ˆ t

0
dt (4.2.34)

then we see that

U(xN , x0, t) =
ˆ
D[x]D[p] exp

[
i

ℏ

ˆ t

0
dt(p · ẋ−H)

]
(4.2.35)

4.3 Retrieving the classical path: the stationary phase approx-
imation

In the previous section we saw how one could obtain the time-evolution of a quantum
system by simply letting it take all possible paths in phase/configuration space and then
taking a sum over each of these paths. However it is difficult to see how one can retrieve
the classical path in the classical limit (ℏ → 0) if we are summing over all the possible
paths a system can take.

Consider the classical path xcl(t) (the path which minimizes the action) starting at (x′, t′)
and ending at (x, t). In the classical limit we should expect only this path to contribute and
thus that

U(x, t;x′, t′) ∼ eiScl/ℏ (4.3.1)

Let’s now consider a small perturbation η1 from the classical path which keep the end-
points fixed i.e. η1(t′) = η1(t) = 0. We denote the deviated path as x1 = xcl + η1. Suppose
we repeat this process thus creating a grey region of paths in the neighborhood of the
classical path.

Let us examine the contribution to the propagator due to the classical path and paths
in its neighbourhood (grey region). Because the path is approximately stationary in the
grey region, the individual contribution due to all paths close to the classical one will be
coherent, since they will have the same phase/same action. Consequently, if we consider
each small arrow in the phasor diagram for U as the contribution due to some path close
to or equal to xcl, then they will add constructively.

It can be shown that for every path outside the neighbourhood of xcl, we can find an
associated path whose two phasors cancel out. Indeed, consider a path xi. We can define
a difference function as ηi = xcl−xi in the interval [t′, t] with boundary conditions ηi(t′) =
ηi(t) = 0. Recall from the derivation of the Lagrange equation that:

eiS[xi]/ℏ = eiS[xcl]/ℏ exp
[
i

h

ˆ t′

t

(
∂L

∂xi(t)
− d

dt

∂L
∂ẋi(t)

)
ηi(t)

]
= eiS[xcl]/ℏeiδS1/ℏ (4.3.2)

It is evident that for paths close to xcl the action is unchanged δS = 0. However, as we
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Figure 4.1. Paths from (x′, t′) to (x, t) near the classical path with stationary action, and their con-
tribution to the propagator adding coherently.

get farther away from the classical path, we start to get an additional phase factor eiδS[xi]/ℏ

multiplied to the classical contribution eiS[xcl]/ℏ. These are very rapidly oscillating contri-
butions for δS � ℏwhich will integrate to zero. Hence, as we get farther from the classical
path, destructive interference starts to set in between the different paths and as the phase
changes, the small arrows starts to add destructively, effectively cancelling each other out
as shown below:

Figure 4.2. Phasor diagram showing decoherence in the contributions due to paths outside the
classical region

Mathematically, we are trying to prove that if f(x) has an extremum at x0 then
ˆ ∞

−∞
dx eiαf(x) (4.3.3)

is dominated by values close to x0 when α is very big. Indeed f(x) oscillates very rapidly
as (x− x0)→∞ implying that the integral in the regions far from x0 will sum to zero, as
shown below
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Figure 4.3. Plot of cos
(
αx2) for big α.

Near x0 on the other hand, we can Taylor expand f as

f(x) ≈ f(x0) + 1
2
f ′′(x0)(x− x0)2... (4.3.4)

Substituting this into (4.3.3) we obtain
ˆ ∞

−∞
dx eiαf(x) ≈ eiαf(x0)

ˆ ∞

−∞
d(δx) eiα(δx2f ′′(x0)/2+...) (4.3.5)

Since only the small deviations δx will contribute to the integral then we may ignore all
higher order δx terms and end up with

ˆ ∞

−∞
dx eiαf(x) ≈ eiαf(x0)

ˆ ϵ

−ϵ
d(δx) eiα(δx2f ′′(x0)/2) (4.3.6)

where [x0− ϵ, x+ ϵ] is the neighborhood of x0 for which the integral does not vanish. Next
we can extend the limits of integration since high frequency terms will not contribute to
the integral, so we end up with a Gaussian integral

ˆ ∞

−∞
dx eiαf(x) ≈ eiαf(x0)

ˆ ∞

−∞
d(δx)eiα(δx2f ′′(x0)/2 =

√
2πi

λf ′′(x0)
eiαf(x0) (4.3.7)

Extending this argument to the path integral we obtain

U(x, t;x′, t′) ∼ eiScl/ℏ in the classical limit ℏ→ 0 (4.3.8)

whereAmeasures the density of paths in the coherence region (grey region in Figure 4.1).
Onemay quantify this coherence range as the set of paths for which δS � ℏ. For a classical
path, since Scl ≈ 1027ℏ, the grey region is very very narrow, allowing for virtually no
deviation from the classical path. However, as we enter the realm of quantumphenomena,
the action is much much smaller compared to ℏ thus allowing for more deviation from the
classical path and thus the counter-intuitive effects quantum mechanics is known for.
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4.4 Potentials of form V = a + bx + cx2 + dẋ + exẋ

It turns out that we can use the stationary phase approximation Û(t) = A(t)eiScl/ℏ exactly
for potentials of the form V = a + bx + cx2 + dẋ + exẋ. It’s not hard to see why, indeed
if L quadratic in x, ẋ then cutting off the Taylor expansion at second order is no longer an
approximation, it is exact. The result in (4.3.7) then becomes exact.

More concretely, let us compute the path integral

U(x1, t1;x0) =
ˆ x1

x0

eiS[x(t)]/ℏD[x(t)] (4.4.1)

We begin by writing all paths we are integrating over as x(t) = xcl(t) + η(t) where η(x0) =
η(x1) = 0. The integration variables turn into: D[x(t)] = D[η(t)] since xcl is constant.
Therefore ˆ x1

x0

D[x(t)] eiS[x(t)]/ℏ =
ˆ 0

0
D[η(t)] exp

( i
ℏ
S[xcl(t) + η(t)]

)
(4.4.2)

where
´ 0

0 means that we are integrating over path deviations η satisfying the boundary
condition η(x0) = η(x1) = 0. We may write S[xcl(t) + η(t)] using taylor series as:

S[xcl(t) + η(t)] =
ˆ t1

0
L(xcl + η, ẋcl + η̇)dt (4.4.3)

ˆ t1

0

[
L(xcl, ẋcl) +

(
∂L
∂x

)
xcl

η +
(
∂L
∂ẋ

)
xcl

η̇ (4.4.4)

+ 1
2

((
∂L
∂x2

)
xcl

η2 + 2
(
∂2L
∂x∂ẋ

)
xcl

ηη̇ +
(
∂2L
∂ẋ2

)
xcl

η̇2
)]
dt (4.4.5)

where we truncated the expansion here since we consider only quadratic Lagrangians.
Since L is a polynomial this Taylor expansion is exact, we do not need to approximate η
to be small. The first term becomes S[xcl]. We can integrate the second and third term by
parts, as we did back when deriving the Euler-Lagrange equation and find

ˆ t1

0

[(
∂L
∂x

)
xcl

η +
(
∂L
∂ẋ

)
xcl

η̇

]
dt =

ˆ t1

0

[
∂L
∂x
− d

dt

∂L
∂ẋ

]
xcl

η(t)dt = 0 (4.4.6)

Consequently we find that

S[xcl + y] = S[xcl] +
ˆ t

0

(
− cη2 − eηη̇ + 1

2
mη̇2)dt (4.4.7)

and therefore

U(x1, t1;x0) = eiScl/ℏ

A(t)︷ ︸︸ ︷ˆ 0

0
D[η(t)] exp

[
i

ℏ

ˆ t

0

(1
2
mη̇2 − cη2 − eηη̇

)
dt

]
(4.4.8)

=⇒ U(x1, t1;x0) = A(t)eiScl/ℏ (4.4.9)
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as desired.

4.5 Examples of path integrals
Free particle

The classical path a free particle takes is simply a line through (x0, t0) and (x1, t1):

xcl(t) = x0 + x1 − x0
t1 − t0

(t− t1) =⇒ L = 1
2
m

(
x1 − x0
t1 − t0

)2
(4.5.1)

Therefore:
Scl =

ˆ t1

t0

Ldt = 1
2
m

(x1 − x0)2

t1 − t0
(4.5.2)

Consequently the propagator takes the form:

U(x1, t1;x0, t0) = A′ exp
[
im(x1 − x0)2

2ℏ(t1 − t0)

]
(4.5.3)

Note that as (t1 − t0) −→ 0, we must have U −→ δ(x1 − x0). Recall the definition of the
delta function:

δ(x1 − x0) = lim
∆→0

√
1

π∆2 exp
[
− (x1 − x0)2

∆2

]
(4.5.4)

we find that the normalization factor becomes:

A′ =
√

m

2πℏi(t1 − t0)
(4.5.5)

Setting t0 = 0 we find that:

U(x, t;x0) =
√

m

2πℏit
exp

[
im(x− x0)2

2ℏt

]
(4.5.6)

We will see in the next chapter that this is the exact propagator we find when solving for
the energy eigenvalues. However, we will do so in a much more tedious process than was
presented here using the efficient path integral method.

Harmonic oscillator

4.6 The Aharonov-Bohm and Aharonov-Casher effects
The path integral formulation of quantum mechanics is particularly useful in describing
interference effects in double slit experiments. There are two special variants of the double
slit experiment, namely the Aharonov-Bohm (AB) andAharonov-Casher (AC) effects that
are particularly interesting and exactly solvable using path integrals.
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Double slit interference

To understand the AB and AC effects one must first understand how double slit interfer-
ence occurs with non-optical media such as electrons. We consider an electron source P
firing electrons against an impenetrable barrier with two narrow slits in it. The resulting
interference pattern is observed at a point Q on a panel behind the barrier.

The probability amplitude of the particle going from P (0, 0) at t = 0 to Q(xf , L) at t = T
through the first slit at (a, d) is given by multiplying the amplitude of the particle going
from P to the first slit, and the amplitude of the particle going from the first slit to Q:

Uslit 1 =
ˆ
slit 1
D[x] eiS[x]/ℏ =

ˆ slit 1

P
D[x] eiS[x]/ℏ ×

ˆ Q

slit 1
D[x] eiS[x]/ℏ (4.6.1)

=
(

m

2πℏi

)3 ˆ
dt′
( 1
t′(T − t′)

)3/2
exp

[
im

2ℏ

((xf − a)2 + d2

t′
+ a2 + L2

T − t′
)]

(4.6.2)

This integral over the time it takes for the particle to go through the slit can be evaluated
analytically and mathematica yields

Uslit 1 =
√
π

T 3

√
A+
√
B1√

AB1
exp

[
− (
√
A+
√
B1)2

T

]
(4.6.3)

where
A = − im(a2 + d2)

2ℏ
, B1 = − im[(xf − a)2 + (L− d)2]

2ℏ
(4.6.4)

Letting L → ∞ then B ≈ − imL2

2 so that the prefactor can be taken to be constant with
respect to xf . Similarly we find that the propagator for the particle going in the second slit
is

Uslit 2 =
√
π

T 3

√
A+
√
B2√

AB2
exp

[
− (
√
A+
√
B2)2

T

]
(4.6.5)

where
B2 = − im[(xf + a)2 + (L− d)2]

2ℏ
(4.6.6)

Thus the total propagator from P to Q is

U ∼ exp
[
− (
√
A+
√
B1)2

T

]
+ exp

[
− (
√
A+
√
B2)2

T

]
(4.6.7)

The intensity of the interference pattern is given by themagnitude of the propagator squared,
thus

I = |U |2 ∼ 2 + 2 cos
[
− (
√
A+
√
B1)2

iT
+ (
√
A+
√
B2)2

iT

]
(4.6.8)

The argument of the cosine can be simplified to yield

−(
√
A+
√
B1)2

iT
+ (
√
A+
√
B2)2

iT
= B2 −B1 + 2

√
A(
√
B2 −

√
B1)

iT
(4.6.9)

≈ 2mxfa
ℏT

(4.6.10)

− I.62 −



4.6. THE AHARONOV-BOHM AND AHARONOV-CASHER EFFECTS

and therefore
I ∼ cos2

(
mxfa

ℏT

)
(4.6.11)

Now note that the electron has de Broglie wavelength λdB = h
p = hT

mL . Letting θ be the
angle from P to Q then L sin θ ≈ xf and hence

mxfa

ℏT
= πd sin θ

λ
(4.6.12)

where d = 2a. This implies that we obtain the same interference pattern as if we had used
photons

I ∼ cos2
(
πd sin θ
λdB

)
(4.6.13)

Aharonov-Bohm interference

Now consider the same set-up as before, only that we place a “fluxon”, a line of magnetic
moments/solenoid with flux Φ between the slits and the detector. The Lagrangian for this
set-up is

L = p2

2m
− e

m
p ·A + eϕ (4.6.14)

Suppose we perform a gauge transformation A 7→ A−∇χ and ϕ 7→ ϕ+ ∂χ
∂t . Then we see

that the Lagrangian transforms as

L 7→ L+ e

m
p · ∇χ+ e

∂χ

∂t
≡ L′ + e

dχ

dt
(4.6.15)

and therefore the action acquires a global translation

S 7→ S + e(χf − χi) (4.6.16)

corresponding to a global phase shift of the propagator

U 7→ exp
[
ie

ℏ
(χf − χi)

]
(4.6.17)

In our case the most advantageous gauge transformation is that which cancels out A, so
that the result of the free-particle propagator may be applied. Since the electron moves in
a region with B = 0, we have∇×A = 0 implying that A = ∇χwhere

χ(r) =
ˆ r

P
A · dl =⇒ U(r, tf , P, ti) 7→ U exp

[
ie

ℏ

ˆ r

P
A · dl

]
(4.6.18)

Applying this time-independent gauge transformationwe see thatA = 0 and, since there is
no electric field, ϕ = 0. The Lagrangian in turns into the free-particle Lagrangian, whose
propagator is well known. Thus, taking the gauge phase factor out of the path integral
since it is path independent (because∇×A = 0), we find

Uslit 1 = exp
(
− ie

ℏ

ˆ
slit 1

A · dl
)
U free
slit 1 (4.6.19)
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and
Uslit 2 = exp

(
− ie

ℏ

ˆ
slit 2

A · dl
)
U free
slit 2 (4.6.20)

Therefore the total propagator from P to Q is

U = exp
(
− ie

ℏ

ˆ
slit 2

A · dl
)[

exp
(
− ie

ℏ

˛
A · dl

)
U free
slit 1 + U free

slit 2

]
(4.6.21)

We note that by Stokes’ theorem,
¸
A · dl = Φ and

U ∼ exp
(
− ie

ℏ

ˆ
slit 2

A · dl
)[
e−ieΦ/ℏ exp

(
− (
√
A+
√
B1)2

T

)
+ exp

(
− (
√
A+
√
B2)2

T

)]
(4.6.22)

So
I ∼ 2 + 2 cos

[2mxfa
ℏT

− eΦ
ℏ

]
(4.6.23)

or alternatively

I ∼ cos2
(
mxfa

ℏT
− eΦ

2ℏ

)
(4.6.24)

Therefore there is a shift in the interference pattern by eΦ
2ℏ . Note that eΦ2ℏ 7→

eΦ
2ℏ + π so an

increase in Φ by Φ0 = 2πℏ
e , the quantum of magnetic flux, does not alter the interference

pattern.

Aharonov-Casher interference

Let’s reverse the situation of the Aharonov-Bohm experiment. We take a neutral particle,
such as a neutron, with magnetic moment µ shot at a double slit-set up with a line of
electrons of charge density λ between the slits and the detector.

The current distribution generating a moment µ is

j = ∇×M, where µ =
ˆ
d3r M (4.6.25)

By Lorentz transforming the charge density vector we see that to first order in V/c

ρ = 1
c2 J ·V (4.6.26)

so that

L = 1
2
MV2 −

ˆ
d3r φ(r)ρ(r) (4.6.27)

= 1
2
MV2 − 1

c2

ˆ
d3r φ(r)V · (∇×M) (4.6.28)

= 1
2
MV2 −V · (E× µ) (4.6.29)

However, this is precisely the same hamiltonian as that of a particle with charge emoving
in a vector potential A = − 1

ec2 (E × µ). For example, if we have an electron producing a
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radial electric field then
A = µ× (r− R)

4πϵ0|r− R|3 (4.6.30)

which is precisely the vector potential of a magnetic dipole up to some fundamental con-
stants. Going back to the general case, the neutral particle will acquire a phase

φ = 1
ℏc2

ˆ r

P
(E× µ) · dl (4.6.31)

We align our axes so that µ = µẑ and assume that the line charge also lies along the z-axis
so that E = λ

2πϵ0r r̂. Then

A = − 1
ec2E× µ = 1

ec2
λµ

2πϵ0r
= Φ

2πr
where Φ = µ0λµ

e
(4.6.32)

Thus the interference pattern will be

I ∼ cos2
(
mxfa

ℏT
− µ0λµ

2ℏ

)
(4.6.33)

4.7 Statistical mechanics
Imaginary time formalism

Consider a particle in 1D inside a potential V (x) connected to a heat reservoir. Due to
the entanglement of the particle with the reservoir, we no longer have a wave-function
describing the state of the particle but rather a mixed thermal state, a density matrix ρ.
This density matrix takes the form

ρ = 1
Z
e−βH , β = 1

kBT
(4.7.1)

where Z, the partition function, is Tr(e−βH), to ensure normalisation: Tr(ρ) = 1. Given
this density matrix, one can compute the expectation value of some operator A as

〈A〉 = Tr(ρA) (4.7.2)

Note the striking similarity between e−βH and e−iHt/ℏ, could we perhaps describe the den-
sity matrix using U(t) 1? The answer is yes, if we define an imaginary time t = −iτ where

τ = ℏβ = ℏ
kBT

(4.7.3)

If we make this replacement then we can identify e−βH = U(−iτ). However, since H is
only necessarily bounded below, U(−iτ) is well defined if and only if τ > 0. We define the
imaginary-time propagator as the Euclidean propagator

e−βH = U(−iτ) ≡ UE(τ) (4.7.4)
1since we are working in equilibrium conditions, the Hamiltonian is time-independent so U(t) = e−iHt/ℏ
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Since the propagator formalism allows for imaginary times, we should be able to make an
imaginary-time representation of a path integral. We then see that

UE(x′, x, τ) =
ˆ
D[x]e−SE [x]/ℏ, where SE [x] =

ˆ τ

0

[
m

2

(
dx

dτ

)2
+ V (x)︸ ︷︷ ︸

LE

]
(4.7.5)

where SE is the Euclidean action, the integral of the Euclidean LagrangianLE . The reason
these quantities are dubbed “Euclidean” is because the Lorentz invariant s = x2 − c2t2

becomes an Euclidean invariant σ = x2 + c2τ2 under the imaginary time transformation.
Time and space are now treated on equal footing, as in Euclidean space-time. (4.7.5) can
be seen by noting that the classical action is

iS[x] = i

ˆ t

0
dt

[
m

2

(
dx

dt

)2
− V (x)

]
(4.7.6)

so by replacing t→ −iτ then we obtain

S[x] =
ˆ τ

0
(−i)dτ

[
m

2

(
i
dx

dτ

)2
− V (x)

]
=⇒ SE [x] = iS[x] =

ˆ τ

0

[
m

2

(
dx

dτ

)2
+ V (x)

]
(4.7.7)

Therefore, a particle moving in Euclidean time will experience an inverted potential. An-
other important consequence of time becoming imaginary is thatSE must nowbe bounded
below, or else the exponential factor will diverge.

This formalism allows us to calculate thematrix elements of e−βH as a path integral. How-
ever, we haven’t calculated the partition function yet. We have that

Z =
ˆ
dx 〈x|e−βH |x〉 =

ˆ
dx UE(x, x, βℏ) =

ˆ
dx

ˆ
periodic

D[x]e−SE [x]/ℏ (4.7.8)

where the path integral is taken over periodic paths x(0) = x(βℏ). The larger the temper-
ature, the smaller the period of these orbits (in Euclidean time of course).

The quantum fluctuations of a quantum system at finite temperature can be associated
with the thermal fluctuations in the classical statistical ensemble of closed trajectories in
euclidean time.

Operator representation using path integrals

Let’s try to calculate ˆ xf

xi

D[x] eiS[x]/ℏx(t1) (4.7.9)
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We can view the path integral as the integral over x(t1) ≡ x1 product of path integral from
xi to x1 and from x1 to xf

ˆ xf

xi

D[x] eiS[x]/ℏx(t1) =
ˆ
dx1

[ ˆ x1

xi

D[x] eiS[x]/ℏ ×
ˆ xf

x1

D[x] eiS[x]/ℏ
]
x1 (4.7.10)

=
ˆ
dx1 〈xf |U(tf − t1)|x1〉x1 〈x1|U(t1 − ti)|xi〉 (4.7.11)

= 〈xf |U(tf − t1)x̂U(t1 − ti)|xi〉 (4.7.12)

where we added a hat on x1 in the last line to emphasize that it is now an operator. Now
using the definition of U(t) we get that

〈xf , t1|x|xi, t1〉 =
ˆ xf

xi

D[x] eiS[x]/ℏx(t1) (4.7.13)

in the Schrodinger picture and

〈xf |x(t1)|xi〉 =
ˆ xf

xi

D[x] eiS[x]/ℏx(t1) (4.7.14)

in the Heisenberg picture.
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5Quantum Dynamics in one dimension

In theory, this is all that there is to QM. However, there are several important applications
of the postulates we stated in the previous chapter that help model the microscopic world.
We will present the simplest of these models, in one dimension, in this chapter. Other
applications of QM can be found in statistical mechanics, which constitutes volume 3 of
this series, as well as most of the modern physics volume.

5.1 Parity
We end this chapter by proving a very useful theorem on the parity of solutions to the
Schrödinger equation when the potential is symmetric. More precisely, suppose V (−x) =
V (x), then the 1D TISE in the coordinate basis is:

− ℏ2

2m
d2ψ(x)
dx2 + V (x)ψ(x) = Eψ(x) (5.1.1)

Suppose we substitute x 7→ −x, then:

− ℏ2

2m
d2ψ(−x)
dx2 + V (x)ψ(−x) = Eψ(−x) (5.1.2)

Consequently ψ(−x) is also a solution.

Now ifψ(x) andψ(−x) are linearly independent, they form a fundamental set of solutions.
So any solution can be expressed as a linear combination ofψ(x)+ψ(−x) andψ(x)−ψ(−x)
as well, which are even and odd respectively.

If instead ψ(x) and ψ(−x) are linearly dependent, then:

ψ(x) = cψ(−x) =⇒ ψ(−x) = cψ(x) (5.1.3)

by re-substituting x 7→ −x. Then:

ψ(x) = c2ψ(x) =⇒ c = ±1 (5.1.4)

So if c = 1 thenψ(x) = ψ(−x) andwehave an even solution. If c = −1 thenψ(x) = −ψ(−x)
so we have an odd solution.
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Hence any solution to the TISE with symmetric potential can be written as superposition
of even and odd solutions.

5.2 The Free Particle
For a free particle, TDSE turns into:

Ĥ |ψ〉 = iℏ
d

dt
|ψ〉 = p̂2

2m
|ψ〉 (5.2.1)

and feeding the stationary state solutions |ψ〉 = |E〉 e−iEt/ℏ we find the TISE:

Ĥ |E〉 = E |E〉 = p̂2

2m
|E〉 (5.2.2)

We now note that if p̂ |p〉 = p |p〉 then p̂2 |p〉 = p2 |p〉 so feeding one of the eigenstates |p〉
into the solution: ( p2

2m
− E

)
|p〉 = |0〉 =⇒ p = ±

√
2mE (5.2.3)

Therefore a particle with energy E can be described by a superposition of particles moving
to the left and right with momentum±

√
2mE. The two energy orthogonal eigenstates can

be defined as:
|E+〉 = |p =

√
2mE〉 |E−〉 = |p = −

√
2mE〉 (5.2.4)

Interestingly, by the principle of superposition, if a particle is defined by:

|E〉 = α |E+〉+ β |E−〉 (5.2.5)

then when measured it can be either moving to the left or right with momentum
√

2mE.

Now that we have found two orthogonal eigenstates we can construct the appropriate
propagator (using |p〉 instead of |E〉 since we used it as a trial solution):

Û(t) =
ˆ ∞

−∞
|p〉 〈p| e− iE(p)t

ℏ dp =
ˆ ∞

−∞
|p〉 〈p| e− ip2t

2mℏ dp (5.2.6)

Then we can evaluate the propagator in the position operator:

〈
x
∣∣∣ Û(t)

∣∣∣x′
〉

=
ˆ ∞

−∞
〈x | p〉

〈
p
∣∣x′〉 e−ip2t

2mℏ dp = 1
2πℏ

ˆ ∞

−∞
e

ip(x−x′)
ℏ e

ip2t
2mℏ dp =

√
m

2πℏit
e

im(x−x′)2
2ℏt

So, for any initial condition ψ(x, 0) = ψ0(x) then:

ψ(x, t) =
ˆ ∞

−∞

〈
x
∣∣∣ Û(t)

∣∣∣x′
〉
ψ0(x′)dx′ =

√
m

2πℏit

ˆ ∞

−∞
e

im(x−x′)2
2ℏt ψ0(x′)dx′ (5.2.7)

If we instead used t = t′ then we would have had to calculate
〈
x
∣∣∣ Û(t)

∣∣∣x′
〉
.

If the particle was initially localized at x′ = x′
0, and so ψ(x′, t′) = δ(x′ − x′

0) then we find
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that:
ψ(x, t) =

〈
x
∣∣∣ Û(t− t′)

∣∣∣x′
〉

(5.2.8)

so the propagator in the position basis is the probability that a particle starting out at (x′
0, t

′)
arrives at (x, t). Hence equation 4.1.7 tells us that the probability amplitude of a particle
ending up at (x, t) is the sum of the contributions from all x′ with weight equal to the
associated amplitude.

Example (5.1.1 Sh)
Show that the propagator for the free particle may be re-written as:

Û(t) =
∑
α=±

ˆ ∞

0

[
m√
2mE

]
|E,α〉 〈E,α| e−iEt/ℏdE (5.2.9)

Solution Wemust perform a change of basis from the momentum representation to
the energy representation. The best way to do this is to use the relation:

p = ±
√

2mE =⇒ dp = ± m√
2mE

dE (5.2.10)

Due to the degeneracy of the energy eigenstates, we then find that the integral is split
into two, one for positive momentum states and one for negative momentum states
(which represent a particle moving to the right and to the left respectively):

Û(t) =
ˆ ∞

0
|p〉 〈p| e− iE(p)t

ℏ dp+
ˆ 0

−∞
|p〉 〈p| e− iE(p)t

ℏ dp (5.2.11)

Note that the integration bounds for the first become
´∞

0 whereas for the second they
are
´ 0

∞ from which we find that:

Û(t) =
ˆ ∞

0
|p+〉 〈p+| e−iEt/ℏ mdE

2
√
mE

−
ˆ 0

∞
|p−〉 〈p−| e−iEt/ℏ mdE

2
√
mE

(5.2.12)

= m√
2mE

(ˆ ∞

0
|E,+〉 〈E,+| e−iEt/ℏdE +

ˆ ∞

0
|E,−〉 〈E,−| e−iEt/ℏdE

)
(5.2.13)

=
∑
α=±

ˆ ∞

0

[
m√
2mE

]
|E,α〉 〈E,α| e−iEt/ℏdE (5.2.14)

as desired. ◀

Example. (5.1.2 Sh)
Solve the TISE for a free particle in the position representation.
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Solution The TISE reads:
p̂2

2m
|E〉 = E |E〉 (5.2.15)

In the x-basis, we have that p̂ = −iℏ ∂
∂x and thus:

− ℏ2

2m
∂2ψE
∂x2 = EψE =⇒ ∂2ψE

∂x2 + 2mE
ℏ2 ψE = 0 (5.2.16)

The general solution can be written as:

ψE(x) = A exp
( i√2mE

ℏ
x
)

+B exp
( i√2mE

ℏ
x
)

(5.2.17)

as found earlier. ◀

5.3 Wave-packets

we can construct the full stationary state solutions of the free particle by appending e− iE
ℏ t =

e− iℏk2
2m

t to (4.1.17):
ψk(x, t) = Aei(kx− ℏk2

2m
t) +Be−i(kx+ ℏk2

2m
t) (5.3.1)

where we use k as a subscript since for each energy level we have a unique wave-number.

For simplicity, we can let k vary from −∞ to∞ and write:

ψk(x, t) = Aei(kx− ℏk2
2m

t), k = ±
√

2mE
ℏ

(5.3.2)

One immediately sees that the stationary states solutions are non-normalizable, they are
de Broglie plane waves as postulated in chapter 1!

This means that a free particle can never exist in a stationary state, it is not a physically
realizable system. It is therefore impossible to have a free particle of definite energy.

Consequently, we can only have a superposition of stationary states. We can indeed sum
over all forms of A(k)ei(kx− ℏk2

2m
t) with A(k) varying for each wave-number/energy level.

We are taking several stationary states ψk, and superposing them with relative amplitude
A(k). Since k is a continuous spectrum, we integrate:

ψ(x, t) = 1√
2π

ˆ ∞

−∞
A(k)ei(kx− ℏk2

2m
t)dk (5.3.3)

where the factor 1√
2π is added for convenience as we shall soon see.

This wave-function is certainly normalizable, at the cost of losing determinism in the mo-
mentum representation. We no longer have a particle of definite momentum, but rather
in a superposition of a range of ℏk. This is called a wave packet.
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Suppose we are now given an initial wave-function ψ(x, 0), we can now use (4.2.3) to
evolve the solution at later times. In order to have agreeing boundary conditions, we re-
quire:

ψ(x, 0) = 1√
2π

ˆ ∞

−∞
A(k)eikxdx (5.3.4)

In other words, A(k) is the inverse Fourier transform of ψ(x):

A(k) = 1√
2π

ˆ ∞

−∞
ψ(x, 0)e−ikxdx (5.3.5)

A typical wave-packet is shown below: Since we superposed waves of different frequen-

cies, we expect them to travel at different velocities according to some dispersion relation.

We can define the phase velocity to be the velocity vk is the velocity at which the sinusoidal
component of any one frequency travels:

vk = ω

k
(5.3.6)

The group velocity vg is instead defined as the velocity of the envelope, the signal as a
whole:

vg = dω

dk
(5.3.7)

We can see a similar phenomena when examining ripples in water. Suppose we toss a
pebble in a pond, thus creating circular ripples. The group velocity is the speed at which
these circular patterns expand. However, the phase velocity is the speed at which the
ripples themselves move.

For the free particle, we find that:

vcl = vg = 2vp (5.3.8)

so the classical velocity of a particle agrees with the group velocity, and is half the phase
velocity.
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5.4 Gaussian packets
There is a special class ofwave-packets, calledGaussianpackets, which are of considerable
interest when describing particles. It will be shown indeed in the next chapter that this
class of wave-functions has minimum uncertainty, it saturates the Heisenberg uncertainty
relation:

∆x∆p = ℏ
2

(5.4.1)

Gaussians therefore are as localized as awave-function can get, and are a perfect candidate
to model particles. Furthermore, they are also the ground state of the reputable harmonic
oscillator.

Consider an initial wave function:

ψ(x′, 0) = eipx
′/ℏ e

−x′2/2∆2

(π∆2)1/4 (5.4.2)

which has mean position 〈x〉 = 0 with uncertainty ∆x = ∆√
(2)

, and mean momentum

〈p〉 = p0 with uncertainty ℏ√
2 . We then get using the propagator for a free particle we

found earlier:

ψ(x, t) =
√

m

2πℏit

ˆ ∞

−∞
e

im(x−x′)2
2ℏt eipx

′/ℏ e
−x′2/2∆2

(π∆2)1/4 dx
′ (5.4.3)

=
[
π1/2

(
∆ + iℏt

m∆

)]−1/2

· exp
[
−(x− p0t/m)2

2∆2(1 + iℏt/m∆2)

]
· exp

[
ip0
ℏ

(
x− p0t

2m

)]
(5.4.4)

=⇒ P(x, t) = 1√
π(∆2 + ℏ2t2/m2∆2)

exp
[
−(x− p0t/m)2

∆2 + ℏ2t2/m2∆2)

]
(5.4.5)

It is important to note that:

(i) The mean position of the particle is:

〈x〉 = p0t

m
(5.4.6)

which is the classical relation we had in Newtonian mechanics.

(ii) The width of the packet grows at the same rate as ∆x(t):

∆x(t) = ∆√
2

√
1 + ℏ2t2

m2∆4 (5.4.7)

Therefore the initial uncertainty in momentum (or better, velocity) is transferred into an
increasing uncertainty in position. Indeed, ∆v = ℏ√

2m then for large times ∆x ≈ ∆v · t =
ℏt√
2m which agrees with the above result.
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Figure 5.1. Plot of the real part of the Gaussian packet

Example. (5.1.3 Sh)

Use the alternative definition of the proapagator operator Û(t) = eiĤt/ℏ to re-do the
gaussian problem, setting p0 = 0 and ∆ = 1 so that:

ψ(x, 0) = 1
π1/4

e−x2/2 (5.4.8)

Solution For a free particle the Hamiltonian is:

Ĥ = − ℏ2

2m
∂2

∂x2 (5.4.9)

so we may write the propagator as:

Û(t) = exp
[ iℏt
2m

∂2n

∂x2n

]
=

∞∑
n=0

1
n!

( iℏt
2m

)n ∂2n

∂x2n (5.4.10)

and therefore:
ψ(x, t) =

∞∑
n=0

1
n!

( iℏt
2m

)n∂2nψ(x, 0)
∂x2n (5.4.11)

Let us now remark that wemaywrite ψ(x, 0) as a power series, which should facilitate
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calculating the derivative in 4.2.10:

ψ(x, 0) = π−1/4
∞∑
m=0

(
− 1

2

)mx2m

m!
(5.4.12)

Then:

∂2nψ(x, 0)
∂x2n = π−1/4

∞∑
m=0

(
− 1

2

)mx2m

m!
, n = 0 (5.4.13)

= π−1/4
∞∑
m=1

(
− 1

2

)m 2m(2m− 1)x2(m−1)

m!
, n = 1 (5.4.14)

= π−1/4
∞∑
m=2

(
− 1

2

)m 2m(2m− 1)(2m− 2)(2m− 3)x2(m−2)

m!
, n = 2

(5.4.15)

We can then write:

ψ(x, t) = π−1/4
∞∑
n=0

1
n!

( iℏt
2m

)n ∞∑
i=0

(
− 1

2

)i 2i(2i− 1)...(2i− 2n+ 1)x2(i−n)

i!
(5.4.16)

Looking at the first three terms of n:

ψ(x, t) = π−1/4

[ ∞∑
i=0

(
− 1

2

)ix2i

i!
+ iℏt

2m

∞∑
i=0

(
− 1

2

)i 2i(2i− 1)x2(i−1)

i!
(5.4.17)

−ℏ2t2

4m2

∞∑
i=0

(
− 1

2

)i 2i(2i− 1)(2i− 2)(2i− 3)x2(i−2)

i!
+ ...

]
(5.4.18)

Collecting like terms in the same power of xk we find:

term in xk = π−1/4

[(
− 1

2

)k x2k

k!
+ iℏt

2m

(
− 1

2

)k+1 (2k + 1)(2k + 2)x2k

(k + 1)!
(5.4.19)

− ℏ2t2

4m2

(
− 1

2

)k+2 (2k + 1)(2k + 2)(2k + 3)(2k + 4)x2k

(k + 2)!
+ ...

]
(5.4.20)

= π−1/4
(
− 1

2

)k x2k

k!

(
1− iℏt

2m
1
2

(2k + 2)(2k + 1)
k + 1

+
( iℏt

2m

)2
(5.4.21)

1
4

(2k + 1)(2k + 2)(2k + 3)(2k + 4)
(k + 1)(k + 2)

)
(5.4.22)

= π−1/4
(
− 1

2

)k x2k

k!

(
1 + iℏt

m

)−k−1/2

(5.4.23)
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where in the latter step we used the expansion:

(1 + x)−n−1/2 = 1− (n+ 1
2

)x+
(n+ 1

2)(n+ 3
2)

2!
x2 + ... (5.4.24)

with x = iℏt
m . Finally we may write:

ψ(x, t) =
∞∑
k=0

π−1/4
(
− 1

2

)k x2k

k!

(
1 + iℏt

m

)−k−1/2

(5.4.25)

=
[
π

1/2
(
1 + iℏt

m

)]−1/2 ∞∑
k=0

(
− 1

2

)k
1
k!

(
x√

1 + iℏt
2m

)2k
(5.4.26)

=
[
π

1/2
(
1 + iℏt

m

)]−1/2
exp

[
x2

2
(
1 + iℏt

2m

)] (5.4.27)

as was found earlier. ◀

5.5 Infinite potential well
Consider the following potential:

V (x) =
{

0, |x| < L
2

∞ otherwise
(5.5.1)

which is called an infinite well. The TISE turns into:

Ĥ |E〉 = E |E〉 =⇒ d2ψ

dx2 + 2m
ℏ2 (E − V )ψ = 0 (5.5.2)

In the region outside the box, initially set V = V0 > E so that:

d2ψ

dt2
− 2m

ℏ2 (V − E)ψ = 0 (5.5.3)

which is the free particle equation, and has solution:

ψ = C1e
−κx + C2e

κx, κ =
√

2m
ℏ2 (V − E) (5.5.4)

However, because the wave function must be normalizable we can’t have ψ blowing up as
x→∞. Therefore, the only viable alternative, on physical grounds, is to set C1 = C2 = 0.
Hence:

ψ(x) = 0, outside of box (5.5.5)

Let us instead consider the region inside the box. Here, V = 0 so we get the free particle
solution:

ψ = C1e
−iκx + C2e

iκx, κ =

√
2mE
ℏ2 (5.5.6)
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so the energy spectrum is seemingly continuous. However, note that we require the wave
function to be continuous, especially on the boundaries of the box at x = ±L

2 . We must
therefore set the boundary conditions:

ψ

(
± L

2

)
= C1e

−iκL
2 + C2e

iκL
2 = 0 =⇒

(
e

− iκL/2 e
iκL/2

e
iκL/2 e

− iκL/2

)(
C1
C2

)
=
(

0
0

)
(5.5.7)

whose non-trivial solutions are if the determinant vanishes so:

e−iκL − eiκL = 2i sin(κL) = 0 =⇒ κ = nπ

L
, n ∈ Z (5.5.8)

which gives:
C1e

−inπ/2 + C2e
inπ/2 = 0 =⇒ C1 = − cos(nπ)B (5.5.9)

Finally, normalizing the solution we find that:

ψn(x) =


√

2
L sin

(
nπx
L

)
, n even√

2
L cos

(
nπx
L

)
, n odd

(5.5.10)

with a discrete spectrum of energy:

En = ℏ2π2n2

2mL2 (5.5.11)

This quantum state in which the potential is greater than the energy E, is called a bound
state, states where the particle is prevented from escaping to infinity.

Most importantly, the energy levels of bound states are always quantized andnon-degenerate.
Indeed, for a finite well, the conditions we impose on the wave function are:

(i) It must be continuous, especially at the boundaries of the box.

(ii) In the outside region, we need the rising exponential term to be zero.

which are four conditions, but we only have three parameters (the two falling exponen-
tial terms, the sine and cosine terms, seem to be four, but since we can scale them by any
amount and not change the eigenvalue problem, we only have three all relative to an ar-
bitrary proportionality constant). Therefore only special values for energy will yield a
solution that satisfies these conditions.

More generally, for some potential which tends to V± as |x| → ∞ binding a particle of
energyE < V±, we still have onemore constraint than parameters. Indeedwe divide space
into tiny intervals of constant potential, andwhich therefore get longer and longer as |x| →
∞ due to the stabilization of V . For each interval ψ has two parameters, the coefficients
of the growing/falling exponentials. The constraints however are the continuity of ψ,ψ′ at
the interface between intervals. However, since adding one new interval every timemeans
adding two newparameters and two new constraints. So going from the three interval case
of a finite well to the infinite case of an arbitrary potential, we are still going to have the
same mismatch of constraints and parameters as in the finite box, so one extra constraint.
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One entirely new concept of the quantum mechanical approach to the particle in the box
is that the lowest energy level, the ground state, is not zero, but ℏ2π2

2mL2 . This is due to the
uncertainty principle. Consider: 〈

H̄
〉

=
〈
p̂2〉
2m

(5.5.12)

In a bound state, 〈p̂〉 = 0. This is because bound states are stationary, and thus 〈p̂〉 is
time independent, so if it were non-zero then the particle would be capable of moving to
infinity, which is not possible for a bound state. Therefore, using

〈
p̂2〉 = (∆p)2 + (〈p̂〉)2:

〈
H̄
〉

= (∆p)2

2m
≥ ℏ2

8m(∆x)2 (5.5.13)

Finally, since the particle is constrained inside the box, ∆x ≤ L
2 and so:

〈
H̄
〉
≥ ℏ2

2mL2 (5.5.14)

In the ground state (which is an energy eigenstate),
〈
H̄
〉

= E so that we reach:

E ≥ ℏ2

2mL2 . (5.5.15)

which is the same order of magnitude as the actual ground state energy.

Finally let us construct the propagator as:

Û(t) =
∞∑
n=1
|n〉 〈n| exp

[
− i

ℏ

(ℏ2π2n2

2mL2

)
t

]
(5.5.16)

so that: 〈
x
∣∣∣ Û(t)

∣∣∣x′
〉

=
∞∑
n=1

ψn(x)ψ∗
n(x′) exp

[
− i

ℏ

(ℏ2π2n2

2mL2

)
t

]
(5.5.17)

and hence for some initial state ψ(x′, 0) we get:

ψ(x, t) =
∞∑
n=1

(ˆ ∞

−∞
ψn(x)ψ∗

n(x′) exp
[
− i

ℏ

(ℏ2π2n2

2mL2

)
t

]
ψ(x′, 0)dx′

)
(5.5.18)

=
∞∑
n=1

cnψn(x) exp
[
− i

ℏ

(ℏ2π2n2

2mL2

)
t

]
(5.5.19)

where
cn =

ˆ ∞

−∞
ψ∗
n(x′)ψ(x′, 0)dx′ (5.5.20)

is the probability that, upon an energy measurement, the wave-function collapses into the
energy wave-function describing |ψn〉.
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Example (5.2.1 Sh)
A particle is in the ground state of an infinite well of length L. Suddenly the box
expands to twice its size, leaving the wave function undisturbed. What is the prob-
ability of finding the particle in the ground state of the new box?

Solution The particle is initially in the ground state of an infinite well of length L so

ψ(x, 0) =
√

2
L

cos
(πx
L

)
(5.5.21)

The ground state of the new well of length 2L is then:

ψE1(x) =
√

1
L

cos
(πx

2L

)
(5.5.22)

Therefore, using the second postulate of quantum mechanics, the probability of find-
ing the particle in the new ground state is:

P (E1) = | 〈E1 |ψ(0)〉 |2 =
(√

8
3π

ˆ L
2

L
2

cos
(πx
L

)
cos

(πx
2L

)
dx

)2

= 64
9π2 (5.5.23)

which is around 0.72, so it is quite likely to make such a measurement. ◀

Example. (5.2.2 Sh)
Show that

〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 ≥ E0 where E0 is the ground state. (b) Prove that every at-

tractive potential has at least one bound state.
Hint: use the following mathematical ansatz

ψ(x) =
(
α

π

)1/4
e−αx2/2 (5.5.24)

Solution Let us expand |ψ〉 in the energy eigenbasis so |ψ〉 =
∑
i 〈Ei |ψ〉 |ψ〉. Then,

the expectation value for the hamiltonian operator is:

〈H〉ψ =
〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 = 〈ψ|

∑
i

〈Ei |ψ〉 Ĥ |Ei〉 (5.5.25)

= 〈ψ|
∑
i

〈Ei |ψ〉Ei |Ei〉 (5.5.26)

=
∑
i

〈Ei |ψ〉Ei 〈ψ |Ei〉 (5.5.27)

=
∑
i

| 〈Ei |ψ〉 |2Ei =
∑
i

ciEi (5.5.28)

Clearly then, because Ei ≥ E0, we must have that:〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 ≥ E0 (5.5.29)
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with equality holding only when ci = 0 for i 6= 0.

An attractive potential V (x) is such that V (x) = −|V (x)| and V (±∞) = 0. Thus, for
a bound state E to exist we need its energy to be negative. Using the result in part a,
one might try to find 〈H〉ψ and show that it can be made negative, so that the ground
state has a negative energy.

We therefore need to show that 〈H〉ψ < 0:

〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 =

〈
ψ

∣∣∣∣∣− ℏ2

2m
d2

dx2−
∣∣∣∣∣V (x)

∥∥∥∥∥ψ
〉

= − ℏ2

2m

〈
ψ

∣∣∣∣∣ d2ψ

dx2

〉
− 〈ψ ‖V (x) ‖ψ〉

(5.5.30)
We can’t proceed further without using a trial solution for ψα.〈

T̂
〉
α

= −
√
α

π

ℏ2

2m

ˆ ∞

−∞
α(1− αx2)e−αx2

dx = αℏ2

4m
(5.5.31)

Now to have a bound state we must therefore have that:

E0 ≤
〈
Ĥ
〉
α
≤ 0 =⇒

〈
T̂
〉
α

= αℏ2

4m
≤
〈 ∣∣∣ V̂ ∣∣∣ 〉

α
(5.5.32)

However, evaluating
〈 ∣∣∣ V̂ ∣∣∣ 〉

α
is impossible to do explicitly, and we must therefore

find some bounds for it. Let |V (x0) = 2n0 for some x0 where the potential is piece
wise continuous. Then, ∃[x0, x1] 3 x0 such that |V (x)| ≥ n0, ∀x ∈ [x0, x1]. Therefore
we find the following lower bound:√

α

π

ˆ ∞

−∞
|V (x)|e−αx2

dx ≥
√
α

π

ˆ x2

x1

|V (x)|e−αx2
dx ≥

√
α

π

ˆ x2

x1

n0e
−αx2

dx (5.5.33)

where the first step is justified since the integrand is positive everywhere. We therefore
need to find a value for α such that:〈 ∣∣∣ V̂ ∣∣∣ 〉

α
≥
√
α

π

ˆ x2

x1

n0e
−αx2

dx ≥ αℏ2

4m
(5.5.34)

Now because
´ x2
x1
n0e

−αx2
dx ≤

´ x2
x1
n0e

−αx1dx = n0e
−αx2

1(x2 − x1) then:

〈 ∣∣∣ V̂ ∣∣∣ 〉
α
≥
√
α

π
n0e

−αx2
1(x2 − x1) ≥ αℏ2

4m
(5.5.35)

If we choose α ≤ 1
x2

1
=⇒ e−αx2

1 ≤ 1
e then:

α ≤
(

4mn0(x2 − x1)
eℏ2√π

)2

∧ α ≤ 1
x2

1
(5.5.36)

Which can always be solved since they’re both positive upper bounds. Therefore the
ground state is always a bound state in an attractive potential. ◀
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Example. (5.2.3 Sh)
Find the bounded energy levels for a particle under a potential V (x) = aV0δ(x).

Solution Clearly, for a bounded statewemust have a negative energy, sinceV (±∞) =
0.Let us consider the TISE:

Ĥ |E〉 = E |E〉 (5.5.37)

=⇒ p̂2

2m
|E〉+ V (x̂) |E〉 = E |E〉 (5.5.38)

=⇒ − ℏ2

2m
∂2ψE(x)
∂x2 + V (x)ψE(x) = EψE(x) (5.5.39)

=⇒ ∂2ψE(x)
∂x2 + 2m

ℏ2 (E − V (x)) = 0 (5.5.40)

We must now consider three different regions, corresponding to different values of
V (x). For x < 0 we have that V (x) = 0 and thus the solution is that of a free particle:

ψE(x) = Aekx +Be−kx, k =
√

2m|E|
ℏ

(5.5.41)

However, because the second term blows up at −∞, we must set B = 0 so that:

ψE(x) = Aekx (5.5.42)

Similarly, for x < 0 we find:

ψE(x) = Ce−kx = Ae−kx (5.5.43)

where for the sake of continuity, we must have thatA = C. Finally, for x = 0, the TISE
turns into :

∂2ψE(x)
∂x2 + 2m

ℏ2 (E − aV0δ(x))ψE(x) = 0 (5.5.44)

Integrating over an infinitesimal interval [−ϵ, ϵ] we find:

d

dx

ˆ ϵ

−ϵ

∂ψE(x)
∂x

dx = 2m
ℏ2

ˆ ϵ

−ϵ
(E − aV0δ(x))ψE(x) = −2maAV0

ℏ2 (5.5.45)

This is the change in the slope of ψE(x) around the cusp at x = 0. Using the values of
derivative of the wave function to the left and right of x = 0:

dψE(0−)
dx

= Ak (5.5.46)

dψE(0+)
dx

= −Ak (5.5.47)
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so that the change in slope is equal to 2Ak, then:

2Ak = −2maAV0
ℏ2 =⇒ 2m|E|

ℏ2 = m2a2V 2
0

ℏ4 =⇒ E = −|E| = −ma
2V 2

0
2ℏ2 (5.5.48)

So the only bounded energy level (the only negative one) is E = −ma2V 2
0

2ℏ2 . ◀

Example. (5.2.4 Sh)

A particle of massm is in the state |n〉 of a box of length L. Find the force encountered
when the walls are quasistatically pushed in assuming the particle remains in the nth
state of the box as it changes, in the classical case and quantum case.

Solution In the quantum mechanical case:

F = −∂H
∂L

= −∂En
∂L

= − ∂

∂L

(ℏ2π2n2

2mL2

)
= ℏ2π2n2

mL3 (5.5.49)

For an electron in the ground state of a well of length L = 10−10m, the force is about
F ≈ 1.20× 10−7N .

Now let us work out the classical case. Here:

En = ℏ2π2n2

2mL2 = p2

2m
=⇒ p = ℏπn

L
=⇒ v = ℏπn

mL
(5.5.50)

Therefore, the time taken by the particle to hit the same wall twice is:

∆t = 2L
v

= 2mL2

ℏπn
(5.5.51)

and so the frequency of collision on one wall is:

ν = ℏπn
2mL2 (5.5.52)

Finally, since the change in momentum is ∆p = 2ℏπn
L then:

F = ν∆p = ℏ2π2n2

mL3 (5.5.53)

which coincides with the quantum prediction. Furthermore, we can write:

F = ∂p

∂t
= ∂p

∂L

∂L

∂t
=⇒ ℏ2π2n2

mL3 = −ℏπn
L2

∂L

∂t
(5.5.54)
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so that the rate at which the box shrinks is given by:

∂L

∂t
= −ℏπn

mL
(5.5.55)

The quantization in the energy levels of the particle leads to a quantization of the
shrinking speed of the box. ◀

5.6 Finite potential well
Let us now consider the problem of a symmetric potential well, with potential:

V (x) =
{
V0 |x| ≥ L region 1
0 |x| ≤ L region 2

(5.6.1)

with E < V0. Then the TISE has solution in region 1:

ψ(x) = c1e
κx + c2e

−κx, κ =

√
2m(V0 − E)

ℏ2 (5.6.2)

However because the wave function must be normalisable, we need it to vanish at infinity
and so:

ψ(x) =
{
c1e

κx x ≤ −L
c2e

−κx x ≥ L
(5.6.3)

Similarly, in region 2 the solution is akin to the free particle:

ψ(x) = b1 cos(kx) + b2 sin(kx), k =

√
2mE
ℏ2 (5.6.4)

Because the potential is symmetric, it can be proven that the bound states are either even
or odd. We can now impose the continuity of the wave function and its first derivative at
the boundaries of the well:

(i) ψ(−L−) = ψ(−L+) then: b1 cos(kL)− b2 sin(kL) = c1e
−κL

(ii) ψ(L−) = ψ(L+) then: b1 cos(kL) + b2 sin(kL) = c2e
−κL

(iii) ψ′(−L−) = ψ′(−L+) then: k(b1 sin(kL) + b2 cos(kl)) = c1κe
−κL

(iv) ψ′(L−) = ψ′(L+) then: k(−b1 sin(kL) + b2 cos(kL)) = −c2κe
−κL

Odd solutions

Because we are looking for even solutions, we must set b1 = 0. The first and third condi-
tions give:{

−b2 sin(kL) = c1e
−κL

kb2 cos(kL) = c1κe
−κL =⇒ −k cot(kL) = κ, k 6=

(
n− 1

2
)
π (5.6.5)
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Even solutions

Because we are looking for odd solutions, we must b2 = 0. The second and fourth condi-
tions give: {

b1 cos(kL) = c2e
−κL

−kb1 sin(kL) = −c2κe
−κL =⇒ k tan(kL) = κ, k 6= nπ

2
(5.6.6)

Note that irrelevant of the nature of the solutions, we have that:

k2 + κ2 = 2mV0
ℏ2 (5.6.7)

Therefore, to find the bounded state solutions, we need to look at all the intersections of
4.4.5 or 4.4.6 with 4.4.7 , and number them with n = 1, 2.... The corresponding energy
level is then given by

E = k2ℏ2

2m
(5.6.8)

for each k where an intersection occurs.

Example. (5.2.6 Sh)
Show that there are always even solutions to the particle in the finite well, and only
odd solutions when V0 ≥ ℏ2π2

8mL2 .

Solution Let us first prove that even solutions always exist. This can be seen graph-
ically since k tan(kL) always passes by the origin, and so must intersect the circle
at some points (see https://www.desmos.com/calculator/pgangnya2y?lang=it).
Mathematically, we want to solve:

k2(1 + tan2(kL)) = k2 sec2(kL) = 2mV0
ℏ2 (5.6.9)

The only cases where an intersection may not occur is when the secant function is
discontinuous. This would mean that

(
n − 1

2
)
π, which is a contradiction with 4.4.5

Therefore we always have a solution.

In the case of an odd solution, from the diagramwe see that the first positive solution
occurs only for some values of V0. Indeed, we need the radius of the circle to be greater
than the x-intercept of −k cot(kL). Therefore, for the x-intercept κ = 0 =⇒ k =(
n− 1

2
)
π, and setting n = 1 because we are looking for the first solution, we get k = π

2 .
So: √

2mV0
ℏ2 ≥ π

2
=⇒ V0 ≥

ℏ2π2

8mL2 (5.6.10)

When V0 = ℏ2π2

8mL2 , we have that the intersection occurs at k = π
2 so E = π2ℏ2

8m is the
ground state. ◀
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Figure 5.2. Plots of the even (left) and odd (right) solutions to the finite square well problem

5.7 Conservation of Probability: the Continuity equation
In electromagnetism, global conservation of charge states that the total charge in the uni-
verse is constant, and local conservation of charge states that any change in charge in a
volume V is accounted by some flow of current through it:

∂ρ(r, t)
∂t

= −∇ · J ⇐⇒ d

dt

ˆ
V
ρ(r, t)dr3 = −

ˆ
S
J · dS (5.7.1)

where ρ, J are the charge and current densities. Local conservation forbids phenomena
such as charge suddenly appearing/disappearing in two different regions.

Similarly, inQM the globally conserved quantity is the total probability of finding a particle
anywhere in the universe. Indeed, because the time-evolution of the wave function, the
propagator operator, is unitary, we must have that:

〈ψ(t) |ψ(t)〉 =
〈
ψ(0)

∣∣∣ Û †Û
∣∣∣ψ(0)

〉
= 〈ψ(0) |ψ(0)〉 (5.7.2)

therefore we find the analogue to the global conservation of charge:

〈ψ(t) |ψ(t)〉 =
˚
〈ψ(t) | r〉 〈r |ψ(t)〉 d3r =

˚
ψ∗(r, t)ψ(r, t)d3r =

˚
P(r, t)d3r = constant

(5.7.3)
where we define the probability density in three dimensions:

P(r, t) = |ψ(r, t)|2 (5.7.4)

To derive the local conservation law in QM, consider the TDSE and its complex conjugate:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + V ψ (5.7.5)

−iℏ∂ψ
∗

∂t
= − ℏ2

2m
∇2ψ∗ + V ψ∗ (5.7.6)
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Multiplying the first by ψ∗ and the second by ψ, and then taking the difference:

iℏ
∂

∂t
(ψ∗ψ) = − ℏ2

2m
(ψ∗∇2ψ − ψ∇2ψ∗) (5.7.7)

=⇒ ∂P
∂t

= − ℏ
2mi
∇ · (ψ∗∇ψ − ψ∇ψ∗) (5.7.8)

=⇒ ∂P
∂t

= −∇ · J (5.7.9)

where we define the probability current density to be:

J = ℏ
2mi

(ψ∗∇ψ − ψ∇ψ∗) = ℏ
m
Im
(
ψ∗∇ψ

)
(5.7.10)

An immediate yet powerful consequence of the local conservation of probability density
is that if the wave function is normalised at some t′, then it will be normalised for all
subsequent t > t′. Indeed, consider a normalised wave function ψ(r, t′) so that:

N (t′) ≡
˚

P(r, t′)d3r = 1 (5.7.11)

Then we find that:

dN (t′)
dt

= d

dt

˚
P(r, t′)d3r =

˚
∇ · Jd3r =

¨
Jd2r (5.7.12)

Note that since the wave function must vanish at infinity (and its first derivative must be
bounded), the latter surface integral must be null, so that:

dN (t′)
dt

= 0 (5.7.13)

and normalisation is preserved.

Example. (5.3.1 Sh)
Consider the case where V (r = Vr(r − iVi, and Vi is constant. Describe the time
evolution of the probability of finding the particle.

Solution We can clearly see that V is not Hermitian due to the imaginary part Vi.
Therefore we can’t use the result that dN (t′)

dt = 0. Therefore consider the TDSE and its
complex conjugate:

iℏ
∂ψ

∂t
= − ℏ2

2m
∇2ψ + Vr(r)ψ − iViψ (5.7.14)

−iℏ∂ψ
∗

∂t
= − ℏ2

2m
∇2ψ∗ + Vr(r)ψ∗ + iViψ

∗ (5.7.15)
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Multiplying the first by ψ∗ and the second by ψ, and then taking the difference:

iℏ
∂

∂t
(ψ∗ψ) = − ℏ2

2m
(ψ∗∇2ψ − ψ∇2ψ∗)− 2iViψ∗ψ (5.7.16)

=⇒ ∂P
∂t

= − ℏ
2mi
∇ · (ψ∗∇ψ − ψ∇ψ∗)− 2ViP

ℏ
(5.7.17)

=⇒ ∂P
∂t

+ 2Vi
ℏ

P = −∇ · J (5.7.18)

We then find that the normalisation constant N evolves as:

dN (t′)
dt

= d

dt

˚
P(r, t′)d3r =

˚
∇ · Jd3r− 2Vi

ℏ

¨
P(r, t′)d3r (5.7.19)

=
¨

Jd2r− 2Vi
ℏ

¨
P(r, t′)d3r (5.7.20)

Note that since the wave function must vanish at infinity (and its first derivative must
be bounded), if we evaluate the latter surface integral over a sphere of infinite radius,
it must become null, so that:

dN (t′)
dt

= −2Vi
ℏ

¨
P(r, t′)d3r = −2Vi

ℏ
N (5.7.21)

This differential equation can be easily solved, and we find that:

N ∝ e−2Vit/ℏ (5.7.22)

The probability of finding the particle therefore decreases exponentially, with a half
life of ℏ

2Vi
ln(2). This potential is very useful when modelling processes where a par-

ticle is absorbed. Here, the term −2Vi
ℏ N is called the sink term, because it is negative.

Had it been positive (so with a potential V (r) = Vr(r) + iVi) then it would be a source
term. ◀

Example. (5.3.3 Sh)
Find the probability current density and probability density for:

ψp =
( 1

2πℏ

)3/2
ei(p·r)/ℏ (5.7.23)

Solution Let us firstly find the probability current density:

J = ℏ
2mi

(( 1
2πℏ

)3
e−i(p·r)/ℏ ∇ei(p·r)/ℏ −

( 1
2πℏ

)3
ei(p·r)/ℏ ∇e−i(p·r)/ℏ

)
(5.7.24)

= ℏ
2mi(2πℏ)3

(
ip
h

+ ip
h

)
(5.7.25)

= p
(2πℏ)3m

(5.7.26)
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where the gradient was calculated as follows:

∇ei(p·r)/ℏ = ∇ei(xpx+ypx+zpz)/ℏ (5.7.27)

= ipx
ℏ
ei(p·r)/ℏx̂+ ipy

ℏ
ei(p·r)/ℏŷ + ipz

ℏ
ei(p·r)/ℏẑ (5.7.28)

= ip
ℏ
ei(p·r)/ℏx̂ (5.7.29)

Finding the probability density is much less tedious, and we find:

P(r, t) = ψ∗ψ = 1
(2πℏ)3 (5.7.30)

Notice that then:
J = P · p

m
(5.7.31)

which resembles the equation J = ρv in electrodynamics. We also find that:

∂P
∂t

= 0 = −∇ · J =⇒ ∇ · p = 0 (5.7.32)

so the momentum is divergenceless. ◀
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6The Heisenberg Uncertainty Principle
and Ehrenfest Theorem

6.1 Uncertainty relations
In classical mechanics, the state of a particle could be completely specified by a set of two
variables x0, p0. Given these two observations one could know everything about the be-
haviour of the system in the future.

Quantummechanics completely detaches itself from this picture, and states that the most
one can know about a system is given by the state vector |ψ〉. One can therefore only find
the probabilities of the outcomes of a measurement.

For an observable Ω recall that the expectation value 〈Ω〉 is defined as:

〈Ω〉 =
〈
ψ
∣∣∣ Ω̂ ∣∣∣ψ〉 (6.1.1)

and the corresponding uncertainty about it is:

∆Ω =
√〈

ψ
∣∣∣ (Ω̂− 〈Ω̂

〉
)2
∣∣∣ψ〉 (6.1.2)

Let Ω̂ and Λ̂ be two Hermitian operators such that [Ω̂, Λ̂] = iΓ̂ where Γ is Hermitian. Then:

(∆Ω)2(∆Ω̂)2 =
〈
ψ
∣∣∣ (Ω̂− 〈Ω̂

〉
)2
∣∣∣ψ〉〈ψ ∣∣∣ (Λ̂− 〈Λ〉)2

∣∣∣ψ〉 (6.1.3)

Now let us define:

Ω′ = Ω−
〈
Ω̂
〉

(6.1.4)

Λ′ = Λ−
〈
Λ̂
〉

(6.1.5)

where we clearly see that [Ω̂, Λ̂] = [Ω̂′, Λ̂′]. Now since Ω̂′† = Ω̂†−
〈
Ω̂
〉∗

= Ω̂−
〈
Ω̂
〉

= Ω̂′ we
can conclude that Ω̂′ and Λ̂′ are Hermitian. Therefore Ω̂′2 = Ω̂†Ω̂† and thus:

(∆Ω̂′)2(∆Λ̂′)2 =
〈
ψ
∣∣∣ Ω̂′2

∣∣∣ψ〉〈ψ ∣∣∣ Λ̂′2
∣∣∣ψ〉 =

〈
Ω̂′ψ

∣∣∣ Ω̂′ψ
〉〈

Λ̂′ψ
∣∣∣ Λ̂′ψ

〉
(6.1.6)

We can now apply the Cauchy-Schwartz inequality |V1|2|V2|2 ≥ | 〈V1 |V2〉 |2 to |Ω̂ψ〉 and
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|Λ̂ψ〉 to find:

| |Ω̂′ψ〉 |2| |Λ̂′ψ〉 |2 =
〈
Ω′ψ

∣∣Ω′ψ
〉 〈

Λ′ψ
∣∣Λ′ψ

〉
= (∆Ω̂′)2(∆Λ̂′)2 ≥ |

〈
Ω̂′ψ

∣∣∣ Λ̂′ψ
〉
|2 (6.1.7)

and since
〈
Ω̂′ψ

∣∣∣ Λ̂′ψ
〉

=
〈
ψ
∣∣∣ Ω̂′Λ̂′

∣∣∣ψ〉we find:

(∆Ω̂′)2(∆Λ̂′)2 ≥
〈
ψ
∣∣∣ Ω̂′Λ̂′

∣∣∣ψ〉 (6.1.8)

Now we can define the anti-commutator {Â, B̂} = ÂB̂ + ÂB̂ and write:

Ω̂Λ̂ = 1
2
(
[Ω̂′, Λ̂′] + {Ω̂′, Λ̂}

)
(6.1.9)

and so:
(∆Ω̂′)2(∆Λ̂′)2 ≥ |

〈
ψ

∣∣∣∣ 1
2
(
[Ω̂′, Λ̂′] + {Ω̂′, Λ̂}

) ∣∣∣∣ψ〉 |2 (6.1.10)

which is proportional to the square norm of the sum of the expectation value of the com-
mutator and the expectation value of the anti-commutator.

Since [Ω̂′, Λ̂′] = iΓ, the expectation value of the commutator is purely imaginary. Sim-
ilarly, {Ω̂′, Λ̂′} is Hermitian, and therefore real, hence the expectation value of the anti-
commutator is also real.

Therefore, we have that:

|
〈
ψ

∣∣∣∣ 1
2
(
[Ω̂′, Λ̂′] + {Ω̂′, Λ̂}

) ∣∣∣∣ψ〉 |2 = 1
4

〈
ψ
∣∣∣ {Ω̂′, Λ̂′}

∣∣∣ψ〉2
+ 1

4
〈ψ |Γ |ψ〉2 (6.1.11)

therefore:
(∆Ω̂′)2(∆Λ̂′)2 ≥ 1

4

〈
ψ
∣∣∣ {Ω̂′, Λ̂′}

∣∣∣ψ〉2
+ 1

4
〈ψ |Γ |ψ〉2 (6.1.12)

Finally, in the case of canonically conjugate operators, Γ = ℏ:

(∆Ω̂′)2(∆Λ̂′)2 ≥ 1
4

〈
ψ
∣∣∣ {Ω̂′, Λ̂′}

∣∣∣ψ〉2
+ ℏ2

4
(6.1.13)

and finally since the first term is positive:

∆Ω̂′ ·∆Λ̂′ ≥ ℏ
2

(6.1.14)

Uncertainty Relations

For two Hermitian operators Ω and Λ such that [Ω,Λ] = iΓ then:

(∆Ω̂′)2(∆Λ̂′)2 ≥ 1
4

〈
ψ
∣∣∣ {Ω̂′, Λ̂′}

∣∣∣ψ〉2
+ 1

4
〈ψ |Γ |ψ〉2 (6.1.15)

where Ω′ = Ω−
〈
Ω̂
〉
and Λ′ = Λ−

〈
Λ̂
〉
.
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6.2. MINIMUM UNCERTAINTY PACKET

Note that the conditions for equality in 5.1.13 are:

Ω̂ |ψ〉 = cΛ |ψ〉 (6.1.16)〈
ψ
∣∣∣ {Ω̂′, Λ̂′}

∣∣∣ψ〉 = 0 (6.1.17)

where the first comes from the Cauchy-Schwartz inequality.

6.2 Minimum Uncertainty Packet
Suppose we want a packet with minimum uncertainty in x̂ and p̂. Then we need a state
such that:

(p̂− 〈p̂〉) |ψ〉 = c(x̂− 〈x̂〉) |ψ〉 (6.2.1)

and
〈ψ | (p̂− 〈p̂〉)(x̂− 〈x̂〉) + (x̂− 〈x̂〉)(p̂− 〈p̂〉) |ψ〉 = 0 (6.2.2)

Solving the latter equation in the position basis:

dψ

dx
= i

ℏ
(〈p̂〉+ c(x̂−�

�>
0

〈x̂〉))ψ (6.2.3)

where we can always translate our origin to 〈x̂〉 so that in the new frame 〈x̂〉 = 0. Hence:

ψ = ψ(0)ei〈p〉x/ℏeicx
2/2ℏ (6.2.4)

Now note that:
〈ψ | (p̂− 〈p̂〉)x̂) + x̂(p̂− 〈p̂〉) |ψ〉 = 0 (6.2.5)

and since p̂− 〈p̂〉 = cx̂we find:〈
ψ
∣∣∣ c∗x̂2 + cx̂2

∣∣∣ψ〉 = 0 =⇒ (c+ c∗)
〈
x̂2
〉

= 0 (6.2.6)

It follows immediately that c is purely imaginary, and thus:

ψ = ψ(0)ei〈p〉x/ℏe−|c|x2/2ℏ (6.2.7)

which is an arbitrary Gaussian packet.

Minimum uncertainty packet

The family wave-function satisfying the equality in Heisenberg’s uncertainty rela-
tion is:

ψ(x) = ψ(0)ei〈p〉x/ℏe−|c|x2/2ℏ (6.2.8)
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6.3. GROUND STATE ENERGY OF A HYDROGEN ATOM

6.3 Ground state energy of a hydrogen atom
TheHamiltonian for a hydrogen atom,where the proton is assumed to be stationary, whose
only interaction with the electron is through a Coulomb potential, is:

Ĥ =
p̂2
x + p̂2

y + p̂2
z

2m
− e2

(x̂2 + ŷ2 + ẑ2)
1
2

(6.3.1)

so that: 〈
Ĥ
〉

=

〈
p̂2
x

〉
+
〈
p̂2
y

〉
+
〈
p̂2
z

〉
2m

− e2
〈 1

(x̂2 + ŷ2 + ẑ2)
1
2

〉
(6.3.2)

If we choose 〈p̂i〉 = 0 then
〈
p̂i

2
〉

= (∆pi)2 + 〈p̂i〉2 and so:

〈
Ĥ
〉

= (∆p̂x)2 + (∆p̂y)2 + (∆p̂z)2

2m
− e2

〈 1
(x̂2 + ŷ2 + ẑ2)

1
2

〉
(6.3.3)

We can then argue that:〈 1
(x̂2 + ŷ2 + ẑ2)

1
2

〉
≈ 1〈

(x̂2 + ŷ2 + ẑ2)
1
2
〉 ≈ 1

(〈x̂2〉+ 〈ŷ2〉+ 〈z〉2)
1
2

(6.3.4)

For the ground state, we want to minimize
〈
Ĥ
〉
so we need

〈
x̂2〉 = (∆x̂)2 + 〈x̂〉2 to be

minimized. In other words, we need 〈x̂〉2 = 0. Then:

〈
Ĥ
〉
≈ (∆p̂x)2 + (∆p̂y)2 + (∆p̂z)2

2m
− e2 1

((∆x)2 + (∆ŷ)2 + (∆ẑ)2)
1
2

(6.3.5)

Now due to the spherical symmetry, ∆x̂ = ∆ŷ = ∆ẑ and ∆p̂x = ∆p̂y = ∆p̂z and conse-
quently: 〈

Ĥ
〉
≈ 3(∆p̂x)2

2m
− e2
√

3∆x̂
(6.3.6)

We now use ∆x̂ ·∆p̂x ≥ ℏ
2 to find that:

〈
Ĥ
〉
≥ 3ℏ2

8m(∆x̂)2 −
e2
√

3∆x̂
(6.3.7)

We differentiate with respect to ∆x̂ to find the minimum of
〈
Ĥ
〉
:

−6ℏ2

8m(∆x̂)3 + e2
√

3(∆x̂)2 (6.3.8)

so that ∆x̂ ≈ 1.3 ℏ2

me2 . From here we find that:

〈
Ĥ
〉
≥ −2me4

9ℏ2 (6.3.9)
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6.4. GROUND STATE OF A HARMONIC OSCILLATOR

It turns out that the real result is about twice as big:

Eg = −me
4

2ℏ2 (6.3.10)

which is not too far off.

Example.
Wewish to check that step (5.3.4) are justifiable. Consider the wave-function for the
ground state of hydrogen (check normalization):

ψ(r, θ, ϕ) = e−r/a0√
πa3

0

(6.3.11)

and prove that ∆x = ℏ2

me2 , and that 1
〈
√
r̂〉 =

〈
1
r̂

〉
Solution We firstly check that the normalization condition is satisfied:

‖ψ‖2 = 〈ψ |ψ〉 (6.3.12)

=
ˆ

R3

1
πa3

0
e−2r/a0dτ (6.3.13)

=
ˆ ∞

0

ˆ 2π

0

ˆ π

0

e−2r/a0

πa3
0
dθdϕdr (6.3.14)

= 4
a3

0

ˆ ∞

0
r2e−2r/a0dr = 1 (6.3.15)

where we used the property of the gamma function:
ˆ ∞

0
xne−axdx = n!

an+1 (6.3.16)

so the wave-function is indeed normalized.

Now let us exploit the spherical symmetry of the system (ground state orbital is a
sphere) to write that: 〈

x̂2
〉

=
〈
ŷ2
〉

=
〈
ẑ2
〉

(6.3.17)

and thus:

◀

6.4 Ground state of a harmonic oscillator
Suppose we wish to find the form of the zero-energy state, that is, a state with energy ℏω
which is as close as possible to the classical state x = p = 0. It must therefore saturate the
uncertainty principle ∆x∆p = ℏ

2 .
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We need to find a ψ that minimizes 〈H〉, that is:

〈H〉 =
〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 =

〈
p̂2〉
2m

+ 1
2
mω2

〈
x̂2
〉

(6.4.1)

= (∆p)2 + 〈p〉2

2m
+ 1

2
mω2[(∆x)2 + 〈x〉2] (6.4.2)

We can always set 〈x̂〉 = 0 through a change of reference frame. We will also restrict
ourselves to states with 〈p̂〉 = 0 to further minimize 〈H〉. Then:

〈H〉 = (∆p)2

2m
+ 1

2
mω2(∆x)2 (6.4.3)

and using ∆x ·∆p = ℏ
2 we find:

〈H〉 = ℏ2

8m(∆x)2 + 1
2
mω2(∆x)2 (6.4.4)

We can now minimize with respect to (∆x)2:

∂ 〈H〉
∂(∆x)2 = − ℏ− 2

8m(∆x)4 + 1
2
mω2 = 0 =⇒ (∆x)2 = ℏ

2mω
(6.4.5)

so that:
〈H〉min = ℏ

ω
2 (6.4.6)

This is the lowest mean energy an oscillator can have.

6.5 The Classical Limit
Of course, our quantum theory would not be acceptable if it didn’t reduce to the classical
framework in the domain of macroscopic systems.

Consider an operator Ω̂ with no explicit time-dependence:

d

dt

〈
Ω̂
〉

= d

dt

〈
ψ
∣∣∣ Ω̂ ∣∣∣ψ〉 =

〈
ψ̇
∣∣∣ Ω̂ ∣∣∣ψ〉+

〈
ψ
∣∣∣ Ω̂ ∣∣∣ ψ̇〉 (6.5.1)

Now we may use the Schrödinger equation:

|ψ̇〉 = − i
ℏ
Ĥ |ψ〉 (6.5.2)

〈ψ̇| = i

ℏ
Ĥ 〈ψ| (6.5.3)

and find that:

d

dt

〈
Ω̂
〉

= − i
ℏ
( 〈
ψ
∣∣∣ Ω̂Ĥ ∣∣∣ψ〉− 〈ψ ∣∣∣ ĤΩ̂

∣∣∣ψ〉 ) = − i
ℏ

〈
ψ
∣∣∣ [Ω̂, Ĥ]

∣∣∣ψ〉 (6.5.4)

known as Ehrenfest’s theorem.
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Ehrenfest’s theorem
The time-evolution of the expected value of an operator Ω with no explicit time
dependence is:

d

dt

〈
Ω̂
〉

= − i
ℏ

〈
[Ω̂, Ĥ]

〉
(6.5.5)

Recall that in classical Hamiltonian mechanics:

dω

dt
= {ω,H} (6.5.6)

is the time evolution of some dynamical variable ω. The structural similarity with Ehren-
fest’s theorem is remarkable, an encouraging sign that our present quantum theory works.

Let us apply Ehrenfest’s theorem to the position operator:

d

dt
〈x̂〉 = − i

ℏ

〈
[x̂, Ĥ]

〉
(6.5.7)

If we assume that the Hamiltonian takes the form:

Ĥ = p̂2

2m
+ V (x̂) (6.5.8)

then:

[x̂, Ĥ] = 1
2m

[x̂, p̂2] (6.5.9)

= 1
2m

([x̂, p̂]p̂+ p̂[x̂, p̂]) (6.5.10)

= 2iℏ
2m

p̂ = iℏ
m
p̂ (6.5.11)

so that:
d

dt
〈x̂〉 = 〈p̂〉

m
(6.5.12)

This greatly resembles the relation dx
dt = p

m in classical mehcanics. The only difference
is that the variables p, x have been replaced by the expectation values of their associated
operators.

Let us repeat this process for p̂.

d

dt
〈p̂〉 = − i

ℏ
〈[p̂, V (x̂)]〉 (6.5.13)

In the position basis:

[p̂, V (x̂)]ψ(x) = −iℏ d
dx

(V (x)ψ(x)) + iℏV (x)dψ(x)
dx

(6.5.14)

= −iℏψ(x)dV (x)
dx

(6.5.15)
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which implies that:

[p̂, V (x̂)] = −iℏdV (x)
dx

(6.5.16)

and thus:
d

dt
〈p〉 =

〈
dV (x)
dx

〉
= −

〈
∂H

∂x

〉
(6.5.17)

Thus, we have seen that in the classical limit, we regain Hamilton’s equations:

ẋ→ d

dt
〈x̂〉 =

〈
∂H

∂p

〉
class. lim.−−−−−−→ ∂H

∂p
(6.5.18)

ṗ→ d

dt
〈p̂〉 = −

〈
∂H

∂x

〉
class. lim.−−−−−−→ −∂H

∂x
(6.5.19)
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7The Harmonic Oscillator

7.1 Quantization of the Oscillator in position representation
We consider a quantum oscillator, that is, a system whose Hamiltonian is of the form:

Ĥ = p̂2

2m
+ 1

2
mω2x̂2 (7.1.1)

To solve the problem of the quantum oscillator, we must find the propagator Û(t) by solv-
ing the TISE. We will do so in two ways, the first in the position representation and the
second in the energy representation.

Firstly note that any energy eigenvalue must be positive, since:

〈H〉 = 1
2m

〈
ψ
∣∣∣ p̂2

∣∣∣ψ〉+ 1
2
mω2

〈
ψ
∣∣∣ x̂2

∣∣∣ψ〉 (7.1.2)

= 1
2m
〈p̂ψ | p̂ψ〉+ 1

2
mω2 〈x̂ψ | x̂ψ〉 ≥ 0 (7.1.3)

since the norms of |p̂ψ〉 and |x̂2ψ〉 must be positive. Therefore, setting |ψ〉 = |E〉, for all
energy eigenstates |E〉we have that:

〈H〉 = E ≥ 0 (7.1.4)

as required.

We can now tackle the TISE equation for the oscillator:(
p̂2

2m
+ 1

2
mω2x̂2

)
|E〉 = E |E〉 (7.1.5)

which in the position representation becomes:(
− ℏ2

2m
d2

dx2 + 1
2
mω2x2

)
ψ = Eψ (7.1.6)
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The equation can be rearranged into the form d2ψ
dx2 + 2mV

ℏ2 ψ = 0:

d2ψ

dx2 + 2m
ℏ2

(
E − 1

2
mω2x2

)
ψ = 0 (7.1.7)

We begin by nondimensionalizing the equation, that is, to perform substitutions so that
all quantities become dimensionless.

The substitutions we shall use are x = by, with b =
√
ℏmω and ϵ = E

ℏω for reasons that will
become clear soon.

Eq 6.1.7 then turns into:

d2ψ

dy2 + (2ϵ− y2)ψ = 0 (7.1.8)

In the limit y →∞, we get ψ′′ − y”ψ = 0 whose solution in the same limit is1:

ψ = Ayme±y2/2 (7.1.9)

but we can discard the positive exponential solution since it blows up and does not belong
to the physical Hilbert space we are interested in.

In the limit as y → 0 we get ψ′′ + 2ϵψ = 0 which has solution in the same limit as:

ψ = A cos
(√

2ϵy
)

+B sin
(√

2ϵy
)
−→ A+ B√

2ϵ
y +O(y2) (7.1.10)

So we can introduce the ansatz:

ψ(y) = u(y)e−y2/2 (7.1.11)

where u(y) approaches A+ B√
2ϵy for small y and ym for large y. We then get:

d2ψ

dy2 = u′′e−y2/2 − 2yu′e−y2/2 + (y2 − 1)ue−y2/2 = −(2ϵ− y2)ue−y2/2 (7.1.12)

which implies:
u′′ − 2yu′ + (2ϵ− 1)u = 0 (7.1.13)

From the mathematical methods volume, we can clearly see that this differential equation
could be a candidate for a power series solution. Indeed, if we set:

u(y) =
∞∑
n=0

cny
n (7.1.14)

1the second derivative can be written as ψ′′ = Aym+2ey2/2
(

1 + O( 1
y2 )
)

≈ Aym+2ey2/2 = y2ψ
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into eq. 6.1.13 we find that:

∞∑
n=1

Cn
[
n(n− 1)yn−2 − 2nyn + (2ϵ− 1)yn

]
= 0 (7.1.15)

Note that the first term can be rewritten as:
∞∑
n=2

Cnn(n− 1)yn−2 =
∞∑
n=0

Cn+2(n+ 2)(n+ 1)yn (7.1.16)

so that: ∞∑
n=0

yn
[
Cn+2(n+ 2)(n+ 1) + Cn(2ϵ− 2n− 1)

]
= 0 (7.1.17)

Therefore, since the above expression must vanish identically for all y, the coefficient in
brackets must be zero for all n:

Cn+1 = Cn
(2n+ 1− 2ϵ

(n+ 2)(n+ 1)
(7.1.18)

We can however immediately see a problem, there has been no restriction set on ϵ, despite
the fact that the energy eigenvalues must be positive. Moreover, u(y) does not behave
asymptotically as ym, but has an infinite number of powers. This is an immediate conse-
quence of the infinite power expansion that we used.

The only way to solve this problem is to make sure that Cm+2 = 0 so that all subsequent
coefficients are also null. This can only happen if ϵ has one of the special values:

ϵn =
(
n+ 1

2

)
, n = 0, 1, 2... (7.1.19)

with corresponding energy quantization:

En =
(
n+ 1

2

)
ℏω (7.1.20)

For each nmwe have a corresponding Hermite polynomial:

Hn+1(y) = 2yHn − 2nHn−1, H0(y) = 1, H1(y) = 2y (7.1.21)

so that u(y) = Hn(y). We can finally substitute back the initial variables x,m, ω to find the
final normalized solution to the TISE:

ψ(x) =
(

mω

πℏ22n(n!)2

)1/4
exp

(
− mωx2

2ℏ

)
Hn

(√
mω

ℏ
x

)
(7.1.22)
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7.2 Quantization of the oscillator in energy representation
Let us introduce the operator :

a =
√
mω

2ℏ
x̂+ i

1√
2mωℏ

p̂ (7.2.1)

and its conjugate a† called the ladder operators introduced by the great P.A.M. Dirac. No-
tice that

a†a = mω

2ℏ
x̂2 + 1

2mωℏ
p̂2 + i

2ℏ
[x̂, p̂] = Ĥ

ℏω
− 1

2
(7.2.2)

so that:
Ĥ =

(
a†a+ 1

2
)
ℏω (7.2.3)

This is a factorization of the Hamiltonian Ĥ ∼ (x̂2 + p̂2) as the product of a ∼ (x̂+ ip̂) and
a† ∼ (x̂− ip̂).

We may therefore derive the following commutation relation:

[a, a†] = aa† − a†a = 1 (7.2.4)

If we define Ĥ ′ =
(
a†a+ 1

2
)
(again to nondimensionalize) then we wish to solve the eigen-

value equation:
Ĥ ′ |ϵ〉 = ϵ |ϵ〉 (7.2.5)

Note that:
Ĥ ′a |ϵ〉 = (aĤ ′ − [a, Ĥ ′]) |ϵ〉 (7.2.6)

and since:
[a, Ĥ ′] = [a, a† + 1

2
] = [a, a†a] = [a, a†]a = a (7.2.7)

we find that:
Ĥ ′a |ϵ〉 = (aĤ ′ − a) |ϵ〉 = (ϵ− 1)a |e〉 (7.2.8)

Therefore a |ϵ〉 is an energy eigenstate with eigenvalue ϵ − 1. Similarly, a† |ϵ〉 is an energy
eigenstate with eigenvalue ϵ+ 1. To summarize:

a |ϵ〉 = cϵ |ϵ− 1〉 (7.2.9)
a† |ϵ〉 = cϵ |ϵ+ 1〉 (7.2.10)

Since the two operators lower and raise the energy ϵ, they are referred to as lowering and
raising ladder operators.

We now use the fact that the energy eigenvalues must be positive to find the ground state
|ϵ0〉which can no longer be lowered:

a |ϵ0〉 = 0 =⇒ a†a |ϵ0〉 (7.2.11)
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Using the definition of a†a = Ĥ ′ − 1
2 then:

Ĥ ′ |ϵ0〉 = 1
2
|ϵ0〉 =⇒ ϵ0 = 1

2
(7.2.12)

Again, we find the same energy quantization as before:

En =
(
n+ 1

2
)
ℏω, n = 0, 1, 2... (7.2.13)

There cannot be other energy levels, since there is no degeneracy in one-dimension. There-
fore, the ground states must coincide, and consequently subsequent operation of ladder
operators shows that the above quantization is the only set of energy levels.

Since ϵ are solely dependent on n, we will denote them as |n〉:

a |n〉 = cn |n− 1〉 (7.2.14)

=⇒
〈
n
∣∣∣ a†a

∣∣∣n〉 = |n− 1|n− 1〉 c∗
ncn (7.2.15)

=⇒
〈
n

∣∣∣∣ Ĥ ′ − 1
2

∣∣∣∣n〉 = |cn|2 (7.2.16)

=⇒ 〈n |n |n〉 = |cn|2 (7.2.17)
=⇒ cn =

√
neiϕ (7.2.18)

where the phase ϕ is arbitrary, and conventionally set to zero. So:

a |n〉 =
√
n |n− 1〉 =⇒

〈
n′ ∣∣ a ∣∣n〉 =

√
nδn′,n−1 (7.2.19)

Similarly:
a† |n〉 =

√
n+ 1 |n+ 1〉 =⇒

〈
n′
∣∣∣ a†

∣∣∣n〉 =
√
n+ 1δn′,n+1 (7.2.20)

We can therefore write:

x̂ =

√
ℏ

2mω
(a+ a†)

p̂ = i

√
mωℏ

2
(a† − a)

(7.2.21a)

(7.2.21b)

and use 6.2.19 and 6.2.20 to find their representing matrices:

x̂↔

√
ℏ

2mω


0 1 0 0 . . .

1 0
√

2 0 . . .

0
√

2 0
√

3 . . .
0 0

√
3 0 . . .

...
...

...
... . . .

 (7.2.22)
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7.3. REVISED SECOND POSTULATE

and similarly:

p̂↔ i

√
mωℏ

2


0 i 0 0 . . .

1 0 i
√

2 0 . . .

0
√

2 0 i
√

3 . . .
0 0

√
3 0 . . .

...
...

...
... . . .

 (7.2.23)

For example, suppose we want to calculate
〈
4
∣∣ x̂2 ∣∣ 2〉. In the position representation one

would have to calculate a very long and tedious integral. In the energy representation
however: 〈

4
∣∣∣ x̂2

∣∣∣ 2〉 = ℏ
2mω

〈
4
∣∣∣ (a+ a†)2

∣∣∣ 2〉 (7.2.24)

= ℏ
2mω

〈
3
∣∣∣ a2 + (a†)2 + aa† + a†a

∣∣∣ 2〉 (7.2.25)

Now notice that the terms aa† |2〉 and |a†a|2〉 are both null, since the effect of a† is to raise
|2〉 → |3〉 and the effect of a is to lower |3〉 → |2〉. So the only contributions are from:

a2 |2〉 =
√

2a |1〉 = |0〉 (7.2.26)
(a†)2 |2〉 =

√
3a† |3〉 = 2

√
3 |4〉 (7.2.27)

Due to the orthonormality of energy eigenstates, 〈3 | 0〉 = 0 and thus:

〈
4
∣∣∣ x̂2

∣∣∣ 2〉 =
√

3ℏ
mω

(7.2.28)

We also then see that we can express |n〉 by repeatedly operating a† on |0〉:

|n〉 = (a†)n√
n!
|0〉 (7.2.29)

Finally, there is a final operator that is often useful, especiallywhen counting energy quanta
of the oscillator. This operator, N̂ is the number operator, and may be expressed as:

N̂ = a†a =⇒ Ĥ = ℏω
(
N̂ + 1

2
)

(7.2.30)

For example, let us find N̂ |n〉:

N̂ |n〉 = a†a |n〉 =
√
na† |n− 1〉 = n |n〉 (7.2.31)

as expected.

7.3 Revised second postulate
We saw from the previous section that there is no need to express the x̂, p̂ operators in any
basis. It suffices to use the commutation relation [x̂, p̂] = iℏ, which is basis-independent.
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This suggests a reformulation of the second postulate, which up until nowhas always been
expressed in the position representation.

Reformulated Postulate II
The variables x, p in classical mechanics become operators x̂, p̂ defined by the com-
mutation relation [x̂, p̂] = iℏ.

This is a much more general postulate. Indeed, going back to the x-basis, it allows us to
write:

x̂→ x, p̂→ −iℏ d
dx

+ f(x) (7.3.1)

where we could add a factor f(x) without altering the commutation relation. This may
seem very unphysical, since surely we cannot obtain the same solutions if we add this arbi-
trary function. However, note that we cannotmeasure thewave function directly, sowe are
allowed to perform this trick. It turns out that what we can measure, that is, probabilities,
squares of matrix elements and eigenvalue spectra are all invariant by such a translation
in the Hilbert space.

7.4 Properties of Harmonic oscillator
Energy levels are quantized

Why does the classical oscillator have a seemingly continuous energy spectrum? Consider
for example a mass of 1kg oscillating at a frequency 1 rad/s with amplitude 20cm. Then it
has energy:

E = 105 erg (7.4.1)

Instead, the gap between allowed energies is:

∆E ≈ 10−27 erg (7.4.2)

We immediately see that the relative size of the energy gap is ∆E
E = 10−33, a minuscule

quantity that at a macroscopic level is not observable.

Energy levels uniformly spaced

The energy gap ∆E = ℏω remains constant. Wemay therefore associate a fictitious quanta
to oscillators of frequency ω, each with energy ℏω, called phonons. Therefore, by acting a
on the wave-function, we are destroying phonons, whereas acting a† creates phonons.

Ground state has non-zero energy

The lowest allowed energy for an oscillator is ℏω
2 , and not zero since it would imply that

x = p = 0 exactly, thus violating Heisenberg’s uncertainty relation.
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7.4.1 Comparison with Classical oscillator

The classical oscillator has solution x = x0 cos(ωt+ ϕ), so that the its velocity is given by:

ẋ =

√
2E
m

+ ω2x2 = ω
√
x2

0 − x2 (7.4.3)

So, the classical turning point is given by ±x0, the position of the particle cannot exceed
these values.

Although in the Newtonian framework, the particle has a definite position, we can still
assign a probability distribution to it. Indeed, consider the following experiment: we walk
inside a roomwith a classical oscillator. Obviously, we expect the points where the particle
has lowest speed. So, the probability distribution is equal to the time the particle spends
at each point divided by the period of oscillation thus:

Pcl(x) = ω

2 ∗ πẋ
= 1

2π
√
x2

0 − x2
(7.4.4)

For a classical oscillator with energy En =
(
n + 1

2
)
ℏω, we see that the classical turning

point x0 must satisfy:

1
2
mω2x2

0 =
(
n+ 1

2
)
ℏω =⇒ x0 = ±

√
(2n+ 1)ℏ

mω
(7.4.5)

No matter what, the classical oscillator cannot leap over this turning point. However, we
see clearly in the quantum oscillator that this is not the case, since the wave-function ex-
tends well over this point.

Furthermore, in the classical case we readily see that the most probable position measure-
ment of the system is at the turning points. However, in the quantized oscillator, it’s most
likely to be found at or near the center.

Finally, we know from the correspondence principle that as we increase n, the quantum
and classical pictures should start to overlap. This is true, since for large n the wave-
function starts oscillating too rapidly, so that any measurement can really only detect the
averaged value of the wave-function over appreciable intervals. This averaged out wave-
function is close to Pcl as expected.

7.5 Relating the energy and position representation
We have seen that the energy representation is extremely useful to evaluate matrix ele-
ments representing operators. However, the position representation is most useful when
trying to evaluate probability amplitudes.

So is there a way to find ψn(x) other than just calculating 〈x |n〉?
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7.5. RELATING THE ENERGY AND POSITION REPRESENTATION

Figure 7.1. Plot of |ψ20|2 (solid line) and Pcl (broken line).

Let us begin by projecting a onto the x-basis:

a =
√
mω

2ℏ
x̂+ i√

2mω
d

dx
= 1√

2

(
y + d

dy

)
(7.5.1)

as well as:
a† = 1√

2

(
y − d

dy

)
(7.5.2)

So, in the x-basis a |0〉 = 0 becomes:(
y + d

dy

)
ψ0(y) = 0 (7.5.3)

then we get that:

ψ(y) = A0e
−y2/2 =⇒ ψ(x) =

(
mω

πℏ

)1/4
exp

[
− mωx2

2ℏ

]
(7.5.4)

upon normalization. We can also project the equation:

|n〉 = (a†)n√
n!
|0〉 (7.5.5)

onto the x-basis to find that:

〈x |n〉 = 1√
n!

[
1√
2

(
y − d

dy

)]n (
mω

πℏ

)1/4
e−y2/2

︸ ︷︷ ︸
ψ0(x)

(7.5.6)

Comparison with:

ψ(x) =
(

mω

πℏ22n(n!)2

)1/4
exp

(
− mωx2

2ℏ

)
Hn

(√
mω

ℏ
x

)
(7.5.7)
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tells us that:

Hn(y) = ey
2/2
(
y − d

dy

)n
e−y2/2 (7.5.8)

7.6 Path integral derivation
The lagrangian for a harmonic oscillator may be expressed as:

L = 1
2
mẋ2 − 1

2
mω2x2 (7.6.1)

Therefore, because it is of the form 1
2mẋ

2 − a − bx − cx2 − dẋ − exẋ, it is appropriate to
ignore the actions due to the non-classical paths and write the propagator of the oscillator
as:

U(x, t;x′) = A(t)eiScl/ℏ (7.6.2)

Now:
Scl =

ˆ t

0
L(x, ẋ)dt =

ˆ t

0

1
2
mẋ2 − 1

2
mω2x2dt (7.6.3)

The equation of motion for the classical harmonic oscillator is:

xcl(t) = A cosωt+B sinωt (7.6.4)
ẋcl(t) = ω(−A sinωt+B cosωt) (7.6.5)

So:
1
2
mẋ2 = 1

2
mω2(A2 sin2 ωt+B2 cos2 ωt−AB sinωt) (7.6.6)

1
2
mω2x2 = 1

2
mω2(A2 cos2 ωt+B2 sin2 ωt+AB sin 2ωt) (7.6.7)

hence
L = 1

2
mω2[(B2 −A2) cos 2ωt− 2AB sin 2ωt

]
(7.6.8)

Integrating from 0 to twe express the action as:

Scl =
ˆ t

0

1
2
mω2[(B2 −A2) cos 2ωt− 2AB sin 2ωt

]
dt (7.6.9)

= 1
4
mω

(
(B2 −A2)

[
sin 2ωt

]t
0 + 2AB

[
cos 2ωt

]t
0

)
(7.6.10)

= 1
4
mω(B2 −A2)

(
sin 2ωt− 4AB sin2 ωt

)
(7.6.11)

where we used the half angle formula cos 2ωt = 1− 2 sin2 ωt.
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Now we express B and A in terms of x(0) = x′ and x(t) = x:

A = x′ (7.6.12)

B = x− x′ cosωt
sinωt

(7.6.13)

AB = x0
x− x′ cosωt

sinωt
(7.6.14)

and
B2 −A2 = x2 − 2xx′ cosωt+ x′ cos2 ωt+ x′ cosωt− x′2 sinωt

sin2 ωt
(7.6.15)

Finally we get after a hefty amount of algebraic simplification:

Scl = 1
2
m

(
ω

(x2 + x′2) cosωt− 2xx′

sinωt

)
(7.6.16)

so:
U(x, t;x′) = A(t) exp

[
imω

2ℏ sinωt
(
(x2 + x′2) cosωt− 2xx′)] (7.6.17)

which, up to a normalization factor of A(t) corresponds with what we found previously.
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8Scattering and tunnelling in 1D

8.1 Introduction
Scattering is of utmost importance in physics. The scattering of atoms off a gold foil is
what led Rutherford to hypothesize the nuclear model of an atom. Furthermore, it is the
scattering of light off surfaces that allows us to see,

Scattering in general is the phenomenon in which incident particles interact with some
target, changing its speed, direction of motion etc...

The phenomena that we will discuss in this chapter however, which can be classified as
tunneling phenomena, have no counterpart in classical physics. They involve the penetra-
tion of barriers, classically forbidden regions where the energy of the scattered particle is
lower than the potential barrier it is trying to climb.

There are several applications of scattering, such as the development of STM (scanning
electron microscopy) and nuclear processes.

8.2 Wave-packet approach (long method)
We consider potentials of the form:

V (x) =
{

0, for x < 0
V0, for x > 0

(8.2.1)

Imagine we shoot a particle with energy E towards the barrier. Of course, one would
expect that for E > V0, the particle will simply hop over the barrier and proceed, whereas
for E < V0 the particle will bounce off the barrier and be reflected backwards.

This would be true if the particle were localised. However, we know from our previous
discussions that the wave function for a particle extends out to infinity even in a finite
potential well, and consequently there is a fraction of the wave-function that will extend
over the barrier, representing the probability that the particle climbs the barrier.

How do we calculate this coefficient, the reflection coefficient, expressing the probability
of the particle overcoming the potential barrier? We assume the particle initially has a
wave-function:

ψi(x, 0) = Aeik0(x+a)e−(x+a)2/2∆2 (8.2.2)
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8.2. WAVE-PACKET APPROACH (LONG METHOD)

(i) Find the eigenfunction ψE of the potential Hamiltonian

(ii) find the projection a = 〈ψE |ψI〉where ψI is the particle’s wavefunction

(iii) express ψ(x, t) =
´∞

−∞ a(E)e−iEt/ℏψE(x)dE

(iv) identify ψR and ψT and evaluate the reflection coefficient:

R =
ˆ ∞

−∞
|ψR|2 dx (8.2.3)

and the transmission coefficient:

T =
ˆ ∞

−∞
|ψT |2 dx (8.2.4)

Step I

We have already found the solutions of the eigenfunctions previously:

ψE(x) =

Aeik1x +Be−ik1x, k1 =
√

2mE
ℏ2

Ceik2x +De−ik2x, k2 =
√

2m(E−V0)
ℏ2

(8.2.5)

We only considered eigenfunctions with E > V0, since if E < V0 the corresponding eigen-
functions will be shown to be orthogonal to ψI .

Since we only seek solutions with the transmitted wave moving to the right on top of the
barrier, we set D = 0.

We now impose the continuity of ψ and ψ′ at x = 0 to find:{
A+B = C

ik1(A−B) = ik2C
=⇒

{
B = k1−k2

k1+k2
A

C = 2k1
k1+k2

A
(8.2.6)

We can therefore use the Heaviside function:

Θ(x) =
{

1 if x > 0
0 if x < 0

(8.2.7)

to write:
ψk1(x) = A

[(
eik1x + B

A
e−ik1x

)
Θ(−x) + C

A
eik2xΘ(x)

]
(8.2.8)

where we labelled the wavefunction with k1 since there is a unique wave-number for each
energy level E.
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8.2. WAVE-PACKET APPROACH (LONG METHOD)

Step 2

Consider:

a(k1) = 〈ψk1 |ψI〉 (8.2.9)

= A

[ ˆ ∞

−∞

(
e−ik1x + B∗

A∗ e
ik1x

)
Θ(−x)ψI(x)dx (8.2.10)

+
ˆ ∞

−∞

C∗

A∗ e
−ik2xΘ(x)ψI(x)dx

]
(8.2.11)

Now, since ψI(x) is non-zero (to a good approximation) only for x < 0 and Θ(x) is non-
vanishing only for x > 0, we can ignore the second integral.

Also, the second term in the first integral vanishes sinceψI(x) is orthogonal to eik1x. Hence:

a(k1) = A

ˆ ∞

−∞
e−ik1xψI(x)dx =

(∆2

π

)
e−(k1−k0)3∆2/2eik1a (8.2.12)

is just the Fourier transform of ψI (up to some constant,A, which wewill show to be equal
to 1√

2π). Also, note that a(k1) has a peak at k1 = k0 for large ∆.

Step 3

We can express the wave-function for t ≥ 0 as:

ψ(x, t) =
ˆ ∞

−∞
a(k1)e−iE(k1)t/ℏψk1(x)dk1 (8.2.13)

Then ψ(x, t) evaluates to:

ψ(x, t) =
(∆2

4π3

) 1
4
ˆ ∞

−∞
exp

(−iℏk2
1t

2m

)
exp

[
− (k1 − k0)2∆2

2

]
eik1a (8.2.14)

×
[
eik1xΘ(−x) + B

A
e−ik1xΘ(−x) + C

A
exp

[
i

√
k2

1 −
2mV0
ℏ2︸ ︷︷ ︸

k2

x

]
Θ(x)

]
dk1 (8.2.15)

Setting t = 0 then we find that A = 1√
2π .

Step 4

The first term can be expressed as Θ(−x)G(−a, k0, t) where G(x0, k0, t) is the Gaussian
centered at x + ℏk0t

m . As t −→ ∞, the gaussian is centered more and more at x → ℏk0t
m ,

whereas Θ(−x) vanishes at x > 0. So for large t the first term, the original wave-packet,
disappears as is expected.

The second term therefore represents the reflected wave function ψR (since it is travelling
with momentum ℏk1 to the left), and the third term represents the transmitted wave func-
tion ψT (since it is travelling with momentum ℏk2 to the right). Hence, setting k1 = k0
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8.3. PROBABILITY CURRENTS APPROACH (SHORTCUT)

since a(k) has a peak there, and since we expect a completely elastic collision so that the
energy of the reflected:

ψR = Θ(−x)G(a, k0, t)
(
B

A

)
k1=k0

(8.2.16)

So:
R =

ˆ ∞

−∞
|ψR|2dx =

( |B|
|A|

)2

k1=k0

(8.2.17)

and:
T = 1−R (8.2.18)

by the global conservation of probability.

8.3 Probability currents approach (shortcut)
Our final results for the coefficients only seem to depend on the relative sizes ofA andB at
k0 = k1. Therefore, would it be possible to reach the same expressions without resorting
to the monstrosity that is (8.2.10) and (8.2.20)?

It turns out that we may use probability currents to relate the flux of particles transmitted
through the step barrier and the flux of particles reflected back.

We can completely eliminate the complexity of the wave-packet approach by considering
not an individual particle, but rather a beam of particles incident on the barrier. If we
consider the beam as a time-independent steady current (∇ · J = 0) so that there is no
particle accumulation, then we can consider the entire system as a stationary state. There
is no longer a need to usewave-packets, but rather a simply stationary state of energy equal
to the average energy of the beam.

Step potential with E > V0

So we can consider the following eigenstate (assuming k0 = k1):

ψ(x) = A

[(
eik1x + B

A
e−ik1x

)
Θ(−x) + C

A
eik2xΘ(x)

]
(8.3.1)

Now the probability current of the incident beam is then:

Jinc = ℏ
m
Im
(
ik1|A|2|eik1x|2

)
= ℏk1

m
|A|2 (8.3.2)

Similarly, the probability current of the reflected and transmitted beams are respectively:

Jref = ℏk1
m
|B|2, Jtra = ℏk2

m
|C|2 (8.3.3)
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(ignoring the negative term for the reflected current). Therefore:

R = Jref
Jinc

= |B|
|A|

(8.3.4)

T = Jtra
Jinc

= k2
k1

|C|
|A|

(8.3.5)

Finally, we can use the relations between A,B,C in (8.2.6) to find that:

R =
(
k1 − k2
k1 + k2

)2

T = 4k1k2
(k1 + k2)2

(8.3.6a)

(8.3.6b)

Notice that these equations are mass-independent, so how can the correspondence prin-
ciple be satisfied? In other words, how can we recover the result that if we throw a ball
against a wall, it will bounce back?

We resolve this issue by noting that no real, physical potential will be as abrupt as in the
case we analyzed. In reality, the potential will increase over some region, forming a diffuse
step.

It turns out that for (8.3.6) to work we need the wavelength of the incident particles to be
much longer than the distance over which the potential increases. This condition is clearly
not met for classical particles, which have an extremely short wavelength.

Note that if we interchange k1 and k2 the relations remain unchanged. This corresponds
to the fact that a beam will scatter exactly the same way unconditional of the orientation
of the barrier (upwards or downwards).

Wave-packets

We can now use our results using stationary states to construct a physical wave-packet.
Indeed, we may superpose different stationary states with amplitude modulated by f(k1).

Begin by writing down the full stationary state solution (setting A = 1, we shall worry
about normalization later):

ψ(x, t) =


(
eik1x + k1−k2

k1+k2

)
e−iE(k1)t/ℏ, for x < 0

2k1
k1+k2

eik2xe−iE(k1)t/ℏ, for x > 0
(8.3.7)

Superposing we find that:

ψ(x, t) =


´∞
k0
f(k1)

(
eik1x + k1−k2

k1+k2

)
e−iE(k)t/ℏdk1, for x < 0

´∞
k0
f(k1) 2k1

k1+k2
eik2xe−iE(k)t/ℏdk1, for x > 0

(8.3.8)
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We integrate from k0 =
√

2mV0
ℏ to∞, since we require E > V0 =⇒ k > k0. Note that in

the limiting case as V0 → 0, we retrieve k0 = 0, k1 = k2 and we retrieve the time evolution
of a free wave packet travelling to the right:

ˆ ∞

0
f(k1)ei(k1x−E(k)t/ℏ)dk1 (8.3.9)

We may also write the incident, reflected and transmitted wave packets:

ψinc(x, t) =
ˆ ∞

k0

[
f(k1)eik1xe−iE(k1)t/ℏ

]
Θ(−x) dk1

ψref (x, t) =
ˆ ∞

k0

[
f(k1)

(k1 − k2
k1 + k2

)
eik1xe−iE(k1)t/ℏ

]
Θ(−x) dk1

ψtra(x, t) =
ˆ ∞

k0

[
f(k1)

( 2k1
k1 + k2

)
eik2xe−iE(k1)t/ℏ

]
Θ(x) dk1

(8.3.10a)

(8.3.10b)

(8.3.10c)

It follows from Parseval’s identity that f(k) is the Fourier transform of the initial incident
wavepacket ψ(x, 0).

Now let f(k) be sharply peaked at k0. Then using the stationary phase condition, we can
investigate how the peak of ψinc moves by setting the phase in 7.3.10a to be stationary in
the vicinity of k0 where the only contribution to the intgral occurs:

d

dk1

(
kx− ℏ2k2

1t

2mℏ

)
|k0 = 0 =⇒ x = ℏk0

m
t (8.3.11)

which describes a peak moving to the right at speed ℏk0
m . At negative times the peak is at

x < 0. However, we must not have x > 0 for the incident packet, hence the peak must not
exist for positive time t > 0.

This means that the main contribution to ψinc becomes very very small as t increases, and
after sufficiently long it virtually disappears to give rise to the other two wave packets.

Similar treatment for the reflected wave gives:

x = −ℏk0
m
t (8.3.12)

Therefore, for t > 0, the peak is moving to the left with negative x. However, for t < 0
we have x > 0, which is not allowed for the reflected packet which only exists for x < 0.
Hence, as in the case of the incident packet, ψref must disappear at t < 0.

Finally, for ψtrans:
d

dk1

(
k2x−

ℏ2k2
1t

2m

)
k0
∣∣
k0

= 0 (8.3.13)
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It turns out after some algebra that dk2
dk1

= k1
k2

thus:

k1
k2
x− ℏk1

m
t = 0 =⇒ x = ℏk2

m
t (8.3.14)

Things obviously become very complex for very very small t, where all threewave-packets
co-exist.

Step potential with E < V0

Consider the case of a step potential where E < V0. The eigenfunction may be expressed
as:

ψ(x) = A

[(
eik1x + B

A
e−ik2x

)
Θ(−x) + C

A
e−k2xΘ(x)

]
(8.3.15)

where k1 =
√

2mE
ℏ and k2 =

√
2m(V0−E

ℏ We then retrieve the boundary conditions:

C = 2ik1
ik1 − k2

A (8.3.16)

B = ik1 + k2
ik1 − k2

A (8.3.17)

Hence:
R = |B|

2

|A|2
= 1 (8.3.18)

For a finite square step, any particle with insufficient energy will get reflected with 100%
certainty.

We may rewrite B
A as:

B

A
= −k2 + ik1

k2 − ik1
= −e2iδ(E) (8.3.19)

where

δ(E) = arctan
(k1
k2

)
arctan

(√
E

V0 − E

)
(8.3.20)

Thus the eigenfunctions may be written as (setting A = 1):

ψ(x, t) =


(
eik1x − e2iδ(E)e−ik1x

)
e−iEt/ℏ, for x < 0

e−k2xe−iEt/ℏ, for x > 0
(8.3.21)

As before, we can use the wave-packet formalism to get a more physical solution:
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ψinc(x, t) =
ˆ k

0
f(k1)

(
eik1x − e2iδ(E)e−ik1x

)
e−iEt/ℏΘ(−x) (8.3.22)

ψref (x, t) = −
ˆ k

0
f(k1)

(
e−ik1xe2iδ(E)

)
e−iEt/ℏΘ(−x) (8.3.23)

(8.3.24)

where we integrate from 0 to k because the incoming wave packet cannot be composed of
a stationary state with energy greater than V0. As in the case for E > V0 we can apply the
stationary phase condition to examine the how the peak of ψ behaves given a momenta
distribution f(k) sharply peaked at k0.

For the reflected packet:

d

dk1

(
− k1x+ 2δ(E)− Et

ℏ

)∣∣
k0

= 0 (8.3.25)

yielding:
x = −ℏk0

m
(t− 2ℏδ′(E))︸ ︷︷ ︸

timedelay

(8.3.26)

It is interesting to note the time delay 2ℏδ′(E). One may differentiate 7.3.20 and find that:

δ′(E) =
√

1
E(V0 − E)

(8.3.27)

Without the time delay we would have a perfect reflection of the packet, as was discussed
for the step potential E > V0. However, we now have that the packet starts to move to the
left only at t = 2ℏδ′(E).

Note that the wave-function does not immediately drop to zero, but decays exponentially
inside the barrier. This phenomenon is known as barrier penetration, and is responsible
for quantum tunnelling.

8.4 Tunnelling
We now explore the aspect of scattering that has no counterpart in classical mechanics,
tunnelling.

Indeed, if the barrier abruptly ended before the wave-function fully decayed (which hap-
pens at x→∞), then there would be a non-zero probability of the particle being detected
in the classically forbidden region past the barrier.

Hence, let us consider a barrier of potential:

V (x) =
{

0, for x < 0 and L < x

V0, for0 < x < L
(8.4.1)
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The wave-functions are then:

ψ(x) =


Aeik1x +Be−ik1x, for x < 0
Ceik2x +De−ik2x, for0 < x < L

Feik1x, for L < x

(8.4.2)

with k1 =
√

2mE0
ℏ and k2 =

√
2m(V0−E0)

ℏ . We can then impose the boundary conditions at
x = 0, L and find:

A+B = C +D (8.4.3)
ik1A− ik1B = −k2C + k2D (8.4.4)
Ceik2L +De−ik2L = Feik1L (8.4.5)
k2Ce

ik2L − k2De
−ik2L = ik1Fe

ik1L (8.4.6)

Hence, the transmission coefficient is:

T = |F |
2

|A|2
(8.4.7)

The calculation of this quantity is quite laborious.

We begin by writing down the boundary conditions in a more suggestive fashion:

A+B = C +D (8.4.8)

A−B = ik2
k1

(D − C) (8.4.9)

Ceik2L +De−ik2L = Feik1L (8.4.10)

Ceik2L −De−ik2L = ik1
k2
Feik1L (8.4.11)

(8.4.12)

We may then derive:

C = 1
2

(
1 + ik1

k2

)
Feik1Le−ik2L (8.4.13)

D = 1
2

(
1− ik1

k2

)
Feik1Leik2L (8.4.14)

(8.4.15)

Hence:

A+B = 1
2

(
1 + ik1

k2

)
Feik1Le−ik2L + 1

2

(
1− ik1

k2

)
Feik1Leik2L (8.4.16)

= Feik1L
(

cosh(k2L)− ik1
k2

sinh(k2L)
)

(8.4.17)
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and similarly:

A−B = − ik2
k1

1
2

(
1 + ik1

k2

)
Feik1Le−ik2L − 1

2

(
1− ik1

k2

)
Feik1Leik2L (8.4.18)

= Feik1L
(

cosh(k2L) + ik2
k1

sinh(k2L)
)

(8.4.19)

Adding these two expressions we find:

2A = Feik1L
[
2 cosh(k2L) + i

(k2
k1
− k1
k2

)
sinh(k2L)

]
(8.4.20)

giving:
F

A
= 2e−ik1L

2 cosh(k2L) + i
(
k2
k1
− k1

k2

)
sinh(k2L)

(8.4.21)

Finally:

T = 4

4 cosh2(k2L) +
(
k2
k1
− k1

k2

)2
sinh2(k2L)

(8.4.22)

= 1

1 + 1
4

(
k2
k1

+ k1
k2

)2
sinh2(k2L)

(8.4.23)

where we used cosh2 x = 1 + sinh2 x. Since k1 =
√

2mE
ℏ and k2 =

√
2m(V0−E)

ℏ then:

k2
k1

+ k1
k2

=
√

E

V0 − E0

(
1 + V0 − E

E

)
=
√

V 2
0

E(V0 − E)
(8.4.24)

We can then simplify 8.4.27 as:

T = 4E(V0 − E)

4E(V0 − E) + V 2
0 sinh2

[√2mL2(V0−E)
ℏ

] (8.4.25)

Whenever k2L >>> 1, recall that:

sinh x = ex − e−x
2

≈ 1
2
ex (8.4.26)

so that:
T ≈ 16E

V0

(
1− E

V0

)
exp

(
−
√

8mL2(V0 − E)
ℏ

)
(8.4.27)

Note the exponential decay of the transmission coefficient as we increase the length of the
barrier. This was expected, as we studied the limiting case L → ∞ for a step potential
previously.
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Also, small note on terminology: k2 is often called the attenuation constant.

8.5 Applications
An important type of radioactive decay in physics is alpha decay, consisting of an atomic
nucleus emitting an energetic alpha particle. It was first discovered y Rutherford in 1898,
who established that each nucleus emits an alpha particle at a specific energy Eα. There is
a relation between Eα and the decay constant λ:

λ = Ae−B/E1/2
α (8.5.1)

known as the Geiger-Nuttall law. It was however not understood how the emission of the
alpha particle occurred. Indeed, modelling the alpha particle as confined within the nu-
cleus did not explain some cases where the emission energies were lower than the energy
required to surmount the nuclear potential.

This problem would be resolved using notions of quantum tunnelling. We may approxi-
mate the transmission coefficient as:

T ≈ exp
(
− 2
ˆ r1

r0

√
2m(V − Eα)

ℏ
dr

)
(8.5.2)

where r0 and r1 are the lower and upper bounds respectively of the classically forbidden
region. For a coulomb barrier:

V (r) = 2(Z − 2)e2

4πε0r
(8.5.3)

where 2e is the charge of the alpha particle, and hence (Z−2)e is the charge of the nucleus.
Then after some calculations:

T ≈ ae−b(Z−2)/
√
Ea (8.5.4)

8.6 Resonant transmission
We now consider the potential in 7.4.1 but with E > V0.

The treatment is extremely similar to that of the previous section, and after some calcula-
tions one finds that:

T = 1

1 + 1
4

V 2
0

E(E−V0)sin
2(k2L)

(8.6.1)

Note that the transmission coefficient is exactly equal to 1 for some special values of k2.
More precisely, T = 1 whenever:

k2,nL = nπ, n ∈ Z (8.6.2)

Consequently, we find that:

En − V0 = n2π2ℏ2

2mL2 (8.6.3)
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Interestingly, the RHS, the energy of the particle relative to the barrier potential, belongs
to the energy spectrum of an infinite well of width L 1.

Particle beams incident on a barrierwith this energy undergo resonant transmission (total
transmission).

An important application of this resonance phenomenon is the Ramsauer-Townsend effect
regarding the elastic scattering of electrons off noble gases.

These gases have a full valence shell, and are therefore unreactive. They therefore form a
Coulomb potential which an electron could scatter against.

They observed that while at low energies, the scattering cross section was high, as they
increased the energy it went down to zero. This effectively meant that all the incident
electrons penetrate the electron cloud of the gas atoms.

1We may also write k2 = 2π
λ

so that:
L

λDB
= n

2 (8.6.4)

Thus, resonance occurs when the de Broglie wavelength of the particle fits half integer times into the width
of the well.
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9Symmetries in Quantum mechanics

9.1 Translations
In classical mechanics, symmetries of a system lead to conserved quantities. For example,
if a system has translational symmetry so that H 7→ H under x 7→ x + ϵ then we have a
conservation law ṗ = 0.

How can we formulate similar arguments in quantum mechanics? We have seen by the
correspondence principle that expectation values take the role of typical classical variables,
so we could interpret translations in QM as:

〈x〉 7→ 〈x〉+ α or 〈p〉 7→ 〈p〉 (9.1.1)

so that given a state |ψ〉, it will get translated to |ψα〉 such that:

〈ψα | x̂ |ψα〉 = 〈ψ | x̂ |ψ〉+ α (9.1.2)

If we define the translation operator T̂ (α) as:

T̂ (α) |ψ〉 = |ψα〉 (9.1.3)

then we can write: 〈
ψ
∣∣∣T †(α)x̂T (α)

∣∣∣ψ〉 = 〈ψ | x̂ |ψ〉+ α〈
ψ
∣∣∣T †(α)p̂T (α)

∣∣∣ψ〉 = 〈ψ | p̂ |ψ〉

(9.1.4a)

(9.1.4b)

This first picture, known as the active transformation picture, physically displaces the
particle by ϵ in the positive x direction.

It is clear from this interpretation that:

T̂ (α) |x〉 = eiαg(x)/ℏ |x+ α〉 (9.1.5)

where we must add the phase factor due to the considerations we made in section 6.3.
Consequently:

〈x〉 T̂ (α)−−−→ 〈x〉+ α (9.1.6)

〈p〉 T̂ (α)−−−→ 〈p〉+ α 〈f〉 (9.1.7)
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where f = g′. To satisfy our definition of translation, we must therefore set g constant, for
sake of simplicity to zero. Then:

T̂ (α) |x〉 = |x+ α〉 (9.1.8)

Then:

|ψα〉 = T̂ (α) |ψ〉 = T̂ (α)
ˆ ∞

−∞
|x〉 〈x |ψ〉 dx (9.1.9)

=
ˆ ∞

−∞
|x+ α〉 〈x |ψ〉 dx (9.1.10)

=
ˆ ∞

−∞
|x′〉

〈
x′ − α

∣∣ψ〉 dx (9.1.11)

=⇒ ψα(x) = ψ(x− α) (9.1.12)

where x′ = x+ α. Consequently:

〈ψα | x̂ |ψα〉 =
ˆ ∞

−∞
ψ∗
α(x)xψα(x)dx (9.1.13)

=
ˆ ∞

−∞
x|ψ(x− α)|2dx (9.1.14)

=
ˆ ∞

−∞
(x′ + α)|ψ(x′)|2dx′ (9.1.15)

= 〈ψ | x̂ |ψ〉+ α (9.1.16)

as required by our definition of translation. Similarly:

〈ψα | p̂ |ψα〉 =
ˆ ∞

−∞
ψ∗
α(x)

(
− iℏ d

dx

)
ψα(x)dx (9.1.17)

=
ˆ ∞

−∞
ψ∗(x′)

(
− iℏ d

dx′

)
ψ(x′)dx′ (9.1.18)

=
ˆ ∞

−∞
(x′ − α)|ψ(x′)|2dx′ (9.1.19)

= 〈ψ | p̂ |ψ〉 (9.1.20)

as required.

We can now define translational invariance through the requirement that:〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 =

〈
ψα
∣∣∣ Ĥ ∣∣∣ψα〉 (9.1.21)

but how do we get a more explicit conservation law?

Let us try to expand the translation operator as some exponential (we will see why soon):

T̂ (α) =
∞∑
k=0

1
k!

(−iaĜ
ℏ

)k
(9.1.22)
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then substituting into 8.1.12 and taylor expanding then:〈
x
∣∣∣ T̂ (α)

∣∣∣ψ〉 = ψ(x− α) (9.1.23)

=⇒
∞∑
k=0

1
k!

(−ia
ℏ

)k 〈
x
∣∣∣ Ĝk ∣∣∣ψ〉 =

∞∑
k=0

αk

k!
d(k)ψ

dx(k) (9.1.24)

so that: (
− iĜ

ℏ

)k
= d(k)

dx(k) (9.1.25)

suggesting that Ĝ = p̂. Hence we may alternatively define T̂ (α) as:

T̂ (α) = e−iαp̂/ℏ (9.1.26)

The conservation law for translational invariance then becomes:

〈ψ |H |ψ〉 = 〈ψα |H |ψα〉 (9.1.27)

=
〈
ψ
∣∣∣ eiαp̂/ℏĤe−iαp̂/ℏ

∣∣∣ψ〉 (9.1.28)

=
〈
ψ

∣∣∣∣∣
( ∞∑
k=0

1
k!

( iap̂
ℏ

)k)( ∞∑
k=0

Ĥ

k!

(−iap̂
ℏ

)k) ∣∣∣∣∣ψ
〉

(9.1.29)

=
〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉+

∞∑
k=1

1
k!

(
iα

ℏ

)k 〈
ψ
∣∣∣ [kp̂, Ĥ]

∣∣∣ψ〉 = 〈H〉 (9.1.30)

⇐⇒
〈
ψ
∣∣∣ [p̂, Ĥ]

∣∣∣ψ〉 = 0 (9.1.31)

where [kp̂, Ĥ] = [p̂, [p̂, ...︸︷︷︸
k−2

[p̂, Ĥ]] ...︸︷︷︸
k−2

] so we require that:

[p̂, Ĥ] = 0 (9.1.32)

We now invoke Ehrenfest’ theorem to find finally that:

d 〈p〉
dt

(9.1.33)

as expected by the correspondence principle.

The second picture assumes that the state vectors are unaltered, and that the operators x̂
and p̂ are modified as follows:

T †(α)x̂T̂ (α) = x̂+ αI

T †(α)p̂T̂ (α) = p̂

(9.1.34a)
(9.1.34b)

known as the passive transformation picture.
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We can derive these relations from the active picture by noting that:〈
ψ
∣∣∣T †(α)x̂T̂ (α)− x̂− αI

∣∣∣ψ〉 = 0 (9.1.35)〈
ψ
∣∣∣T †(α)p̂T̂ (α)− p̂

∣∣∣ψ〉 = 0 (9.1.36)

Since ψ is arbitrary, we can choose it to be any eigenvector of the sandwiched operator.
Then, all these eigenvalues must be zero, implying that the sandwiched operators are null.

Since these two pictures are equivalent, all the results derived in the active picture also
hold in the passive picture. In this picture however, since it is the operators that are altered,
we define translational invariance by:

T̂ †(α)ĤT̂ (α) = Ĥ (9.1.37)

Then, retrieve (8.1.33) as follows:

Ĥ = eiαp̂/ℏĤe−iαp̂/ℏ (9.1.38)

=
( ∞∑
k=0

1
k!

( iap̂
ℏ

)k)( ∞∑
k=0

Ĥ

k!

(−iap̂
ℏ

)k)
(9.1.39)

= Ĥ +
∞∑
k=1

1
k!

(
iα

ℏ

)k
[kp̂, Ĥ] = 〈H〉 (9.1.40)

⇐⇒
〈
ψ
∣∣∣ [kp̂, Ĥ]

∣∣∣ψ〉 = 0 (9.1.41)

so once again:
d 〈p〉
dt

= 0 (9.1.42)

Consider for example a system of particles with translational invariance. In the passive
picture we define this to be:

T̂ †(α)ĤT̂ (α) = Ĥ =⇒ ĤT̂ (α) = T̂ (α)Ĥ =⇒ [T̂ (α), Ĥ] = 0 (9.1.43)

This implies that:
[T̂ (α), Ĥn] = 0 (9.1.44)

for any natural number n. The case for n = 1 has already been proven. Suppose the above
is true for n− 1 so that:

[T̂ (α), Ĥn−1] = 0 (9.1.45)

Then:

[T̂ (α), Ĥn] = T̂ (α)Ĥn − ĤnT̂ (α) (9.1.46)
= T̂ (α)Ĥn − Ĥn−1T̂ (α)ĤT̂ (α) + Ĥn−1T̂ (α)ĤT̂ (α)− ĤnT̂ (α) (9.1.47)
= Ĥn−1[T̂ (α), Ĥ] + [T̂ (α), Ĥn−1]Ĥ (9.1.48)
= 0 (9.1.49)
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as desired. So, since Û(t) = eiĤt/ℏ can be expanded in a taylor series involving powers of
Ĥ we find that:

[T̂ (α), Û(t)] = [T̂ (α),
∞∑
k=1

1
k!

( it
ℏ

)k
Ĥk] (9.1.50)

=
∞∑
k=1

1
k!

( it
ℏ

)k
[T̂ (α), Ĥk] (9.1.51)

so that:
[T̂ (α), Û(t)] = 0 (9.1.52)

This is a very important result, because it shows that if we repeat some experiment at two
different places at the same instant, they will give the same result.

Indeed, suppose that at t = 0 two experimenters A and B prepare the same system at
positions x = 0 and x = a. If we let |ψ(0)〉 be the state of the system prepared by A
then clearly T̂ (α) |ψ(0)〉 is the state of the system prepared by B. Then, the two systems
will evolve as Û(t) |ψ(0)〉 and Û(t)T̂ (α) |ψ(0)〉 = T̂ (α)Û |ψ(0)〉. The latter is just the same
state observed by A at time t but translated by α. That means that according to the two
experimenters, the two systems will look identical to them.

So, if two experiments are performed in two different parts of the world, then they must
give the same results.
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10Many-particle systems

10.1 Two-particle systems
We consider two particleswith quantumoperators (x̂1, p̂1) and (x̂2, p̂2). Thesemust satisfy,
as per postulate II, the canonical commutation relations:

[x̂i, p̂j ] = iℏδij (10.1.1)
[x̂i, x̂j ] = 0 (10.1.2)
[p̂i, p̂j ] = 0 (10.1.3)

We can define the coordinate basis in this Hilbert space using the simultaneous eigenkets
|x1, x2〉 of the position operators satisfying:

x̂1 |x1, x2〉 = x1 |x1, x2〉 (10.1.4)
x̂2 |x1, x2〉 = x2 |x1, x2〉 (10.1.5)

satisfying the normalization condition:〈
x′

1, x
′
2
∣∣x1, x2

〉
= δ(x′

1 − x1)δ(x′
2 − x2) (10.1.6)

In this basis:

〈x1, x2 |ψ〉 = ψ(x1, x2) (10.1.7)
x̂i → xi (10.1.8)

p̂i → −iℏ
∂

∂xi
(10.1.9)

Born’s rule changes so that the probability density of observing particle 1 near x1 and
particle two near x2 is:

P(x1, x2) = | 〈x1, x2 |ψ〉 |2 (10.1.10)

We may similarly define the momentum representation using simultaneous eigenkets of
p̂1 and p̂2. More generally given any two commuting Hermitian operators Ω1 and Ω2,
their simultaneous eigenkets provide a Ω-basis. We define this two-particle Hilbert space
spanned by any of these bases asH1⊗2.

Let us now consider the Hilbert spacesH1 andH2 describing particles 1 and 2 respectively
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and separately. We then have the commutation relations:

[x̂1
1, p̂1] = iℏI1 (10.1.11)

[x̂2
1, p̂2] = iℏI2 (10.1.12)

When a measurement is performed on the two particle system, we expect to obtain a pair
of positions (x1, x2) so we can denote the ket corresponding to particle 1 being measured
at x1 and particle 2 being measured at x2 as:

|x1〉 ⊗ |x2〉 ≡ |x1, x2〉 (10.1.13)

called the direct product. We then see that the set of vectors of the form |xi〉⊗ |xj〉 forms a
position basis of the two-particle Hilbert space H1⊗2. This however is the exact definition
of the tensor product space in Linear algebra:

H1⊗2 = H1 ⊗H2 (10.1.14)

Hence any element inH1 ⊗H2 may be expressed in the position representation as:

|ψ〉 =
∑
i,j

cij |xi〉 ⊗ |xj〉 =
∑
i,j

cij |xi, xj〉 (10.1.15)

Wedefine the inner product 〈· | ·〉 overH1⊗H2 so as to satisfy the orthonormality condition
(10.1.6). Suppose the inner product overH1 andH2 as 〈· | ·〉1 and 〈· | ·〉2 respectively. Then:

(〈x′
1| ⊗ 〈x′

2|)|(|x1〉 ⊗ |x2〉) =
〈
x′

1
∣∣x2

〉
1
〈
x′

2
∣∣x2

〉
2 = δ(x′

1 − x1)δ(x′
2 − x2) (10.1.16)

as required. Hence for two arbitrary vectors |ψ〉 , |ϕ〉 ∈ H1 ⊗H2:

|ϕ|ψ〉 =
ˆ
|ϕ, x1, x2〉x1, x2|ψdx1dx2 =

ˆ
ϕ∗(x1, x2)ψ(x1, x2)dx1dx2 (10.1.17)

Note that sandwiching (10.1.15) with 〈xi| ⊗ 〈xj | = 〈xi, xj |we get an expression for cij :

cij = 〈xi, xj |ψ〉 (10.1.18)

Of course the results we have discussed in the coordinate basis may be easily expanded to
any basis.

We can define the analogue of x̂1 (acting onH1) onH1 ⊗H2 as x̂1⊗2
1 so that:

x̂1⊗2
1 |x1〉 ⊗ |x2〉 = x1 |x1〉 ⊗ |x2〉 (10.1.19)

and similarly
x̂1⊗2

2 |x1〉 ⊗ |x2〉 = x2 |x1〉 ⊗ |x2〉 (10.1.20)

We can define the direct product of two operators Ω1⊗2
1 and Ω1⊗2

2 as:

(Ω1⊗2
1 ⊗ Ω1⊗2

2 ) |ω1〉 ⊗ |ω2〉 = |Ω1⊗2
1 ω1〉 ⊗ |Ω1⊗2

1 ω2〉 (10.1.21)
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Note that given two operator Ω1,Ω2 acting onH1 andH2 respectively:

[Ω1 ⊗ I2, I1 ⊗ Ω2] |ω1, ω2〉 = (Ω1 ⊗ I2)(I1 ⊗ Ω2) |ω1, ω2〉 − (I1 ⊗ Ω2)(Ω1 ⊗ I2) |ω1, ω2〉
(10.1.22)

= (Ω1 ⊗ I2)(ω2 |ω1, ω2〉)− (I1 ⊗ Ω2)(ω1 |ω1, ω2〉) (10.1.23)
= ω1ω2 |ω1, ω2〉 − ω2ω1 |ω1, ω2〉 (10.1.24)
= 0 (10.1.25)

and since any ket |ψ〉 in this Hilbert space can be written as a linear superposition of these
basis vectors, it follows that [Ω1 ⊗ I2, I1 ⊗ Ω2] = 0.

Another interesting property is:

(Ω1 ⊗ Γ2)(Θ1 ⊗ Λ2) |x1, x2〉 = (Ω1 ⊗ Γ2) |Θ1x1〉 ⊗ |Λ2x2〉 (10.1.26)
= |Ω1Θ1x1〉 ⊗ |Γ2Λ2x2〉 (10.1.27)
= (Ω1Θ1 ⊗ Γ2Λ2) |x1, x2〉 (10.1.28)

so that (Ω1 ⊗ Γ2)(Θ1 ⊗ Λ2) = (Ω1Θ1 ⊗ Γ2Λ2).

Also:

[Ω1⊗2
1 ,Λ1⊗2

1 ] |x1, x2〉 = (Ω1⊗2
1 Λ1⊗2

1 − Λ1⊗2
1 Ω1⊗2

1 ) |x1, x2〉 (10.1.29)
= Ω1⊗2

1 |Λ1x1, x2〉 − |Λ1Ω1x1, x2〉 (10.1.30)
= |Ω1Λ1x1, x2〉 − |Λ1Ω1x1, x2〉 (10.1.31)
= ([Ω1,Λ1]⊗ I2) |x1, x2〉 (10.1.32)

so that [Ω1⊗2
1 ,Λ1⊗2

1 ] = [Ω1,Λ1]⊗ I2.

Finally:

(Ω1⊗2
1 + Ω1⊗2

2 )2 = (Ω1⊗2
1 + Ω1⊗2

2 )(Ω1⊗2
1 + Ω1⊗2

2 ) |x1, x2〉 (10.1.33)
= (Ω1⊗2

1 + Ω1⊗2
2 )(|Ω1x1, x2〉+ |x1,Ω2x2〉) (10.1.34)

= |Ω2
1x1, x2〉+ |x1,Ω2

2x2〉+ 2 |Ω1x1,Ω2x2〉 (10.1.35)
= (Ω2

1 ⊗ I2 + I2 ⊗ Ω2
2 + 2Ω1 ⊗ Ω2) |x1, x2〉 (10.1.36)

so that (Ω1⊗2
1 + Ω1⊗2

2 )2 = Ω2
1 ⊗ I2 + I2 ⊗ Ω2

2 + 2Ω1 ⊗ Ω2.

Suppose that in a single-particle Hilbert space in two dimensions, we have two basis vec-
tors |+〉 , |−〉, we have the operators acting onH1 andH2:

ω1 =
( + −

+ a b
− c d

)
and ω2 =

( + −

+ e f
− g h

)
(10.1.37)

so that for example 〈+ |σ1 |+〉 = a, 〈− |σ1 |+〉 = c, 〈+ |σ1 | −〉 = b and 〈− |σ1 | −〉 = d.

Then the space H1 ⊗ H2 is spanned by |+,+〉 , |+,−〉 , |−,+〉 and |−,−〉. Then, we can
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read off the elements of the operator σ1 ⊗ I2 as:

σ1 ⊗ I2 =


++ +− −+ −−

++ a 0 b 0
+− 0 a 0 b
−+ c 0 d 0
−− 0 c 0 d

 (10.1.38)

For example, 〈+,+ |σ1 ⊗ I2 |+,+〉 = 〈+ |σ1 |+〉 = a. All elements where the second state
inH2 are not the same vanish Similarly:

I1 ⊗ σ2 =


++ +− −+ −−

++ e f 0 0
+− g h 0 0
−+ 0 0 e f
−− 0 0 g h

 (10.1.39)

Hence, we can use matrix multiplication to find that:

σ1 ⊗ σ2 =


ae af be bf
ag ah bg bh
ce cf dr df
cg ch dg dh

 (10.1.40)

10.2 Time evolution of multi-particle systems
Consider nowa two-particle systemdescribed by a state vector inH1⊗H2. The Schrödinger
equation:

iℏ |ψ̇〉 =
[
p̂2

1
2m1

+ p̂2
1

2m2
+ V (x̂1, x̂2)

]
|ψ〉 (10.2.1)

If the Hamiltonian is separable as:

Ĥ = Ĥ1 + Ĥ2 (10.2.2)

so that the two particles evolve independently of each other, then we may write the TISE
as:

(Ĥ1 + Ĥ2) |E〉 = E |E〉 (10.2.3)

Moreover, since [Ĥ1⊗ I2, I1⊗ Ĥ2] = 0, we may project this equation into a common energy
eigenbasis. These eigenstates consist of states |E1〉 ⊗ |E2〉 = |E1, E2〉 satisfying:

Ĥ1 |E1〉 = E1 |E1〉 Ĥ2 |E2〉 = E2 |E2〉 (10.2.4)

so that particle 1 is in the energy eigenstate |E1〉 and particle 2 is in the energy eigenstate
|E2〉. Then:

Ĥ |E〉 = (Ĥ1 + Ĥ2) |E1〉 ⊗ |E2〉 = (E1 + E2) |E1〉 ⊗ |E〉2 = (E1 + E2) |E〉 (10.2.5)
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sowe see that the total energy eigenvalues are the sumof the energy eigenvalues of particle
1 and particle 2.

Feeding |E〉 = |E1〉 ⊗ |E〉2 into the Schrödinger equation:

|ψ(t)〉 = |E1〉 e−iE1t/ℏ ⊗ |E2〉 e−iE2t/ℏ (10.2.6)

Alternatively, we can work in the position basis and write the TISE as:[
− ℏ2

2m1

(
∂2

∂x2 + ∂2

∂y2

)
+ V1(x1) + V2(x2)

]
ψE(x1, x2) = EψE(x1, x2) (10.2.7)

and use separation of variables by using the ansatz:

ψE(x1, x2) = ψE1(x1)ψE2(x2) (10.2.8)

to find that:

1
ψE1(x1)

[
− ℏ2

2m1

∂2

∂x2
1

+ V1(x1)
]
ψE1(x1) = E1 (10.2.9)

1
ψE2(x2)

[
− ℏ2

2m2

∂2

∂x2
2

+ V2(x2)
]
ψE2(x2) = E2 (10.2.10)

with E = E1 + E2. Once the solutions to the above are found:

ψE(x1, x2, t) = ψE1(x1)e−iE1t/ℏψE2(x2)e−iE2t/ℏ (10.2.11)

The second case is that of two interacting particles where V (x̂1, x̂2) 6= V (x̂1) + V (x̂2). In
the special case where:

V (x̂1, x̂2) = V (x̂1 − x̂2) (10.2.12)

which occurs very often (since most interactions are dependent on the relative displace-
ment of the particles).

Notice that in classical mechanics, we can reduce this problem to two non-interacting fic-
titious particles by employing the relative coordinate x̂ = x̂1 − x̂2 and the CM coordinate:

x̂CM = m1x̂1 +m2x̂2
m1 +m2

(10.2.13)

so that:

x̂1 = x̂CM + m2x̂

m1 +m2
(10.2.14)

x̂2 = x̂CM −
m1x̂

m1 +m2
(10.2.15)
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and thus using the canonical commutation rules:

p̂2
CM = p̂2

1 + p̂2
2 + 2p̂1p̂2 (10.2.16)

p̂2 = p̂2
1 + p̂2

2 − 2p̂1p̂2 (10.2.17)

The Hamiltonian turns into:

Ĥ = p̂2
1

2m1
+ p̂2

2
2m2

+ V (x̂1, x̂2) (10.2.18)

= p̂2
CM

2M
+ p̂2

2µ
+ V (x̂) (10.2.19)

where µ = m1m2
m1+m2

is the reduced mass.

Example (Sh. 10.1.3)
Consider the classical Hamiltonian of the coupled system:

H = p2
1

2m
+ p2

2
2m

+ 1
2
mω2[x2

1 + x2
2 + (x1 − x2)2] (10.2.20)

We can use the normal coordinates:

xI = 1√
2

(x1 + x2), xII = 1√
2

(x1 − x2) (10.2.21)

Then we can write:

x1 = 1√
2

(xI + xII) (10.2.22)

x2 = 1√
2

(xI − xII) (10.2.23)

p1 = 1√
2

(pI + pII) (10.2.24)

p2 = 1√
2

(pI − pII) (10.2.25)

and so:

H = (pI + pII)2

4m
+ (pI − pII)2

4m
+ 1

4
mω2[(xI + xII)2 + (xI − xII)2 + 4x2

II ] (10.2.26)

= p2
I

2m
+ p2

II

2m
+ 1

4
mω2(2x2

I + 6x2
II) (10.2.27)

= p2
I

2m
+ p2

II

2m
+ 1

2
mω2(x2

I + 3x2
II) (10.2.28)

We can upgrade these variables to operators and find that the Hamiltonian operator
is:

Ĥ = p̂2
I

2m
+ p̂2

II

2m
+ 1

2
mω2(x̂2

I + 3x̂2
II) (10.2.29)
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The eigenvalue equation forH can bewritten in the simultaneous eigenbasis of x̂I and
x̂II is:[

− ℏ2

2m

(
∂2

∂x2
I

+ ∂2

∂x2
II

)
+ 1

2
mω2(x2

I + 3x2
II)
]
ψ(xI , xII) = Eψ(xI , xII) (10.2.30)

We could have done this in the reverse order too, that is, promote to operators first
and then use normal coordinates.

10.3 Higher dimensions
Although there is no real mathematical difference between a two-particle system of 1D
particles and a one-particle system of 2D particles, we shall use different operator notation
to differentiate the two.

For a particle in two dimensions, the two cartesian coordinates will be x̂, ŷ, with momenta
p̂x, p̂y etc... The position eigenket in three dimensions will be written as |r〉 ≡ |x〉⊗|y〉⊗|z〉,
and the same goes for momentum.

Example (Sh. 10.2.1)
Find the energy eigenfunctions of a particle in a three dimensional cubic box of
length L.

The Hamiltonian for a three dimensional box is in the position representation:

Ĥ → − ℏ2

2m
∇2 + V (x, y) (10.3.1)

where:

V (x, y) =
{

0, in [0, L]× [0, L]
∞, otherwise

(10.3.2)

We see that inside the box, the energy eigenfunctions satisfy:

− ℏ2

2m
∇2ψ(x, y, z) = Eψ(x, y, z) (10.3.3)

We can use separation of variables by letting ψ(x, y, z) = ψ1(x)ψ2(y)ψ3(z) to find that:

− ℏ2

2m

( 1
ψ1(x)

∂2ψ1(x)
∂x2 + 1

ψ2(y)
∂2ψ2(y)
∂y2 + 1

ψ3(z)
∂2ψ3(z)
∂z2

)
= E (10.3.4)

Since the LHS has three different independent terms, we can set each equal to some

− II.132 −



10.3. HIGHER DIMENSIONS

constant to find three different ODEs:
− ℏ2

2m
d2ψ1(x)
dx2 = E1ψ1(x)

− ℏ2

2m
d2ψ2(y)
dy2 = E2ψ2(y)

− ℏ2

2m
d2ψ3(z)
dz2 = Ečψ3(z)

(10.3.5)

with E = E1 + E2 + E3. We’ve already found the solutions:
ψ1(x) =

√
2
L sin nxπx

L

ψ2(y) =
√

2
L sin nyπy

L

ψ3(z) =
√

2
L sin nzπz

L

(10.3.6)

where the single-particle energy eigenvalues are:

E1 = ℏ2π2

2mL2n
2
x, E2 = ℏ2π2

2mL2n
2
y, E3 = ℏ2π2

2mL2n
2
z (10.3.7)

so that the total energy eigenvalues are:

E = ℏ2π2

2mL2 (n2
x + n2

y + n2
z), ∀nx, ny, nz ∈ N (10.3.8)

with corresponding eigenfunctions:

ψ(x, y, z) =
( 2
L

)3/2
sin nxπx

L
sin nyπy

L
sin nzπz

L
(10.3.9)

Alternatively, since the Hamiltonian is separable Ĥ = Ĥ1 + Ĥ2 + Ĥ3, we can use the
simultaneous energy eigenbasis |E1, E2, E3〉 satisfying:

Ĥ1 |E1〉 = E1 |E1〉 , Ĥ2 |E2〉 = E2 |E2〉 , Ĥ3 |E3〉 = E3 |E3〉 (10.3.10)

so that:

Ĥ |E1, E2, E3〉 = (Ĥ1 + Ĥ2 + Ĥ3) |E1, E2, E3〉 = (E1 + E2 + E3) |E1, E2, E3〉
(10.3.11)

≡ E |E1, E2, E3〉 (10.3.12)

with E = E1 + E2 + E3.

Example (Sh. 10.2.2)
Find the energy eigenstates of the two-dimensional oscillator with hamiltonian:

Ĥ =
p̂2
x + p̂2

y

2m
+ 1

2
mω2

xx̂
2 + 1

2
mω2

y ŷ
2 (10.3.13)
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We need to solve the TDSE:(
p̂2
x + p̂2

y

2m
+ 1

2
mω2

xx̂
2 + 1

2
mω2

y ŷ
2
)
|E〉 = E |E〉 (10.3.14)

Again, since the potential is separable, we can find the simultaneous eigenstates of
Ĥ1 = p̂2

x
2m + 1

2mω
2
xx̂

2 and Ĥ2 = p̂2
y

2m + 1
2mω

2
y ŷ

2, which we denote |E1, E2〉. These satisfy:(
p̂2
x

2m
+ 1

2
mω2

xx̂
2
)
|E1〉 = E1 |E1〉 (10.3.15)(

p̂2
y

2m
+ 1

2
mω2

y ŷ
2
)
|E2〉 = E2 |E2〉 (10.3.16)

where E1 = 1
2ℏωx(nx + 1) and E2 = 1

2ℏωy(ny + 1).

Therefore(
p̂2
x + p̂2

y

2m
+ 1

2
mω2

xx̂
2 + 1

2
mω2

y ŷ
2
)
|E1, E2〉 = (E1 +E2) |E1, E2〉 = E |E1, E2〉 (10.3.17)

implying that the energy eigenvalues are:

E = E1 + E2 = 1
2
ℏωx(nx + 1) + 1

2
ℏωy(ny + 1), ∀nx, ny = 0, 1, 2... (10.3.18)

Projecting onto the position representation we find the normalized eigenfunctions:

ψnx,ny (x, y) =
√

m
√
ωxωy

πℏ2nx+ny (nx!)(ny!)
exp

(
− m

2ℏ
(ωxx2 + ωyy

2)
)

(10.3.19)

×Hnx

(√
mω

ℏ
x

)
Hny

(√
mω

ℏ
y

)
(10.3.20)

where we recall that:
Hn(x) = (−1)nex2 dn

dxn
e−x2 (10.3.21)

are the Hermite polynomials. Note that if we substitute x→ −x and y → −y, then:

ψnx,ny (−x,−y) =
√

m
√
ωxωy

πℏ2nx+ny (nx!)(ny!)
exp

(
− m

2ℏ
(ωxx2 + ωyy

2)
)

(10.3.22)

×Hnx

(√
mω

ℏ
x

)
Hny

(√
mω

ℏ
y

)
(10.3.23)

Since e−x2 is an even function, its nth derivative is even if n is even and odd if n is odd.
So, the hermite polynomial Hn is odd if n is odd and even if n is even. Consequently,
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it follows that the parity of ψnx,ny (x, y) is determined by the parity of nx, ny:

ψnx,ny =
{
even if nx, ny have same parity
odd if nx, ny have different parity

(10.3.24)

In the isotropic case, where ωx = ωy = ω, then:

ψnx,ny (x, y) =
√

mω

πℏ2nx+ny (nx!)(ny!)
exp

(
−mω

2ℏ
(x2+y2)

)
Hnx

(√
mω

ℏ
x

)
Hny

(√
mω

ℏ
y

)
(10.3.25)

So, the first three normalized eigenfunctions are:

ψ0,0(x, y) =
√
mω

πℏ
exp

(
− mω

2ℏ
(x2 + y2)

)
(10.3.26)

ψ1,0(x, y) =
√

2
π

mωx

ℏ
exp

(
− mω

2ℏ
(x2 + y2)

)
(10.3.27)

ψ0,1(x, y) =
√

2
π

mωy

ℏ
exp

(
− mω

2ℏ
(x2 + y2)

)
(10.3.28)

Using polar coordinates, we substitute x = r cos θ, y = r sin θ, x2 + y2 = r2 and find
that:

ψ0,0(r, θ) =
√
mω

πℏ
exp

(
− mωr2

2ℏ

)
(10.3.29)

ψ1,0(r, θ) =
√

2
π

mωr

ℏ
exp

(
− mωr2

2ℏ

)
cos θ (10.3.30)

ψ0,1(r, θ) =
√

2
π

mωr

ℏ
exp

(
− mωr2

2ℏ

)
sin θ (10.3.31)

We see that generally, for a given n = nx + ny, nx can range from 0 to n, each with a
corresponding value of ny. Consequently the energy levelEn = ℏω(n+1) is n+1-fold
degenerate.

For the three-dimensional isotropic oscillator, it is easy to see how our results are gen-
eralized. The allowed energy levels are:

En = ℏω
(
n+ 3

2

)
(10.3.32)

where n = nx + ny + nz .

Let us try to figure out the degeneracy of En. The first quantum number can take any
value from 0 to n, fixing the sum of the other two quantum numbers. So we find that
if the first quantum number is k, then the sum of the other two must be n − k, and
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there are (n− k + 1) ways to do so:

n∑
k=0

(n− k + 1) = (n+ 1)2 − n(n+ 1)
2

= (n+ 1)(n+ 2)
2

(10.3.33)

Hence En is (n+1)(n+2)
2 -fold degenerate.

10.4 Identical particles
Two particles are identical if it is impossible to detect any intrinsic difference in their prop-
erties. Electrons for example are believed to be identical.

In classical mechanics, identical particles are distinguishable, we can simply follow their
trajectories, or we could "tag" the particles, give them a "name" so as to be able to follow
them. Moreover, the classical hamiltonian satisfies the symmetry:

H(r1, p1, r2, p2) = H(r2, p2, r1, p1) (10.4.1)

In quantum mechanics the concept of following a trajectory makes no sense, since the
particles are not point-like, but rather a wave. When the waves mix, because the particles
are indistinguishable there is no way to understand which "part" of the wave belongs to
one particle andwhich belongs to the other. Hence identical particles are indistinguishable
in quantum mechanics. Tagging the particles without affect their quantum states is also
very hard.

So if we consider two identical particles crossing paths, in quantummechanics it is impos-
sible to determine where each particle goes after the exchange.

(Requires knowledge of spin)

Suppose for example we have two electrons, one spin up and one spin down. How do
we describe this two-electron system. For distinguishable particles we would just use the
tensor product, but which one? There are two:

|↑〉 ⊗ |↓〉 ≡ |↑, ↓〉 or |↓〉 ⊗ |↑〉 ≡ |↓, ↑〉 (10.4.2)

Unfortunately, these two states are not equivalent. Indeed, if they were equivalent, any
linear superposition of these two states must also be equivalent, which is not the case. If
we take some superposition:

|ψα,β〉 = α |↑, ↓〉+ β |↓, ↑〉 (10.4.3)

such that |α|2 + |β|2 = 1, let us find the probability of measuring spin up along the x-axis
for both particles, so in a state

|ψ0〉 = 1
2

(|↑〉+ |↓〉)⊗ (|↑〉+ |↓〉) (10.4.4)
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so that:
| 〈ψ0 |ψα,β〉 |2 = |1

2
(α+ β)|2 = 1

2
+ Re(αβ∗) (10.4.5)

Thus the state |ψα,β〉 changes for different values of α and β. It is not true that all super-
positions of (10.4.2) are physically equivalent.

We resolve this issue by noting that to make |↑, ↓〉 and |↓, ↑〉 equivalent, the two states must
differ only by a phase factor:

|↑, ↓〉 = eiϕ |↓, ↑〉 = e2iϕ |↑, ↓〉 =⇒ eiϕ = ±1 (10.4.6)

so the only allowed state vectors are:

|↑, ↓〉S ≡
1√
2

(|↑, ↓〉+ |↓, ↑〉) (10.4.7)

called the symmetric state vector and:

|↑, ↓〉A ≡
1√
2

(|↑, ↓〉 − |↓, ↑〉) (10.4.8)

called the antisymmetric state vector.

Note also that categories of particles must be either symmetric or anti-symmetric. Indeed,
if theHilbert space of two identical particles contained symmetric and anti-symmetric state
vectors, then we can construct another state in this same Hilbert space:

|ψ〉 = α |↑, ↓〉S + β |↑, ↓〉A (10.4.9)

This state however is neither symmetric or anti-symmetric, so it cannot describe the two-
particle system, and does not belong to the Hilbert space.

Particles always found in symmetric states are called bosons whereas particles always
found in anti-symmetric states are called fermions.

Pauli exclusion principle

Consider a two-fermion system in a state:

|ω1, ω1〉A = |ω1, ω2〉 − |ω2, ω1〉 (10.4.10)

in some basis ωi. If we set ω1 = ω2 = ω then

|ω, ω〉A = 0 (10.4.11)

so we cannot find two identical fermions in the same quantum state.

10.5 Bosonic and Fermionic Hilbert spaces
Consider the Hilbert space of symmetric boson states HS and the Hilbert space of anti-
symmetric fermionic statesHA.
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Consider an arbitrary vector |ω1, ω2〉 ∈ H1 ⊗H2. We can construct one fermionic vector:

|ω1, ω2〉 − |ω2, ω1〉 (10.5.1)

and one bosonic vector:
|ω1, ω2〉+ |ω2, ω1〉 (10.5.2)

unless ω1 = ω2 in which case the Pauli exclusion principle allows us to construct only a
bosonic vector.

So we can construct one bosonic Hilbert space and one fermionic Hilbert space fromH1⊗
H2:

H1 ⊗H2 = HA ⊕HS (10.5.3)

Suppose we now want to evaluate the probability density of the measurements by an op-
erator Ω acting on some state |ψ〉 ∈ HS? Then we must evaluate:

PS(ω1, ω2) = | 〈ω1, ω2 |ψ〉S |
2 (10.5.4)

where |ω1, ω2〉S = 1√
2(|ω1, ω2〉+ |ω2, ω1〉). The normalization condition reads:

1
2

ˆ
| 〈ω1, ω2 |ψ〉S |

2dω1dω2 = 1 (10.5.5)

where the 1
2 terms comes up because the states |ω1, ω2〉 and |ω2, ω1〉 which are physically

equivalent are counted twice. It is therefore convenient to define:

ψS(ω1, ω2) = 1√
2
〈ω1, ω2 |ψ〉S (10.5.6)

so that: ˆ
|ψS(ω1, ω2)|2dω1dω2 = 1 (10.5.7)

and
PS(ω1, ω2) = 2|ψS(ω1, ω2)|2 (10.5.8)

Consider for example two non-interacting bosons in a one-dimensional box in quantum
states n = 3, n = 4:

|ψ〉 = 1√
2

(|3, 4〉+ |4, 3〉) (10.5.9)
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Then, the wave-function is:

ψS(x1, x2) = 1√
2
〈x1, x2 |ψ〉S (10.5.10)

= 1
2

(〈x1, x2 |ψ〉+ 〈x2, x1 |ψ〉) (10.5.11)

= 1
23/2 ((〈x1, x2 | 3, 4〉+ 〈x1, x2 | 4, 3〉+ 〈x2, x1 | 3, 4〉+ 〈x2, x1 | 4, 3〉) (10.5.12)

= 1
23/2 (ψ3(x1)ψ4(x2) + ψ4(x1)ψ3(x2) + ψ3(x2)ψ4(x1) + ψ4(x2)ψ3(x1))

(10.5.13)

= 1√
2

(ψ3(x1)ψ4(x2) + ψ4(x1)ψ3(x2)) (10.5.14)

= 〈x1, x2 |ψ〉 (10.5.15)

where ψn are the energy eigenfunctions of the one-dimensional box.

We may rewrite this in the form of a sign-less determinant:

ψS(x1, x2) = 1√
2

∣∣∣∣∣ψ3(x1) ψ3(x2)
ψ4(x1) ψ4(x2)

∣∣∣∣∣
+

(10.5.16)

Similarly, one would find in the fermionic case that:

ψA(x1, x2) = 1√
2

∣∣∣∣∣ψ3(x1) ψ3(x2)
ψ4(x1) ψ4(x1)

∣∣∣∣∣ (10.5.17)

Example (Sh 10.3.4)
Two identical particles of massm are in a 1D box of length L. Energy measurement
yieldsE = ℏ2π2

mL2 , what is the state vector of the system? What if the measured energy
was E = 5ℏ2π2

mL2 ?

If we assume that the only degrees of freedom are orbital (so we don’t have to worry
about spin etc...), we find that the total energy of the system in the state |n1, n2〉 is
given by:

E = ℏ2π2

2mL2 (n2
1 + n2

2) (10.5.18)

If E = ℏ2π2

mL2 , then since both n1 and n2 must be positive integers, it follows that n1 =
n2 = 1. Therefore, the particles must be bosons by the Pauli exlusion principle, so we
may write the symmetrized state of the system as:

|ψ〉 = |1, 1〉 (10.5.19)
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In the position representation this becomes:

ψ(x1, x2) = 〈x1, x2 | 1, 1〉S == 2
L

sin πx1
L

sin πx2
L

(10.5.20)

If instead E = 5ℏ2π2

mL2 then the only possibilities are n1 = 1, n2 = 2 and n1 = 2, n2 = 1.
Here we cannot determine whether we are dealing with a fermion or a boson. In the
former case:

|ψF 〉 = |1, 2〉 − |2, 1〉√
2

(10.5.21)

whereas in the latter case:
|ψB〉 = |1, 2〉+ |2, 1〉√

2
(10.5.22)

These can be projected in the position basis:

ψF (x1, x2) = 1√
2

(ψ1(x1)ψ2(x2)− ψ2(x1)ψ1(x2)) (10.5.23)

=
√

2
L

(
sin πx1

L
sin 2πx1

L
− sin 2πx1

L
sin πx1

L

)
(10.5.24)

and

ψB(x1, x2) = 1√
2

(ψ1(x1)ψ2(x2) + ψ2(x1)ψ1(x2)) (10.5.25)

=
√

2
L

(
sin πx1

L
sin 2πx1

L
+ sin 2πx1

L
sin πx1

L

)
(10.5.26)

10.6 N identical particles
Transposition operators

Consider a two-particle system, where the set of two particles resides in the product space
H ⊗ H, with basis |ui〉 ⊗ |uj〉 ≡ |ui, uj〉. We will not assume anything about their distin-
guishability for now.

Consider some linear operator P̂21 ∈ L(H⊗H), called the permutation operator. Its action
on the basis vectors is:

P̂21 |ui, uj〉 = |uj , ui〉 (10.6.1)

so that:
P̂212 = I (10.6.2)

Note that the permutation operator is Hermitian, since:〈
ui, uj

∣∣∣ P̂21
∣∣∣uk, ul〉 = 〈ui, uj |ul, uk〉 = δilδjk (10.6.3)

and 〈
ui, uj

∣∣∣ P̂ †
21

∣∣∣uk, ul〉 = 〈uj , ui |uk, ul〉 = δjkδil (10.6.4)
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Combinining these two results, P̂21P̂21 = P̂ †
21P̂21 = I so the permutation operator is also

unitary, and thus preserves the inner product.

Let’s define:

Ŝ = 1
2

(1 + P̂21) (10.6.5)

Â = 1
2

(1− P̂21) (10.6.6)

Now for a small algebraic digression. Consider a Hermitian operator P̂ acting on H such
that P̂ 2 = P̂ . Then, any vector v ∈ H can be written as:

v = P̂v︸︷︷︸
∈Im(P̂ )

+ (1− P̂ )v︸ ︷︷ ︸
∈ker(P̂ )

(10.6.7)

Note however that P̂v ∈ Im(P̂ ) and:

P̂ (I− P̂ )v = P̂v− P̂v = 0 =⇒ (I− P̂ )v ∈ ker(P̂ ) (10.6.8)

It follows that:
H = Im(P̂ )⊕ ker(P̂ ) (10.6.9)

Moreover: 〈
P̂v, (1− P̂ )u

〉
=
〈
v, P̂ †(1− P̂ )u

〉
=
〈
v, P̂ (1− P̂ )u

〉
= 0 (10.6.10)

implying that ker(P̂ ) ⊥ Im(P̂ ).

Operators satisfying these two properties:

(i) H = Im(P̂ )⊕ ker(P̂ )

(ii) ker(P̂ ) ⊥ Im(P̂ )

are called orthogonal projection operators. We have proven that all Hermitian operators
P̂ with P̂ 2 = P̂ are orthogonal projection operators.

It turns out that Ŝ and Â defined in (10.6.5) are orthogonal projection operators. Indeed,
they are Hermitian. Moreover:

Ŝ2 = 1
4

(I + 2P̂21 + I) = 1
2

(I + P̂21) (10.6.11)

so that Ŝ2 = Ŝ and similarly Â2 = Â.

One final property of the permutation operator worth mentioning is the following. Con-
sider some operator B̂ ∈ L(H⊗H). If we consider:

P̂21B̂
H⊗H
1 P̂ †

21 |u1〉 ⊗ |u2〉 = P̂21B̂
H⊗H
1 |u2〉 ⊗ |u1〉 = P̂21 |B̂Hu2

1 〉 ⊗ |u1〉 = B̂H⊗H
2 |u1〉 ⊗ |u2〉

(10.6.12)
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so that:
B̂H⊗H

2 |u1〉 = P̂21B̂
H⊗H
1 P̂ †

21 (10.6.13)

So, multiplying by P̂21 and P̂ †
21 to the left and right respectively we find:

B̂H⊗H
1 |u1〉 = P̂21B̂

H⊗H
2 P̂ †

21 (10.6.14)

The permutation operator is very useful when trying to determine whether an operator is
symmetric. Indeed, for some general operator Â12:

P̂21Â12hatP
†
21 = Â21 (10.6.15)

so we see that symmetry is satisfied whenever.

P̂21Â12hatP
†
21 = Â12 =⇒ P̂21Â12 = Â12P̂21 =⇒ [P̂21, Â] = 0 (10.6.16)

Permutation operator on N -particles

For N particles, there are N ! ways of arranging them in order. The set of permutations
of N objects form the symmetric group SN (see Group theory in mathematical methods
volume).

We define these permutations as:

P̂i1i2...iN |1〉 |2〉 ... |N〉 = |i1〉 |i2〉 ... |iN 〉 (10.6.17)

so it moves the inth ket into the nth position. In the two-line notation used in the mathe-
matical methods volume:

P̂i1i2...iN ↔
(

1 2 3 . . . N
i1 i2 i3 . . . iN

)
(10.6.18)

Transpositions, like P̂21, are permutations on N = 2 objects. Hence, they are Hermitian
and unitary.

Interestingly, it can be proven that any permutation can be written as a product of even
and odd transpositions, and the number of transpositions in this product determines the
parity of the permutation. The parity of permutations is well-defined, it is either even or
odd.

It follows then that any permutation unitary (product of unitary operators is unitary, but
product of Hermitian operators is not necessarily Hermitian).

Symmetric and anti-symmetric states of N -particles

Our goal will be to find special states that are simultaneous eigenstates of all permutation
operators in the N -permutation group SN .
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Suppose we have aN -particle system described by a state in
N⊗
H. We postulate that there

are symmetric states |ψS〉 ∈
N⊗
H, satisfying:

P̂σ |ψS〉 = |ψS〉 , ∀σ ∈ SN (10.6.19)

that is, simultaneous eigenstates of all permutation operators with eigenvalue +1. Since
permutation operators do not generally commute, we cannot find a simultaneous basis, so
we know these symmetric states will not be form a basis for this N -particle Hilbert space.

If we follow the same logic we would find that:

P̂σ |ψA〉 = − |ψA〉 , ∀σ ∈ SN (10.6.20)

but this is nonsense, since I is a permutation, implying |ψA〉 = − |ψA〉. We solve this issue
by postulating instead that:

P̂σ |ψA〉 = sgn(σ) |ψA〉 , ∀σ ∈ SN (10.6.21)

The symmetric states form a vector subspace of
N⊗
H:

SymN (H) ⊆
N⊗
H (10.6.22)

and similarly the anti-symmetric states form a vector subspace of
N⊗
H:

N∧
H ⊆

N⊗
H (10.6.23)

Wemust now construct these symmetric and anti-symmetric states. To do so, we note that

there should be a projector projecting from
N⊗
H to SymN (H) and

N∧
H. We will prove that:

Ŝ = 1
N !

∑
σ∈SN

P̂σ

Â = 1
N !

∑
σ∈SN

sgn(σ)P̂σ

(10.6.24a)

(10.6.24b)

called the symmetrizer and anti-symmetrizer operators, are orthogonal projectors that
take us to the symmetric and anti-symmetric spaces.

Firstly, let us prove that Ŝ and Â are Hermitian. To see why this is the case, consider the
list of all permutations in SN . If we apply Hermitian conjugation on them, we will get the
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same list, just rearranged. In other words, we need to show that the map:

† :SN → SN (10.6.25)
P̂σ → P̂ †

σ ≡ P̂
†
σ′ (10.6.26)

is bijective. This is clearly true, since † is invertible (it is its own inverse). So:

Ŝ† = 1
N !

∑
σ∈SN

P̂ †
σ = 1

N !
∑

σ′∈SN

P̂σ′ = Ŝ (10.6.27)

The situation is slightly more complex for the anti-symmetrizer. Indeed, how do we know
that when we evaluate the Hermitian conjugate of the permutations, their sign will still
match up?

Luckily, this is not the case. Indeed, due to the unitarity of permutations:

P̂ †P̂ = I =⇒ sgn(P̂ †P̂ ) = 1 (10.6.28)

If sgn(P̂ ) 6= sgn(P̂ †), so that one is even and the other odd, wewould find that sgn(P̂ †P̂ ) =
−1, a contradiction. So we need that:

sgn(P̂ †) = sgn(P̂ ) (10.6.29)

and thus:

Â† = 1
N !

∑
σ∈SN

sgn(σ)P̂ †
σ = 1

N !
∑
σ

sgn(σ)P̂ †
σ′ = 1

N !
∑

σ′∈SN

sgn(σ′)P̂σ′ = Â (10.6.30)

Next we prove that, given a permutation P̂σ0 ∈ SN , its action on Ŝ and Â is simply to
rearrange the order of sum of the permutation operators. Indeed

P̂σ0Ŝ = 1
N !

∑
σ∈SN

P̂σ0P̂σ = 1
N !

∑
σ′∈SN

P̂σ′ = S (10.6.31)

and

P̂σ0Â = 1
N !

∑
σ∈SN

sgn(σ)P̂σ0P̂σ (10.6.32)

= 1
N !

∑
σ∈SN

sgn(σ) sgn(σ0)sgn(σ0)︸ ︷︷ ︸
=1

P̂σ0P̂σ (10.6.33)

= 1
N !

sgn(σ0)
∑
σ∈SN

sgn(σ)sgn(σ0)P̂σ0P̂σ (10.6.34)

= 1
N !

∑
σ′∈SN

sgn(σ′)P̂σ′ = sgn(σ0)A (10.6.35)

due to the closure property of SN .
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The final step in proving that Â and Ŝ are orthogonal projectors, is to show that Ŝ2 = Ŝ,
Â2 = Â and ŜÂ = ÂŜ = 0. Wewill use the twoproperties proven above in the calculations:

Ŝ2 = 1
N !

∑
σ∈SN

P̂σŜ = 1
N !

∑
σ∈SN

P̂σŜ = 1
N !

∑
σ∈SN

Ŝ = Ŝ (10.6.36)

since there are N ! terms in the sum. Similarly:

Â2 = 1
N !

∑
σ∈SN

sgn(σ)P̂σÂ = 1
N !

∑
σ∈SN

sgn(σ)sgn(σ)︸ ︷︷ ︸
=1

Â = Â (10.6.37)

Finally:

ÂŜ = 1
N !

∑
σ∈SN

sgn(σ)P̂σŜ = 1
N !

∑
σ

sgn(σ)Ŝ = 1
N !
Ŝ
∑
σ

sgn(σ) = 0 (10.6.38)

where the sum vanishes since the number of even permutations is equal to the number of
odd permutations. Hence Ŝ, Â are indeed orthogonal projection operators. Furthermore,

we easily note that for a |ψ〉 ∈
N⊗
H:

P̂σŜ |ψ〉 = Ŝ |ψ〉 =⇒ Ŝ |ψ〉 ∈ SymN (H) (10.6.39)

P̂σÂ |ψ〉 = sgn(σ)Â |ψ〉 =⇒ Â |ψ〉 ∈
N∧
H) (10.6.40)

We therefore conclude that:

Ŝ :
N⊗
H → SymN (H)

Â :
N⊗
H →

N∧
H

(10.6.41a)

(10.6.41b)

do indeed project the direct product space onto the symmetric state and anti-symmetric
state spaces.

10.7 The hidden postulate: Symmetrization Postulate
One might wonder what role mixed states ( states that are neither symmetric or anti-
symmetric) of identical particles play in quantum mechanics. Although they are math-
ematically possible, experiments have never shown them to be physically relevant. We
may therefore create an additional postulate:

Postulate V. In a system of N identical particles, physically realizable states are either
fermionic (totally symmetric) or bosonic (totally anti-symmetric).

Quantum field theory gives us another way to define fermions and bosons according to
their spin. Indeed, integer spin particles are bosons, whereas half-integer spin particles
are fermions.
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We can use these facts to examine the spin statistics of composite systems. For example,
consider two hydrogen atoms. This system will be described by ψ(e1, p1, e2, p2). Since
electrons and protons are both fermions, we need:

ψ(e1, p1, e2, p2) = −ψ(e2, p1, e1, p2) and ψ(e1, p1, e2, p2) = −ψ(e1, p2, e2, p1) (10.7.1)

Therefore, exchanging both hydrogen atoms is equivalent to exchanging both protons and
both electrons:

ψ(e1, p1, e2, p2) = ψ(e2, p2, e1, p1) (10.7.2)

Therefore a hydrogen atom is a boson.

So how does all of this help us solve the exchange degeneracy problem? Given a mathe-

matical state |ψ〉 ∈
N⊗
H, there are up toN ! many possible representations due to exchange

degeneracy. We know however that the only physical representations are the symmetric
and anti-symmetric states, which are, as it turns out, unique (up to scaling).

Indeed, suppose there are two states |ψ1〉 , |ψ2〉 ∈ SymN (H). Therefore, they can bewritten
as:

|ψ1〉 =
∑
σ∈SN

c1
σP̂σ |ψ〉 , |ψ2〉 =

∑
σ∈SN

c2
σP̂σ |ψ〉 (10.7.3)

and:
|ψ1〉 = Ŝ |ψ1〉 = Ŝ

∑
σ∈SN

c1
σP̂σ |ψ〉 =

∑
σ

c1
σŜP̂σ |ψ〉 = Ŝ |ψ〉

∑
σ

c1
σ (10.7.4)

Similarly:
|ψ2〉 = Ŝ |ψ〉

∑
σ∈SN

c2
σ =⇒ |ψ2〉 ∝ |ψ1〉 (10.7.5)

so the two symmetric states must be proportional to each other. The same applies for anti-
symmetric states.

So there is no ambiguity in what state representation to choose for N identical particle-
system, depending on the type of particles it is either the fermionic or bosonic state.

Finally, we canuse the definition of determinants to simplify the expression for the fermionic
state.

Let |ψ〉 ∈
N⊗
H, so it may be expanded as:

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψN 〉 (10.7.6)

Then:
P̂σ |ψ〉 = |ψσ(1)〉 ⊗ |ψσ(2)〉 ⊗ ...⊗ |ψσ(N)〉 (10.7.7)

so that:
Â |ψ〉 = 1

N !
∑
σ∈SN

sgn(σ) |ψσ(1)〉 ⊗ |ψσ(2)〉 ⊗ ...⊗ |ψσ(N)〉 (10.7.8)
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Note that for a generic matrix Awith elements Aij :

detA =
∑
σ∈SN

sgn(σ)Bσ(1),1Bσ(2),2...Bσ(N),N (10.7.9)

so that:

ψA(r1, ..., rN ) =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) ψ1(r3) . . . ψ1(rN )
ψ2(r1) ψ2(r2) ψ2(r3) . . . ψ2(rN )
ψ3(r1) ψ3(r2) ψ3(r3) . . . ψ3(rN )

...
...

... . . . ...
ψN (r1) ψN (r2) ψN (r3) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
(10.7.10)

Similarly, using a sign-less determinant called permanent:

ψS(r1, ..., rN ) =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ1(r2) ψ1(r3) . . . ψ1(rN )
ψ2(r1) ψ2(r2) ψ2(r3) . . . ψ2(rN )
ψ3(r1) ψ3(r2) ψ3(r3) . . . ψ3(rN )

...
...

... . . . ...
ψN (r1) ψN (r2) ψN (r3) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
+

(10.7.11)
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11.1 Rotations
We denote by Û(ϕk) the operator associated with a rotation by ϕ about the z-axis. As in
the case of translations, we may study this operator from two pictures, namely the active
and passive pictures.

Let us start in the active picture, where the state itself gets rotated:

|ψ〉 7→ |ψR〉 = Û(ϕk) |ψ〉 (11.1.1)

The rotated state |ψR〉must satisfy the classical relations:

〈x〉R = 〈x〉 cosϕ− 〈y〉 sinϕ (11.1.2)
〈y〉R = 〈x〉 sinϕ+ 〈y〉 cosϕ (11.1.3)
〈px〉R = 〈px〉 cosϕ− 〈p〉y sinϕ (11.1.4)
〈py〉R = 〈px〉 sinϕ+ 〈py〉 cosϕ (11.1.5)

where
〈
Â
〉
R
is the expectation value of Â in the state |ψR〉. Similarly

〈
Â
〉
is the expectation

value in the state |ψ〉.

Similarly to translations, we will define the action of Û(ψk) in the position representation
as:

Û(ψk) |x, y〉 = |x cosϕ− y sinϕ, x sinϕ+ y cosϕ〉 (11.1.6)

and proceed to construct an explicit form of Û . We begin by considering an infinitesimal
rotation εk which we can expand to first order:

Û(εk) = I− iεL̂z
ℏ

(11.1.7)

We need to determine L̂z , the generator of infinitesimal rotations. Then (11.1.6) becomes:

Û(εk) |x, y〉 = |x− yε, xε+ y〉 (11.1.8)

− II.148 −



11.1. ROTATIONS

Infinitesimal rotations

The infinitesimal rotation operator Û(ϵk) has the action on the basis states:

Û(εk) |x, y〉 = |x− yε, xε+ y〉

and may be expressed as

Û(εk) = I− iεL̂z
ℏ

Now thatwe have a definition of how the base states rotate infinitesimally, we can infinites-
imally rotate any state |ψ〉 by expanding it in this basis:〈

x, y
∣∣∣ Û(εk)

∣∣∣ψ〉 =
¨ 〈

x, y
∣∣∣ Û(εk)

∣∣∣x′, y′
〉 〈
x′, y′ ∣∣ψ〉 dx′dy′ (11.1.9)

=
¨ 〈

x, y
∣∣x′ − y′ε, x′ε+ y′〉ψ(x′, y′)dx′dy′ (11.1.10)

=
¨

δ(x′ = x+ y′ε, y′ = y − x′ε)ψ(x′, y′)dx′dy′ (11.1.11)

=
¨

δ(x′ = x+ yε, y′ = y − xε)ψ(x′, y′)dx′dy′ (11.1.12)

= ψ(x+ yε, y − xε) (11.1.13)

where to go from the third line to fourth line, we solved:

y′ = y − x′ε = y − (x+ y′ε)ε = y − xε+O(ε2) (11.1.14)
x′ = x+ y′ε = x+ (y − xε)ε = x+ yε+O(ε2) (11.1.15)

We can now taylor expand both sides to first order and use (11.1.7):

〈x, y |1 |ψ〉 − iε

ℏ

〈
x, y

∣∣∣ L̂z ∣∣∣ψ〉 = ψ(x, y) +
(
yε
∂ψ

∂x
− xε∂ψ

∂y

)
(11.1.16)

implying that in the position basis:

〈
x, y

∣∣∣ L̂z ∣∣∣ψ〉 =
(
− iℏx ∂

∂y
+ iℏy

∂

∂x

)
ψ(x, y) (11.1.17)

Now we may express (11.1.17) in polar coordinates in a more revealing way. Indeed:

∂

∂θ
= ∂x

∂θ

∂

∂x
+ ∂y

∂θ

∂

∂y
(11.1.18)

= −r sin θ ∂
∂x

+ r cos θ ∂
∂y

(11.1.19)

= −y ∂
∂x

+ x
∂

∂y
(11.1.20)

We may recognise the momentum and position operators in (11.1.17) so that:
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Generator of infinitesimal rotations

The infinitesimal rotation operator Û(εz) is generated by the angular momentum
operator L̂z defined as:

L̂z = x̂p̂y − ŷp̂x (11.1.21)

or
L̂z = −iℏ ∂

∂θ
(11.1.22)

In the passive picture we start by looking at how the position and momenta operators are
mapped:

Û †(ϕk)x̂Û(ϕk) = x̂− ŷε (11.1.23)
Û †(ϕk)ŷÛ(ϕk) = ŷ + x̂ε (11.1.24)
Û †(ϕk)p̂xÛ(ϕk) = p̂x − p̂yε (11.1.25)
Û †(ϕk)p̂yÛ(ϕk) = p̂y + p̂xε (11.1.26)

(11.1.27)

We can substitute Û(ψk) = I− iεL̂z
ℏ into the first to find:

(
I + iεL̂z

ℏ

)
x̂

(
I− iεL̂z

ℏ

)
= x̂− iε

ℏ
[x̂, L̂] = x̂− ŷε (11.1.28)

=⇒ [x̂, L̂z] = −iℏŷ (11.1.29)

where we used L†
z = Lz which follows directly from the fact that Û †(ψk)Û(ψk) = I. Simi-

larly we also find the other relations:

Commutation relations with L̂z

We have that:

[x̂, L̂z] = −iℏŷ [ŷ, L̂z] = iℏx̂

[p̂x, L̂z] = −iℏp̂y, [p̂y, L̂z] = iℏp̂x

These equations yield (??)

11.2 Derivation of L̂z (passive picture)
We begin by considering [x̂1, f(x̂)] where x̂ = (x̂1, x̂2, x̂3, x̂4) in multi-index notation (see
tensor analysis inmathmethods volume). Then, assuming f is well behaved, we canwrite
it as the series expansion:

f(x̂) =
∞∑
n=0

∂nf(x̂))
n!

x̂n =
∞∑
n=0

knx̂ (11.2.1)
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so that:
[x̂1, f(x̂)] =

∞∑
n=0

kn[x̂1, x̂
n] (11.2.2)

However:

[x̂1, x̂
n] = [x̂1, x̂

n1
1 x̂n2

2 x̂n3
3 x̂n4

4 ] (11.2.3)
= x̂n1

1 [x̂1, x̂
n2
2 ]x̂n3

3 x̂n4
4 + x̂n1

1 x̂n2
2 [x̂1, x̂

n3
3 ]x̂n4

4 + x̂n1
1 x̂n2

2 x̂n3
3 [x̂1, x̂

n4
4 ] (11.2.4)

since [x̂1, x̂
n
1 ] = 0. Now we must let x̂1 be x̂, ŷ, p̂x or p̂y so that accordingly:

x̂1 = x̂, x̂2 = ŷ, x̂3 = p̂x, x̂4 = p̂y =⇒ [x̂, x̂] = x̂n1 ŷn2 [x̂, p̂n3
x ]p̂n4

y (11.2.5)
x̂1 = ŷ, x̂2 = x̂, x̂3 = p̂x, x̂4 = p̂y =⇒ [ŷ, x̂] = ŷn1 x̂n2 p̂n3

x [ŷ, p̂n4
y ] (11.2.6)

x̂1 = p̂x, x̂2 = x̂, x̂3 = ŷ, x̂4 = p̂y =⇒ [p̂x, x̂] = p̂n1
x [p̂x, x̂n2 ]ŷn3 p̂n4

y (11.2.7)
x̂1 = p̂y, x̂2 = x̂, x̂3 = ŷ, x̂4 = p̂x =⇒ [p̂y, x̂] = p̂n1

y x̂
n2 [p̂y, ŷn3 ]p̂n4

y (11.2.8)

Consequently we find that:

[x̂, L̂z] =
∞∑
n=0

kn
(
x̂n1 ŷn2 [x̂, p̂n3

x ]p̂y
)

(11.2.9)

and using the relation:

[Â, B̂n] =
n∑
k=1

B̂n−k[Â, B̂]B̂k−1 (11.2.10)

then:
[x̂, p̂n3

x ] =
n3∑
k=1

p̂n3−k
x [x̂, p̂x]p̂k−1

x = iℏn3p̂
n3−1 (11.2.11)

Hence:
[x̂, L̂z] =

∞∑
n=0

iℏknn3
(
x̂n1 ŷn2 p̂n3−1

x p̂n4
y

)
= iℏ

∂L̂z
∂p̂x

(11.2.12)

Similarly we also find that:

[ŷ, L̂z] =
∞∑
n=0

iℏknn4
(
ŷn1 x̂n2 p̂n3

x p̂
n4−1
y

)
= iℏ

∂L̂z
∂p̂y

(11.2.13)

and:

[p̂x, L̂z] = −
∞∑
n=0

iℏknn2
(
p̂n1
x x̂

n2−1p̂n3
x p̂

n4
y

)
= −iℏ∂L̂z

∂x̂
(11.2.14)

[p̂y, L̂z] = −
∞∑
n=0

iℏknn3
(
p̂n1
y x̂

n2 ŷn3−1p̂n4
y

)
= −iℏ∂L̂z

∂ŷ
(11.2.15)
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Equating these relations to 8.2.25 and 8.2.26 we get that

∂L̂z
∂p̂x

= −ŷ
∂L̂z
∂p̂y

= x̂
∂L̂z
∂x̂ = p̂y
∂L̂z
∂ŷ = −p̂x

=⇒


L̂z = g(x̂, ŷ, p̂y)− ŷp̂x
L̂z = g(x̂, p̂x, p̂y)− ŷp̂x
L̂z = f(ŷ, p̂x, p̂y) + x̂p̂y

L̂z = f(ŷ, p̂x, p̂y) + x̂p̂y

(11.2.16)

Comparing the first two we find that:

g(x̂, ŷ, p̂x) = g(x̂, p̂x, p̂y) =⇒ g(x̂, p̂y) (11.2.17)

and similarly comparing the latter two:

f(p̂x, ŷ, p̂y) = f(ŷ, p̂x, p̂y) =⇒ f(ŷ, p̂x) (11.2.18)

Therefore:

f(ŷ, p̂x)− g(x̂, p̂y) = −x̂p̂y − ŷp̂x =⇒
{
f(ŷ, p̂x) = −ŷp̂x + cI

g(x̂, p̂y) = x̂p̂y + cI
(11.2.19)

and hence we conclude that:
L̂z = x̂p̂y − ŷp̂x + cI (11.2.20)

11.3 Finite rotations
Let us now consider a finite rotation Û(ϕk). We can split the rotation into several infinites-
imal rotations by ϕ/N , and compose them:

Û(ϕk) = lim
N→∞

(
I− iϕ

ℏN
L̂z

)N
= e−iϕL̂z/ℏ (11.3.1)

hence we may define:

Finite rotation operator

The finite rotation operator Û(ϕk) rotates the state by ϕ counterclockwise about the
z-axis:

Û(ϕk) = e−iϕL̂z/ℏ (11.3.2)

It is not immediately clear that this operator rotates the state. If we change to polar coor-
dinates however, we find:

L̂z −→ −iℏ
∂

∂θ
(11.3.3)

so that:
Û(ϕk)→ e−ϕ ∂

∂θ (11.3.4)
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If we act on some ψ(r, θ) then we retrieve a Taylor expansion:

e−ϕ ∂
∂θψ(r, θ) =

∞∑
k=0

(−ϕ)k ∂
kψ

∂θk
= ψ(r, θ − ϕ) (11.3.5)

as desired.

We define L̂z to be the angular momentum operator, since it is analogous to the classical
angular momentum lz = xpy − ypx with the substitution of operators instead dynamical
variables.

Rotational invariance

We define a system with Hamiltonian Ĥ to be rotationally invariant if:

Û †(R)ĤÛ(R) = Ĥ (11.3.6)

so that, by Ehrenfest’s theorem:

[L̂z, Ĥ] = 0 =⇒ d 〈Lz〉
dt

= 0 (11.3.7)

Another important application is that two operators that commutate share a common
eigenbasis that diagonalizes them. So in this case the angular momentum operator and
the hamiltonian operator share common eigenvalues in some basis, which we shall inves-
tigate next.

11.4 Eigenvalue problem of L̂z
Consider:

L̂z |lz〉 = lz |lz〉 =⇒ −iℏ∂ψ(r, θ)
∂θ

= lzψ (11.4.1)

The solution to this equation is:

ψ(r, θ) = f(r)eilzθ/ℏ (11.4.2)

where f(r) is some arbitrary normalizable radial function. It seems like there is no restric-
tion on the eigenvalues lz . However, we should also impose the condition of Hermiticity:〈

ψ1
∣∣∣ L̂z ∣∣∣ψ2

〉
=
〈
ψ2
∣∣∣ L̂z ∣∣∣ψ1

〉∗
(11.4.3)

⇐⇒
ˆ 2π

0

ˆ ∞

0
ψ∗

1

(
− iℏ∂ψ2

∂θ

)
rdrdθ =

(ˆ ∞

0

ˆ 2π

0
ψ∗

2

(
− iℏ∂ψ1

∂θ

)
rdrdθ

)∗

(11.4.4)

⇐⇒
ˆ 2π

0

ˆ ∞

0
ψ∗

1

(
− iℏ∂ψ2

∂θ

)
rdrdθ = −

(ˆ ∞

0

ˆ 2π

0
ψ∗

2
∂ψ1
∂θ

rdrdθ

)∗

(11.4.5)
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We can integrate the LHS by parts:
ˆ 2π

0

ˆ ∞

0
ψ∗

1

(
− iℏ∂ψ2

∂θ

)
rdrdθ =

ˆ ∞

0

(
[ψ∗

1ψ2]2π0 −
ˆ 2π

0
ψ2
∂ψ∗

1
∂θ

dθ

)
rdr (11.4.6)

=
ˆ ∞

0
[ψ∗

1ψ2]2π0 rdr −
ˆ ∞

0

ˆ 2π

0
ψ2
∂ψ∗

1
∂θ

dθrdr (11.4.7)

=
ˆ ∞

0
[ψ∗

1ψ2]2π0 rdr −
(ˆ ∞

0

ˆ 2π

0
ψ∗

2
∂ψ1
∂θ

dθrdr

)∗

(11.4.8)

= −
( ˆ ∞

0

ˆ 2π

0
ψ∗

2
∂ψ1
∂θ

dθrdr

)∗

(11.4.9)

⇐⇒
ˆ ∞

0
[ψ∗

1ψ2]2π0 rdr = 0 (11.4.10)

This condition is satisfied whenever:

ψ(r, 2π) = ψ(r, 0) (11.4.11)

In this case, we find that:

f(r)eilz2π/ℏ = f(r) =⇒ lz = mℏ, ∀m ∈ Z (11.4.12)

Angular momentum quantization

The possible values for angular momentum eigenvalues are integer multiples:

lz = mℏ, ∀m ∈ Z (11.4.13)

where we callm the magnetic quantum number.

Alternatively, we could have also derived this result by considering a superposition of two
lz eigenstates:

ψ(r, θ) = f1(r)eiθlz/ℏ + f2(r)eiθl′z/ℏ (11.4.14)

then if we rotate by 2π we expect to get the same state:

e2πiL̂z/ℏψ(r, θ) = e2πilz/ℏf1(r)eiθlz/ℏ + e2πil′z/ℏf2(r)eiθl′z/ℏ = ψ(r, θ) (11.4.15)
=⇒ (e2πilz/ℏ − 1)f1(r)eiθlz/ℏ + (e2πil′z/ℏ − 1)f2(r)eiθl′z/ℏ = 0 (11.4.16)

but the eigenfunctions from distinct eigenvalues are linearly independent, so that:

e2πilz/ℏ = e2πil′z/ℏ = 1 =⇒ lz − l′z = mℏ (11.4.17)

Now we argue by symmetry that if we can create an eigenstate of angular momentum lz ,
then we can create another eigenstate of angular momentum −lz by flipping the system
in the plane it resides in. Hence, the angular momentum eigenvalues must be symmetric
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about zero so that:
lz = ±ℏ

2
,±3ℏ

2
... or lz = 0,±ℏ,±2ℏ, ... (11.4.18)

Notice that choosing a particular eigenvalue does not fix the associated eigenvector, due
to the freedom in choosing f(r). Let us define:

Φm(θ) = 1√
2π
eimθ (11.4.19)

so that:
〈Φm |Φn〉 =

ˆ 2π

0

1
2π
ei(n−m)θdθ = δmn (11.4.20)

giving orthonormality.

L̂z eigenfunctions

We can express the angular momentum eigenfunctions as:

|ψ〉 = |fm〉 ⊗ |Φm〉 ⇐⇒ ψm(r, θ) = fm(r)Φm(θ) (11.4.21)

where
〈θ |Φm〉 = Φm(θ) = 1√

2π
eimθ, 〈Φm |Φn〉 = δmn (11.4.22)

Luckily, the choice of fm(r) does not affect the results of an observation, as we will see in
the next example. It can only affect the wave-function which is not directly observable.

Example (Sh. 12.3.3)
A particle is described by the wave function:

ψ(r, θ) = Ae−r2/2a2 cos2 θ (11.4.23)

What are the possible observable angular momenta, and the probability of measur-
ing them upon observation?

Solution We begin by expressing ψ as a superposition of angular momentum eigen-
functions:

ψ(r, θ) = Ae−r2/2a2
(
eiθ + e−iθ

2

)2
(11.4.24)

= Ae−r2/2a2
(1

4
e2iθ + 1

4
e−2iθ + 1

2

)
(11.4.25)

= A(r)
(1

4
Φ2 + 1

4
Φ−2 + 1

2
Φ0

)
=⇒ |ψ〉 = A(r)

(1
4
|Φ2〉+ 1

4
|Φ−2〉

1
2
|Φ0〉

)
(11.4.26)
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We see that the only allowed values of the angular momentum for this particle are
0,±2ℏ. Their probabilities are:

P (lz = 0) = | 〈Φ0 |ψ〉 |2

〈ψ |ψ〉
=
|A(r)

(1
4 〈Φ0 |Φ2〉+ 1

4 〈Φ0 |Φ−2〉+ 1
2 〈Φ0 |Φ0〉

)
|2

|A(r)|2
( 1

16 〈Φ2 |Φ2〉+ 1
16 〈Φ−2 |Φ−2〉+ 1

4 〈Φ0 |Φ0〉
)

(11.4.27)

=
1
4

1
16 + 1

16 + 1
4

= 2
3

(11.4.28)

Similarly:

P (lz = ±2ℏ) =
|A(r)1

4 〈Φ±2 |Φ±2〉 |2
1
16 + 1

16 + 1
4

= 1
6

(11.4.29)

◀

The eigenvalue equation for the Hamiltonian in a rotationally invariant problem (where
V is independent of θ):[

− ℏ2

2µ

(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂

∂θ2

)
+ V (r)

]
ψE(r, θ) = EψE(r, θ) (11.4.30)

but since [L̂z, Ĥ] = 0, the two operators share a common eigenbasis, and we can substitute
ψE,m(r, θ) = fE,m(r)Φm(θ) into the above equation to find that:

[
− ℏ2

2µ

(
∂2

∂r2 + 1
r

∂

∂r
− m2

r2

)
+ V (r)

]
fE,m(r) = EfE,m(r) (11.4.31)

Notice the term ℏ2m2

2µr2 = l2z
2µr2 , which is caused by substituting angular momentum eigen-

functions. If we take its gradient:

F = −∇
(ℏ2m2

2µr2

)
= ∂

∂r

(ℏ2m2

2µr2

)
r̂ = ℏ2m2

µr3 r̂ = l2z
µr3 r̂ (11.4.32)

This is similar in form to the classical centrifugal force:

Fcent = µv2

r
r̂ = l2z

µr3 r̂ (11.4.33)

Example (Sh. 12.3.6)
Consider a particle of mass µ constrained to move on a circular path of radius a.
Show that Ĥ = L̂z

2

2µa2 and solve the eigenvalue problem for the Hamiltonian.
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Solution In the position representation, the Hamiltonian can be expressed as:

Ĥ → − ℏ2

2µ

(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂

∂θ2

)
(11.4.34)

Since the particle can only move in a circle of radius a, only the third tirm survives:

Ĥ → − ℏ2

2µa2
∂2

∂θ2 = 1
2µa2

(
− iℏ ∂

∂θ

)
→ L̂2

z

2µa2 (11.4.35)

Therefore we need to solve the TISE equation:

L̂2
z

2µa2 |E〉 = E |E〉 (11.4.36)

which in polar coordinates reads:

− ℏ2

2µa2
∂2ψE
∂θ2 = EψE =⇒ ∂2ψE

∂θ2 = −2µa2E

ℏ2 ψE (11.4.37)

Since this is a rotationally invariant problem (the potential V (r) = 0 is symmetric),
we can assert that L̂z and Ĥ share a common eigenbasis. So, substituting ψE,m =
fE,m(r)eimθ we find that:

−m2eimθ = −2µa2E

ℏ2 eimθ =⇒ Em = m2ℏ2

2µa2 (11.4.38)

This means that the energy eigenvalues are two-fold degenerate, for each angular mo-
mentum eigenvalue we may have two different energy eigenvalues. ◀

Example (Sh. 12.3.7)
Consider the Hamiltonian of the isotropic oscillator:

Ĥ =
p̂2
x + p̂2

y

2µ
+ 1

2
µω2(x̂2 + ŷ2) (11.4.39)

Follow thederivation of the 1Dharmonic oscillator to find the energy eigenfunctions.

Solution Physically, we see that this system is rotationally invariant, since the po-
tential V (r) = 1

2µω
2r2 only has a radial dependence.

Mathematically, we wish to show that [Ĥ, L̂z] = 0. This is easy to verify using the
commutation relations in 8.2.25 and 8.2.26 and the identity:

[Â2, B̂] = Â[Â, B̂] + [Â, B̂]Â (11.4.40)
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then

[p̂2
x, L̂z] = −iℏp̂xp̂y (11.4.41)

[p̂2
y, L̂z] = iℏp̂xp̂y (11.4.42)

[x̂2, L̂z] = −iℏx̂ŷ (11.4.43)
[ŷ2, L̂z] = iℏx̂ŷ (11.4.44)

We find that:
[Ĥ, L̂z] = 0 (11.4.45)

as desired. Hence we can find a common eigenbasis for Ĥ and L̂z . Therefore, we
can substitute angular momentum eigenfunctions ψE,m(r, θ) = fE,m(r)Φm(θ) into the
TISE (for sake of brevity we will simply write f(r) instead of fE,m(r):[

− ℏ2

2µ

(
∂2

∂r2 + 1
r

∂

∂r
− m2

r2

)
+ 1

2
µω2r2

]
f(r) = Ef(r) (11.4.46)

Now let us examine the limiting case as r → 0. Here we should examine solutions of
the form f(r) = rk

k(k − 1)rk−2 + 1
r
krk−1 − m2

r2 r
k = −2µE

ℏ2 rk (11.4.47)

All terms on the LHS are of power k − 2, whereas the RHS is of power k, and hence
vanishes in the limit as r → 0 so that:

k(k − 1) + k −m2 = 0 =⇒ k = |m| (11.4.48)

since f(r) should not diverge. Hence f(r)→ r|m| as r → 0.

Now we consider the case r →∞. Here we retrieve:

∂2f

∂r2 = µ2ω2r2

ℏ2 f (11.4.49)

which is identical to the case in the one dimensional oscillator:

f(r)→ rme−µωr2/2ℏ (11.4.50)

so up to powers of r we find that:

f(r)→ e−µωr2/2ℏ (11.4.51)

Consequently we assume that f(r) = r|m|e−µωr2/2ℏU(r). In dimensionless variables
ε = E

ℏω and y =
√

µω
ℏ r then f(r) = y|m|e−y2/2u(r). Hence we get:

(
∂2

∂y2 + 1
y

∂

∂y
− m2

y2 − y
2
)
f(y) = −2εf(y) (11.4.52)
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Now we find that, letting n = |m|:

∂f

∂y
= e−y2/2(nyn−1u(y)− yn+1u(y) + ynu′(y)) (11.4.53)

so that:
1
y

∂f

∂y
= yne−y2/2(nu(y)

y2 − u(y) + u′(y)
y

) (11.4.54)

Then

∂2f

∂y2 = yne−y2/2
[
u(y)

(n(n− 1)
y2 − 2n− 1 + y2

)
+ u′(y)

(2n
y
− 2y

)
+ u′′(y)

]
(11.4.55)

and so 8.5.50 turns into:

u′′(y)+u′(y)
(
−2y+ 2n

y
+ 1
y

)
+u(y)

(n(n− 1)
y2 −2n−1+y2−1+ n

y2−
n2

y2 −y
2
)

= −2εu(y)
(11.4.56)

and upon simplification, and resubstituting n = |m|:

u′′(y) + u′(y)
(2|m|+ 1

y
− 2y

)
+ u(y)(2ε− 2|m| − 2) = 0 (11.4.57)

We can now use the power series ansatz:

u(y) =
∞∑
r=0

cry
r (11.4.58)

we end up with:

∞∑
r=0

cr
(
r(r + 2|m|)yr−2 + yr(2ε− 2|m| − 2r − 2)

)
= 0 (11.4.59)

The first term is equal to:

∞∑
r=2

crr(r + 2|m|)yr−2 =
∞∑
r=0

cr+2(r + 2)(r + 2 + 2|m|)yr (11.4.60)

Hence, since yk powers are linearly independent, we equate each coefficient to zero:

ck+2(k + 2)(k + 2 + 2|m|) + ck(2ε− 2|m| − 2k − 2) = 0 (11.4.61)

and hence the two-term relation for ck is:

ck+2
ck

= 2(|m|+ k + 1− ε)
(k + 2)(k + 2 + 2|m|)

(11.4.62)
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Hence, as y →∞ we find that:
ck+2
ck
→ 2

k
(11.4.63)

Observe that ey2 has a similar asymptotic behaviour:

ey
2 =

∞∑
k=0

y2k

k!
(11.4.64)

the coefficient of the power yr+2 is br+2 = 1(
r
2 +1
)

!
, and the coefficient of yr is br = 1(

r
2

)
!
.

Their ratio is for large r where yr dominates:

br+2
br

=
(
r
2
)
!(

r
2 + 1

)
!

= 1
r
2 + 1

∼=
2
r

(11.4.65)

In other words, our present solution is asymptotic to ey2 , dominating limiting be-
haviour e−y2/2 inherent to the solution, and giving divergence. This means that the
series must be truncated at some term n, so that:

|m|+ n+ 1− ε = 0 =⇒ ε = |m|+ n+ 1 (11.4.66)

This takes care of the behaviour as y → ∞, but what about y → 0? If we take n to be
odd, and assuming c1 6= 0

f(y) ∼= y|m|
n∑
r=0

cry
r ∼= y|m|+1 (11.4.67)

so we do not retrieve y|m|. If we have c1 = 0, then c2k+1 = 0 for all k, and thus the
series actually terminates at an even n. So we can set n = 2k and find finally that:

Em,n = (2k + |m|+ 1)ℏω, n = 0, 1, 2... (11.4.68)

◀

Example (Sh. 12.3.8)
Consider a particle of mass µ and charge q in a vector potential A = B

2 (−yi + xj).

Solution The magnetic field is:

B = ∇×A = Bk (11.4.69)

For a classical particle, the equation of motion would become:

µr̈ = q

c
ṙ× B =⇒

ẍ = qB
µc ẏ

ÿ = − qB
µc ẋ

(11.4.70)
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Differentiating the first equation and substituting the second equation:

v̈x +
(
qB

µc

)2
vx = 0 =⇒ vx = A cos(ω0t+ ϕ0) (11.4.71)

where ω0 = B
µc . Therefore

vy = −A sin(ω0t+ ϕ0) (11.4.72)

Hence:

x = A

ω0
sin(ω0t+ ϕ) + c1 (11.4.73)

y = A

ω0
cos(ω0t+ ϕ) + c2 (11.4.74)

The particle’s trajectory is then:

(x− c1)2 + (y − c2)2 = A2

ω2
0

(11.4.75)

where c1, c2, ϕ0 are determined by the initial conditions of the particle.

In quantum mechanics, we write the Hamiltonian of this system as:

Ĥ = |p̂− qA/c|
2

2µ
=

(p̂x + qŷB
2c )2

2µ
+

(p̂y − qx̂B
2c )2

2µ
(11.4.76)

Note that the operators Q̂ = cp̂x+qŷB/2
qB and P̂ = p̂y − qx̂B/2c satisfy the canonical

commutation relations:

[Q̂, P̂ ] =
[(cp̂x + qŷB/2)

qB
, p̂y −

qx̂B

2c

]
(11.4.77)

=
[(cp̂x + qŷB/2)

qB
, p̂y

]
−
[(cp̂x + qŷB/2)

qB
,
qx̂B

2c

]
(11.4.78)

= 1
2

[ŷ, p̂y]−
[
c

qB
p̂x,

qB

2c
x̂

]
(11.4.79)

= 1
2

[ŷ, p̂y] + 1
2

[x̂, p̂x] = iℏ (11.4.80)

We may then write the Hamiltonian (11.4.76) in terms of P̂ and Q̂ as:

Ĥ =
(
qBQ̂

c

)2 1
2µ

+ P̂ 2

2µ
= 1

2
ω2

0µQ̂
2 + P̂ 2

2µ
(11.4.81)

This is exactly the form of a harmonic oscillator with x̂ ↔ Q̂ and p̂x ↔ P̂ . Since the
algebraic solution of the harmonic oscillator relies only on the canonical commutation
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relationship, we have that the allowed energy levels are:

E =
(
n+ 1

2

)
ℏω0, n = 0, 1, 2... (11.4.82)

Alternatively, we may expand (11.4.76) as:

Ĥ = p̂2
x

2µ
+
p̂2
y

2µ
+ q2B2

8µc2 (x̂2 + ŷ2) + qB

2µc
(ŷp̂x − x̂p̂y) (11.4.83)

= p̂2
x

2µ
+
p̂2
y

2µ
+ 1

2
µ
(ω

2

)2
(x̂2 + ŷ2)− ω0

2
L̂z (11.4.84)

= Ĥ
(ω0

2
, µ
)
− ω0

2
L̂z (11.4.85)

where Ĥ
(
ω0
2 , µ

)
is the Hamiltonian of an isotropic two-dimensional harmonic oscilla-

torwithmass µ and frequency ω0
2 . Now consider the basis that diagonalizes Ĥ

(
ω0
2 , µ

)
.

Since our system has rotational symmetry about the z-axis, we can find a common di-
agonal basis for both Ĥ and L̂z . Consequently, wemust have that [Ĥ, L̂z] = 0 implying
that:

[Ĥ
(ω0

2
, µ
)
, L̂z] = 0 (11.4.86)

Therefore the basis diagonalizing Ĥ
(
ω0
2 , µ

)
also diagonalizes L̂z . The eigenvalues of

the isotropic oscillator were found to be:

(k + 1
2
|m|+ 1

2
)ℏω0, k = 0, 1, 2... (11.4.87)

wheremℏ are the associated angular momentum eigenvalues. So:

E = (k + 1
2
|m| − 1

2
m+ 1

2
)ℏω0 (11.4.88)

are the allowed energy levels. If we define n = k+ 1
2 |m|−

1
2m, and note that 1

2 |m|−
1
2m

is either zero or an integerm then we retrieve back (11.4.82). ◀

11.5 Angular momentum in 3D
We may define the angular momentum operators as:

L̂x = ŷp̂z − ẑp̂y (11.5.1)
L̂y = ẑp̂x − x̂p̂z (11.5.2)
L̂z = x̂p̂y − ŷp̂x (11.5.3)

Once again we consider the infinitesimal rotation operators first, and then generalize to
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finite rotations. Here, we find that:

Û(εxi)↔

1 0 0
0 1 −εx
0 εx 1

 (11.5.4)

Û(εyj)↔

 1 0 εy
0 1 0
−εy 0 1

 (11.5.5)

Û(εzk)↔

 1 −εz 0
εz 1 0
0 0 1

 (11.5.6)

Consequently, up to order εxεy

Û(−εyj)Û(−εxi)Û(εyj)Û(−εxi) =

 1 εxεy 0
εxεy 1 0

0 0 1

 = Û(−εxεyk) (11.5.7)

Substituting Û(−εxi) = I− iεxL̂x
ℏ , expanding terms giving εxεy and matching their coeffi-

cients: (
I + iεyL̂y

ℏ

)(
I + iεxL̂x

ℏ

)(
I− iεyL̂y

ℏ

)(
I− iεxL̂x

ℏ

)
=
(
I + iεxεyL̂z

ℏ

)
(11.5.8)

we get that:

εxεyL̂xL̂y
ℏ2 − εxεyL̂yL̂x

ℏ2 + εxεyL̂yL̂x
ℏ2 − εxεyL̂yL̂x

ℏ2 = εxεy[L̂x, L̂y]
ℏ2 = iεxεyL̂z

ℏ
(11.5.9)

We can repeat this process with εyεz and εxεz to find that:

Commutator algebra of angular momentum operators

The angular momentum operators L̂x, L̂y, L̂z satisfy the commutator algebra:

[L̂x, L̂y] = iℏL̂z
[L̂y, L̂z] = iℏL̂x
[L̂z, L̂x] = iℏL̂y

(11.5.10a)
(11.5.10b)
(11.5.10c)

They may be written more compactly as:

L̂× L̂ = iℏL̂ (11.5.11)
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or

[L̂i, L̂j ] = iℏ
3∑

k=1
ϵijkL̂k (11.5.12)

The total angular momentum operator is then defined similarly to vectors:

L̂2 = L̂2
x + L̂2

y + L̂2
z (11.5.13)

Then, clearly:

[L̂2, L̂i] =
3∑
j=1

[L̂2
j , L̂i] =

3∑
j=1

(L̂j [L̂j , L̂i] + [L̂j , L̂i]L̂j) (11.5.14)

= iℏ
3∑
j=1

3∑
k=1

ϵjik(L̂jL̂k + L̂kL̂j) (11.5.15)

= iℏ
( 3∑
j=1

3∑
k=1

ϵjikL̂jL̂k −
3∑
j=1

3∑
k=1

ϵkijL̂kL̂j

)
(11.5.16)

= iℏ
( 3∑
j=1

3∑
k=1

ϵjikL̂jL̂k −
3∑
j=1

3∑
k=1

ϵjikL̂jL̂k

)
(11.5.17)

= 0 (11.5.18)

We may now construct the finite rotation operator in three dimensions. We consider a
rotation by an angle θ in the direction θ̂, and let δθ be an infinitesimal angle about θ̂. Then
the vector r gets mapped by the rotation Û(δθ):

r→ r + δθ × r (11.5.19)

Consequently:

Û(δθ) |ψ〉 =
ˆ ∞

−∞
Û(δθ) |r′〉

〈
r′ ∣∣ψ〉 dr′ (11.5.20)

=
ˆ ∞

−∞
|r′ + δθ × r′〉

〈
r′ ∣∣ψ〉 dr′ (11.5.21)

=⇒
〈
r
∣∣∣ Û(δθ)

∣∣∣ψ〉 =
ˆ ∞

−∞

〈
r
∣∣ r′ + δθ × r′〉 〈r′ ∣∣ψ〉 dr′ (11.5.22)

=
ˆ ∞

−∞
δ(r− (r′ + δθ × r′))

〈
r′ ∣∣ψ〉 dr′ (11.5.23)

= ψ(r− δθ × r) ≈ ψ(r)− (δθ × r) · ∇ψ(r) (11.5.24)

where we used a taylor expansion to first order. Comparing this to:

Û(δθ) = I− iδθL̂θ
ℏ

(11.5.25)
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we find that:

L̂θ = (θ̂ × r) · (−iℏ∇) = −θ̂ · ((−iℏ∇)× r) = θ̂ · (r · (−iℏ∇)) = θ̂ · L̂ (11.5.26)

so L̂θ = θ̂ · L̂ is the generator of rotations about θ̂, and thus:

Û(θ) = lim
N→∞

(
I− iθ · L̂

Nℏ

)N
= e−iθ·L̂/ℏ (11.5.27)

Finite rotation operator

The finite rotation operator Û(θ) rotates the state by θ counterclockwise about the
θ̂-axis:

Û(θ) = e−iθ·L̂/ℏ (11.5.28)

Once again, for rotational invariance to occur we require that:

Û(θ)†ĤÛ(θ) = Ĥ (11.5.29)

for any θ. Choosing θ to be about the x, y, z axes we find that:

[Ĥ, L̂i] = 0 =⇒ [Ĥ, L̂2] = 0 (11.5.30)

It follows that we can always find a common eigenbasis for Ĥ, L̂2 and one of L̂i, usually
L̂z . We cannot find a common eigebasis for all L̂i since they do not commute with each
other.

11.6 The eigen-problem for L̂2 (operator)

Due to their commutativitywe know that L̂2 and L̂z share a common eigenbasis, say |α, β〉:

L̂2 |α, β〉 = α |α, β〉 (11.6.1)
L̂z |α, β〉 = β |α, β〉 (11.6.2)

Lowering and raising operators

We can now define the raising and lower operators:

L̂± = L̂x ± iL̂y (11.6.3)

with

[L̂z, L̂±] = ±ℏL̂± [L̂2, L̂±] = 0 (11.6.4)

These operators are called accordingly because the raise/lower the angular momentum
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eigenvalue lz by ℏwithout altering the eigenvalue of L̂2. For example:

L̂z(L̂± |α, β〉) = (L̂±L̂z ± ℏL̂±) |α, β〉 (11.6.5)
= (β ± ℏ)L̂± |α, β〉 (11.6.6)

and:
L̂2(L̂± |α, β〉) = αL̂± |α, β〉 (11.6.7)

From these it follows that L̂± |α, β〉 is an eigenket of L̂z with eigenvalue β ± ℏ. Similarly,
L̂± |α, β〉 is also an eigenket of L̂2 with eigenvalue α. Hence L̂± |α, β〉 ∝ |α, β ± ℏ〉, and we
can denote the constant of proportionality by C±(α, β) so that:

L̂± |α, β〉 = C±(α, β) |α, β ± ℏ〉 (11.6.8)

Now observe that L̂± produces infinitely many eigenstates |α, β + nℏ〉 of L̂z for a fixed
value of L̂2. This violates common sense, since classically we expect l2z ≤ l2.

More rigorously, in our notation:〈
α, β

∣∣∣ L̂2 − L̂2
z

∣∣∣α, β〉 = α− β2 =
〈
α, β

∣∣∣ L̂2
x + L̂2

y

∣∣∣α, β〉 (11.6.9)

and since L̂2
x + L̂2

y is positive, this implies that α ≥ β2. So, there must be a state |α, βmax〉
which can no longer be raised:

L̂+ |α, βmax〉 = 0 (11.6.10)

and a state |α, βmin〉which can no longer be lowered:

L̂− |α, βmin〉 = 0 (11.6.11)

Now let us take the adjoint of (11.6.8):

〈α, β| L̂∓ = 〈α, β ± ℏ|C∗
±(α, β) (11.6.12)

and sandwiching (11.6.8) with (11.6.12) we find that:〈
α, β

∣∣∣ L̂∓L̂±
∣∣∣α, β〉 = |C±(α, β)|2 〈α, β ± ℏ |α, β ± ℏ〉 = |C±(α, β)|2 (11.6.13)

Also:

L̂∓L̂± = (L̂x ∓ iL̂y)(L̂x ± iL̂y) (11.6.14)
= L̂2

x + L̂2
y ± i(L̂xL̂y − L̂yL̂x) (11.6.15)

= L̂2 − L̂2
z ∓ ℏL̂z (11.6.16)

Consequently we can write (11.6.13) as:

|C(α, β)|2 = |L̂± |α, β〉 |2 = α− β2 ∓ ℏβ (11.6.17)
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Therefore:

|L̂+ |α, βmax〉 |2 = α− β2
max − ℏβmax = 0 (11.6.18)

|L̂− |α, βmin〉 |2 = α− β2
min + ℏβmin = 0 (11.6.19)

It follows immediately that:

α = βmax(βmax + ℏ), βmax = −βmin (11.6.20)

Also note that to go from |α, βmax〉 to |α, βmin〉, we need to apply L̂− k times for some
integer k, decreasing β by ℏ every time. Thus:

βmax − βmin = 2βmax = kℏ =⇒ βmax = ℏk
2

(11.6.21)

so that given some integer k, we refer to k
2 as the angular momentum of the state:

βmax = ℏk
2

= −βmin, α = βmax(βmax + ℏ), k = 0, 1, 2... (11.6.22)

In more conventional notation, we set l = βmax and m = β, so the eigenvalues mℏ of L̂z
form a ladder with spacing ℏ. The maximum and minimum eigenvalues are given by ±lℏ
respectively, where l is the maximum value ofm. The corresponding eigenvalue for L̂2 is
α = l(l + 1)ℏ2.

Eigenvalues of L̂2 and L̂z

The eigenvalues of L̂2 and L̂z are:

L̂2 |l,m〉 = l(l + 1)ℏ2 |l,m〉 , l = 0, 1
2
, 1, ...

L̂z |l,m〉 = mℏ |l,m〉 , |m| ≤ l

(11.6.23a)

(11.6.23b)

We call l the angular momentum quantum number, andm the magnetic quantum
number.

Herewe should have called |l,m〉 as |l(l + 1),m〉, but for sake of brevity the former notation
was adopted. We then rewrite the eigenvalue equation as:

L̂± |l,m〉 = C±(l,m) |l,m± 1〉 (11.6.24)

Now, using (11.6.23):

|C±(l,m)|2 =
〈
l,m

∣∣∣ L̂2 − L̂2
z ∓ ℏL̂z

∣∣∣ l,m〉 (11.6.25)

= l(l + 1)ℏ2 −m2ℏ±mℏ2 (11.6.26)
= ℏ2(l ∓m)(l ±m+ 1) (11.6.27)
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so that:

Ladder operator matrix elements

The lowering and raising operators act on |l,m〉 as follows:

L̂± |l,m〉 =
√

(l ∓m)(l ±m+ 1)ℏ |l,m± 1〉 (11.6.28)

We may therefore express the matrix components of L̂x as:

〈
l′,m′

∣∣∣ L̂x ∣∣∣ l,m〉 =
〈
l′,m′

∣∣∣∣∣ L̂+ + L̂−
2

∣∣∣∣∣ l,m
〉

(11.6.29)

= ℏ
2
δl,l′(δm′,m+1

√
(l −m)(l +m+ 1) + δm′,m−1

√
(l +m)(l −m+ 1))

(11.6.30)

and similarly:

〈
l′,m′

∣∣∣ L̂y ∣∣∣ l,m〉 =
〈
l′,m′

∣∣∣∣∣ L̂+ − L̂−
2

∣∣∣∣∣ l,m
〉

(11.6.31)

= ℏ
2
δl,l′(δm′,m+1

√
(l −m)(l +m+ 1)− δm′,m−1

√
(l +m)(l −m+ 1))

(11.6.32)

Instead, L̂z and L̂2 are diagonal in this basis:〈
l′,m′

∣∣∣ L̂y ∣∣∣ l,m〉 = δl,l′δm,m′mℏ (11.6.33)

and 〈
l′,m′

∣∣∣ L̂2
∣∣∣ l,m〉 = δl,l′δm,m′ l(l + 1)ℏ (11.6.34)

This fully solves the angular momentum eigen-problem from an operator approach.

Example (Sh. 12.5.3.)
Consider a state |l,m〉, calculate 〈Lx〉 , 〈Ly〉, ∆Lx, ∆Ly and verify the uncertainty
principle.

Solution In a state |l,m〉we find that:

〈
l,m

∣∣∣ L̂x ∣∣∣ l,m〉 = ℏ
2

(√
(l −m)(l +m+ 1) 〈l,m | l,m+ 1〉 (11.6.35)

+
√

(l +m)(l −m+ 1) 〈l,m | l,m− 1〉
)

= 0 (11.6.36)
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and similarly:

〈
l,m

∣∣∣ L̂y ∣∣∣ l,m〉 = ℏ
2i

(√
(l −m)(l +m+ 1) 〈l,m | l,m+ 1〉 (11.6.37)

−
√

(l +m)(l −m+ 1) 〈l,m | l,m− 1〉
)

= 0 (11.6.38)

Instead:〈
l,m

∣∣∣ L̂2
x

∣∣∣ l,m〉 = 1
4

〈
l,m

∣∣∣ L̂2
+ + L̂2

− + L̂+L̂− + L̂−L̂+
∣∣∣ l,m〉 (11.6.39)

= 1
4

〈
l,m

∣∣∣ 2L̂+L̂− − [L̂+, L̂−]
∣∣∣ l,m〉 (11.6.40)

= 1
4

〈
l,m

∣∣∣ 2L̂+L̂− − 2ℏL̂z
∣∣∣ l,m〉 (11.6.41)

= 1
4

(
− 2mℏ2 + 2

〈
l,m

∣∣∣ L̂+L̂−
∣∣∣ l,m〉 ) (11.6.42)

= ℏ2

2

(√
(l +m)(l −m+ 1)(l − (m− 1))(l + (m− 1) + 1)−m

)
(11.6.43)

= ℏ2

2
(
(l +m)(l −m+ 1)−m

)
(11.6.44)

= ℏ2

2
(
l(l + 1)−m2) (11.6.45)

Similarly:〈
l,m

∣∣∣ L̂2
y

∣∣∣ l,m〉 = −1
4

〈
l,m

∣∣∣ L̂2
+ + L̂2

− − L̂+L̂− − L̂−L̂+
∣∣∣ l,m〉 (11.6.46)

= 1
4

〈
l,m

∣∣∣ L̂+L̂− + L̂−L̂+
∣∣∣ l,m〉 (11.6.47)

= ℏ2

2
(
l(l + 1)−m2) (11.6.48)

So:

∆Lx = ∆Ly =

√
ℏ2

2
(
l(l + 1)−m2) (11.6.49)

and thus:
∆Lx∆Ly = ℏ2

2
(
l(l + 1)−m2) (11.6.50)

Instead: 〈
[L̂x, L̂y]

〉
= iℏ 〈Lz〉 = mℏ2 (11.6.51)

so the uncertainty principle requires:

∆Lx∆Ly =ℏ2

2
(
l(l + 1)−m2) ≥ mℏ2

2
(11.6.52)

⇐⇒ l(l + 1) ≥ m(m+ 1) (11.6.53)
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which is clearly verified since |m| ≤ l. The uncertainty principle is saturated when
equality holds, that is, if |m| = l, orm = ±l, so in a state |l,±l〉. ◀

11.7 The eigen-problem for L̂2 (functional)
In spherical coordinates, we can write the gradient operator as:

∇ = êr
∂

∂r
+ êθ

1
r

∂

∂θ
+ êϕ

1
r sin θ

∂

∂ϕ
(11.7.1)

and as always
L̂z = −iℏ ∂

∂ϕ
(11.7.2)

since θ → ϕwhen transforming from polar to spherical coordinates.

Also, some lengthy algebra gives:

L̂± = ℏe±iϕ
(
± ∂

∂θ
+ i cot θ ∂

∂ϕ

)
(11.7.3)

and after some even lengthier algebra:

L̂2 = −ℏ2
[ 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂2ϕ

]
(11.7.4)

Let us now define the (l,m)-spherical harmonic as Ylm = 〈θ, ϕ | l,m〉. Then the eigenvalue
equation for L̂z becomes:

− iℏ
∂Ylm(θ,ϕ)

∂ϕ
= mℏYlm(θ, ϕ) =⇒ Ylm(θ, ϕ) = F (θ)eimϕ (11.7.5)

whereF (θ) is normalizable. To determine the latter, one could use the eigenvalue equation
for L̂2: [ 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂2ϕ

]
F (θ) = l(l + 1)F (θ) (11.7.6)

However, it is easier if we instead consider the state of maximum magnetic number |l, l〉:

L̂+ |l, l〉 = 0 (11.7.7)

For this state we must have that

0 =
〈
θ, ϕ

∣∣∣ L̂+
∣∣∣ l, l〉 = ℏeiϕ

(
∂

∂θ
+ i cot θ ∂

∂ϕ

)
Yll(θ, ϕ) (11.7.8)

and substituting Yll(θ, ϕ) = F (θ)eilϕ we get that:

ℏei(l+1)ϕ
(
∂

∂θ
− l cot θ

)
F (θ) = 0 =⇒ ∂F (θ)

∂θ
= l cot θF (θ) (11.7.9)
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Its general solution up to a normalization constant C is:

F (θ) = C sinl(θ) (11.7.10)

We can find the forms of Ŷlm(θ, ϕ) by repeatedly applying L̂− to |l, l〉. This provides us
with:

Ŷlm(θ, ϕ) = C(L̂−)l−m
(

sinl θeilϕ
)

(11.7.11)

= C

(
− ∂

∂θ
+ i cot θ ∂

∂ϕ

)l−m(
sinl θeilϕ

)
(11.7.12)

In the mathematical methods volume, we have shown that Ylm(θ, ϕ) are called spherical
harmonics and can be expressed as:

Ylm(θ, ϕ) = (−1)m+|m|
[2l + 1

4π
(l − |m|)!
(l + |m|)!

] 1
2
P

|m|
l (cos θ)eimϕ (11.7.13)

where we used the associated Legendre polynomials:

Pml (x) = (1− x2)m/2

2ll!
dm+l

dxm+l (x
2 − 1)l (11.7.14)

Because |l,m〉 forms a complete basis of the Hilbert space under study, we can assert that:

∞∑
l=0

l∑
m=−l

|l,m〉 〈l,m| = I (11.7.15)

so that
∞∑
l=0

l∑
m=−l

Y ∗
lm(θ, ϕ)Ylm(θ, ϕ) = δ(θ − θ′)δ(ϕ− ϕ′) (11.7.16)

The spherical harmonics are also orthonormal, because |l,m〉 are too orthonormal:

〈
l,m

∣∣ l′,m′〉 =
ˆ
〈l,m | θ, ϕ〉

〈
θ, ϕ

∣∣ l′,m′〉 dΩ (11.7.17)

=
ˆ
Y ∗
lm(θ, ϕ)Y ∗

l′m′(θ, ϕ)dΩ = δll′δmm′ (11.7.18)

Spherical harmonics

Any ψ(r, θ, ϕ) may be expanded in the spherical harmonics basis |l,m〉:

ψ(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Clm(r)Ylm(θ, ϕ) (11.7.19)
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with:
Clm =

ˆ
Y ∗
lm(θ, ϕ)ψ(r, θ, ϕ)dΩ (11.7.20)

Example (Sh. 12.5.13)
Consider a particle in a state ψ = N(x + y + 2z)e−αr where N is a normalization
constant. What are the possible observed angular momenta of this system, and their
corresponding probability?

Solution We can rewrite the spherical harmonics as:

Y ±1
1 = ∓

√
3

8π
sin θe±iθ (11.7.21)

= ∓
√

3
8π

√
x2 + y2

r
e±i arctan(y/x) (11.7.22)

= ∓
√

3
8π

√
x2 + y2

r

x± iy√
x2 + y2 (11.7.23)

= ∓
√

3
8π

√
x± iy
r

(11.7.24)

Also:
Y 0

1 =
√

3
4π

z

r
(11.7.25)

Therefore:
Y 1

1 + Y −1
1 − iY 1

1 + iY −1
1 =

√
3

4π
·
√

2 · x+ y

r
(11.7.26)

and so:

x+ y + 2z =
√

4π
3

r√
2

(Y 1
1 + Y −1

1 − iY 1
1 + iY −1

1 ) + 2
√

4π3rY 0
1 (11.7.27)

The wave-function may then be written as:

ψ = Nr

√
4π
3

(
Y 1

1 + Y −1
1 − iY 1

1 + iY −1
1√

2
+ 2Y 0

1

)
e−αr (11.7.28)

Hence:
|ψ〉 = N(r)

((1− i)√
2
|1, 1〉+ (1 + i)√

2
|1,−1〉+ 2 |1, 0〉

)
(11.7.29)

where we included the radial part into the normalization constant N(r). Hence, the
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possible observed values of lz and their respective probabilities are:

P (lz = ℏ) = | 〈1, 1 |ψ〉 |
2

〈ψ |ψ〉
= |N(r)|2

6|N(r)|2
= 1

6
(11.7.30)

P (lz = −ℏ) = | 〈1,−1 |ψ〉 |2

〈ψ |ψ〉
= |N(r)|2

6|N(r)|2
= 1

6
(11.7.31)

P (lz = −ℏ) = | 〈1, 0 |ψ〉 |
2

〈ψ |ψ〉
= 4|N(r)|2

6|N(r)|2
= 2

3
(11.7.32)

◀

11.8 Rotationally invariant Hamiltonians in 3D
Now that we have fully solved the eigenvalue problem of the angular momentum oper-
ator, we are ready to tackle 3-dimensional problems with rotational invariance, that is,
hamiltonians Ĥ which commute with L̂2 and L̂i.

For such problems we must have a central potential, that is, V (r, θ, ϕ) = V (r), so that the
TISE reads:

[
− ℏ2

2µ

( ∇2︷ ︸︸ ︷
1
r2

∂

∂r
r2 ∂

∂r
+ 1
r2 sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1
r2 sin2 θ

∂2

∂ϕ2︸ ︷︷ ︸
− L̂2

ℏ2r2

)
+V (r)

]
ψE(r, θ, ϕ) = EψE(r, θ, ϕ)

(11.8.1)
Now since Ĥ , L̂z and L̂2 all commute with each other, they are simultaneously diagonal-
izable. We may substitute the most general form of the eigenfunctions of L̂2 and L̂z and
label them with the quantum numbers E, l,m relating to the energy, angular momentum,
and z-angular momentum eigenvalues:

ψElm(r, θ, ϕ) = RElm(r)Y m
l (θ, ϕ) (11.8.2)

We then find that (recall L̂2Y m
l (θ, ϕ) = ℏ2l(l + 1)Y m

l (θ, ϕ)):[
− ℏ2

2µ

( 1
r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2

)
+ V (r)

]
REl = EREl (11.8.3)

We may now introduce the function UEl = rREl. Note that:( 1
r2

∂

∂r
r2 ∂

∂r

)
REl = 1

r2
∂

∂r
r2 ∂

∂r

(
UEl
r

)
(11.8.4)

= 1
r2

∂

∂r
r2
(1
r

∂UEl
∂r
− UEl

r2

)
(11.8.5)

= 1
r2

(
∂

∂r

(
r
∂UEl
∂r

)
− ∂UEl

∂r

)
(11.8.6)

= 1
r

∂2UEl
∂r2 (11.8.7)
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so that (11.8.3) turns into:

− ℏ2

2µ

(1
r

∂2UEl
∂r2 − l(l + 1)

r3 UEl

)
+ V (r)UEl

r
= E

UEl
r

(11.8.8)

=⇒ − ℏ2

2µ

(
∂2UEl
∂r2 − l(l + 1)

r2 UEl

)
+ V (r)UEl = EUEl (11.8.9)

or more suggestively:

Radial equation for rotationally invariant hamiltonians

If we define ψ(r, θ, ϕ) = UEl(r)
r Y m

l (θ, ϕ) then the TISE becomes:[
d2

dr2 + 2µ
ℏ2

(
E − V (r)− l(l + 1)ℏ2

2µr2︸ ︷︷ ︸
Veff(r)

)]
UEl = 0 (11.8.10)

This equation resembles the form of a one-dimensional potential problem, with potential
barrier:

Veff (r) = V (r) + l(l + 1)ℏ2

2µr2 (11.8.11)

We see that the additional l(l+1)ℏ2

2µr2 term, known as the centrifugal potential barrier for obvi-
ous reasons (classically it would be L2

2µr2 , taking its divergence would yield the centrifugal
force) is repulsive, since the potential increases as the distance decreases.

11.9 Boundary conditions and limiting behaviour
The appropriate boundary conditions for central potentials are not however identical to
those for a 1-dimensional potential. We must firstly require that if we define

D̂l ≡
d2

dr2 + 2µ
ℏ2

(
E − V (r)− l(l + 1)ℏ2

2µr2︸ ︷︷ ︸
Veff (r)

)
(11.9.1)

then (11.8.10) turns into
D̂lUEl = EUEl (11.9.2)

We argue on physical grounds that the energy eigenvaluesmust be real, thus imposing the
requirement that D̂l be Hermitian:

ˆ ∞

0
U∗

1 D̂lU2dr =
ˆ ∞

0
(D̂lU1)∗U2dr (11.9.3)

⇐⇒
ˆ ∞

0
U∗

1 D̂lU2dr =
ˆ ∞

0
(D̂lU1)∗U2dr (11.9.4)
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for any two U1, U2 = UEl for some E, l. We then get that:
ˆ ∞

0
U∗

1
d2U2
dr

dr =
ˆ ∞

0

d2U∗
1

dr
U2dr (11.9.5)

=⇒
[
U∗

1
dU2
dr

]∞

0
−
ˆ ∞

0

dU∗
1

dr

dU2
dr

=
[
U2
dU∗

1
dr

]∞

0
−
ˆ ∞

0

dU∗
1

dr

dU2
dr

(11.9.6)

=⇒
[
U∗

1
dU2
dr
− U2

dU∗
1

dr

]∞

0
= 0 (11.9.7)

after integrating by parts.

We clearly also require that REl be normalizable
ˆ ∞

0
|REl|2r2dr =

ˆ ∞

0
|UEl|2dr = 1 (11.9.8)

For bounded states, this requires the exponential decay behaviour:

UEl → 0, r →∞ (11.9.9)

whereas for unbounded states we can have sinusoidal behaviour:

UEl → eikr, r →∞ (11.9.10)

In both cases however, we still retrieve:[
U∗

1
dU2
dr
− U2

dU∗
1

dr

]
∞

= 0 (11.9.11)

so that: [
U∗

1
dU2
dr
− U2

dU∗
1

dr

]
0

= 0 (11.9.12)

This is only possible for asymptotic behaviour UEl → c as r → 0. This constant however
must be set to zero, or else we would get ψ ∼ c

rY
0

0 . This is not an appropriate wave-
function, since:

∇2ψ ∼ −4πcY 0
0 δ

3(r) (11.9.13)

which is incompatible with the TISE unless the potential has a delta term too.

So we have that UEl → 0 as r → 0.

Behaviour as r → 0

Further information can be found by assuming V (r) has terms of order larger than r−2.
Then, in the limit as r → 0 we have that (11.8.10) is dominated by the centrifugal potential
so that:

d2Ul
dr2 ∼

l(l + 1)
r2 Ul (11.9.14)

Note that we dropped theE subscript since the equation no longer depends on the energy
eigenvalue.
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Using the ansatz UEl ∼ rα for some α then:

α(α− 1) = l(l + 1) =⇒ α = l and α = l − 1 (11.9.15)

which produces the fundamental set of solutions as long as l 6= 0:

Ul ∼
{
rl+1

r−l (11.9.16)

Since this describes the behaviour as r → 0, we must reject the first solution. Therefore:

Ul ∼ Drl+1 (11.9.17)

Behaviour as r →∞

Let us now reconsider the limit as r →, where the potential V (r) is not dominant. We
make one further assumption, that rV (r)→ 0 as r →∞. Then we get that the TISE turns
into:

d2UE
dr2 = −2µE

ℏ2 UE (11.9.18)

where we again dropped the l subscript this time due to its redundancy.

For unbounded states we have E > 0 so that the particle exhibits free-particle behaviour
far from the origin:

UE = Aeikr +Be−ikr, k =

√
2µE
ℏ2 (11.9.19)

For bounded states we have E < 0 so that the particle exhibits exponential decay far from
the origin:

UE = Ce−kr, k =

√
2µ|E|
ℏ2 (11.9.20)

Asymptotic behaviour of UEl

For unbounded states E > 0 one should try the ansatz

UEl = rl+1(Aeikr +Be−ikr)f(r)

For bounded states E < 0 one should try the ansatz

UEl = rl+1e−krf(r)

11.10 3D Isotropic oscillator
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12Spin angular momentum

12.1 What is spin?
The astute reader may have noticed an inconsistency in our development of angular mo-
mentum eigenvalues. Indeed, it seems like for half integer values of l, L̂z can have half-
integer eigenvalues, whereas in the preceding sections it was shown that L̂z only has inte-
ger eigenvalues.

It turns out that the extra half-integer contribution to the eigenvalue spectrum is due to
the fact that we never specified the form of L̂, but only specified its commutation relation
L̂× L̂ = iℏL̂. Doing so would have yielded integer eigenvalues as would be expected.

Due to this freedom, the results that we uncovered without assuming a specific form of
the angular momenta operators apply to any form of ψ no matter its nature. Had we
assumed that L̂z = −iℏ ∂

∂ϕ wewould have uncovered results only applicable to scalarwave-
functions.

Indeed, it turns out that for some particles, thewave-function assumes amore complicated
aspect, such as a vector field Ψ = ψxx̂ + ψyŷ + ψz ẑ. For such wave-functions, rotations do
not simply assign a new rotated value to each point in space.

In the scalar case δθ assigns to each (x, y, z) a new rotated point (x′, y′, z′).

In the vector case, however, δθ assigns to each (x, y, z) a new rotated point (x′, y′, z′), but
must also rotate the vector at (x, y, z) accordingly. The former is done by the original L̂
orbital angular momentum, whereas the former is done by a new vector operator Ŝ called
spin angular momentum. We define their sum as the total angular momentum:

Ĵ = L̂ + Ŝ (12.1.1)

Hence, to be more correct one should have substituted L̂ → Ĵ in section 9.5, where we
made no mention of the nature of the wave-function. Hence:

Ĵ× Ĵ = iℏ̂J (12.1.2)

where the similar result with L̂ only holds for scalar wave-functions.

So, to answer our question, the eigenvalues we found in section 9.6 are not eigenvalues of
L̂z but eigenvalues of Ĵz = L̂z + Ŝz , with Ŝz contributing to the half-integer term.
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12.2 Spin matrices
Let us explore how to generalize our definition of the generator of rotations for vector
fields.

Consider a vector field Ψ(x, y) = ψx(x, y)x̂ + ψy(x, y)ŷ. When acted from an infinitesimal
rotation δθzk̂:

ψ′
x(x, y) = ψx(x+ yδθz, y − xδθz)− ψy(x+ yδθz, y − xδθz)δθz (12.2.1)

ψ′
y(x, y) = ψx(x+ yδθz, y − xδθz)δθz + ψy(x+ yδθz, y − xδθz) (12.2.2)

We can rewrite (12.2.1) to order δθz as:

ψ′
x(x, y) =

(
I− iδθzL̂z

ℏ

)
ψx(x, y)−

(
I− iδθzL̂z

ℏ

)
ψy(x, y)δθz (12.2.3)

=
(

I− iδθzL̂z
ℏ

)
ψx(x, y)− ψy(x, y)δθz (12.2.4)

and similarly for (12.2.2):

ψ′
y(x, y) =

(
I− iδθzL̂z

ℏ

)
δθzψx(x, y)−

(
I− iδθzL̂z

ℏ

)
ψy(x, y) (12.2.5)

= δθzψx(x, y)−
(

I− iδθzL̂z
ℏ

)
ψy(x, y) (12.2.6)

These can be expressed more compactly in vector form as:(
ψ′
x

ψ′
y

)
=
[(

1 0
0 1

)
− iδθz

ℏ

(
L̂z 0
0 L̂z

)
− iδθz

ℏ

(
0 −iℏ
iℏ 0

)](
ψx
ψy

)
(12.2.7)

Generalizing to higher dimensions:

ψ
′
1
...
ψ′
n

 =
[

1 0 . . . 0
0 1 . . . 0
...
... . . . ...

0 0 . . . 1

− iδθz
ℏ


L̂z 0 . . . 0
0 L̂z . . . 0
...

... . . . ...
0 0 . . . L̂z

− iδθz
ℏ
Ŝz

]ψ1
...
ψn

 (12.2.8)

or more abstractly as:

|ψ〉 =
(

I− iδθz
ℏ

(L̂z + Ŝz)
)
|ψ〉 =

(
I− iδθz

ℏ
Ĵz

)
|ψ〉 (12.2.9)

consequently Ĵz is generator of rotations about the z-axis.
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Let us try to define Ŝz . Since Ĵi are generators of a rotation

[Ĵi, Ĵj ] = iℏ
∑
j

εijkĴk (12.2.10)

Ĵi and Ŝi commute since they act on different parts on thewave-function, so it follows that:

[L̂i, L̂j ] + [Ŝi, Ŝj ] = iℏ
(∑

k

εijkLk +
∑
k

εijkSk

)
(12.2.11)

=⇒ [Ŝi, Ŝj ] = iℏ
∑
k

εijkSk (12.2.12)

States of definite spin s are described by a complex space of dimension 2s + 1, since the
magnetic quantum number m ∈ −s,−s+ 1, ..., 0, s− 1, s has finitely many values it can
take.

Working in the eigenbasis of Ŝz , consider states of 1
2 -spin. Since s = 1

2 , it follows that
sz = m = ±1

2 . For sake of brevity we shall let |↑〉 = |12 ,
1
2〉 and |↓〉 = |12 ,−

1
2〉. A spin half

system can then be described by:

|ψ〉 = α |↑〉+ β |↓〉 =
(
α
β

)
(12.2.13)

satisfying the normalization condition |α|2 + |β|2 = 1. Wave-functions made out of two
components are called spinors, and the operators acting on them must therefore by 2×2
matrices.

We now define the ladder operators:

Ŝ± = Ŝx + iŜy (12.2.14)

Note that the problem of determining the eigenvalues of Ŝ is mathematically equivalent to
thatweworked out in the previous chapter (one could indeed apply these results assuming
a state of pure spin angular momentum, and no orbital angular momentum) so:

Ŝ± |s,m〉 =
√

(s∓m)(s±m+ 1)ℏ |s,m± 1〉 (12.2.15)

Returning to spin-1
2 systems note that Ŝ+ |↑〉 = 0 = Ŝ− |↓〉 since |↑〉 and |↓〉 cannot be

raised/lowered. Instead, Ŝ+ |↓〉 = ℏ |↑〉 and Ŝ− |↑〉 = ℏ |↓〉.
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Then (12.2.15) gives:

Ŝx |↑〉 = 1
2

(Ŝ+ + Ŝ−) |↑〉 = 1
2

(0 + ℏ |↓〉) = ℏ
2
|↓〉 (12.2.16)

Ŝx |↓〉 = 1
2

(Ŝ+ + Ŝ−) |↓〉 = 1
2

(ℏ |↑〉+ 0) = ℏ
2
|↑〉 (12.2.17)

Ŝy |↑〉 = 1
2i

(Ŝ+ − Ŝ−) |↑〉 = 1
2i

(0− ℏ |↓〉) = + iℏ
2
|↓〉 (12.2.18)

Ŝy |↓〉 = 1
2i

(Ŝ+ − Ŝ−) |↓〉 = 1
2i

(ℏ |↑〉 − 0) = − iℏ
2
|↑〉 (12.2.19)

We can use the above four equation to construct the spin-1
2 matrix representation in the

{|↑〉 , |↓〉} basis:

Ŝx =

〈↑ ∣∣∣ Ŝx ∣∣∣ ↑〉 〈↑ ∣∣∣ Ŝx ∣∣∣ ↓〉〈
↓
∣∣∣ Ŝx ∣∣∣ ↑〉 〈↓ ∣∣∣ Ŝx ∣∣∣ ↓〉

 = ℏ
2

(
0 1
1 0

)
(12.2.20)

and similarly:

Ŝy =

〈↑ ∣∣∣ Ŝy ∣∣∣ ↑〉 〈↑ ∣∣∣ Ŝy ∣∣∣ ↓〉〈
↓
∣∣∣ Ŝy ∣∣∣ ↑〉 〈↓ ∣∣∣ Ŝy ∣∣∣ ↓〉

 = ℏ
2

(
0 −i
i 0

)
(12.2.21)

and finally:

Ŝz =

〈↑ ∣∣∣ Ŝz ∣∣∣ ↑〉 〈↑ ∣∣∣ Ŝz ∣∣∣ ↓〉〈
↓
∣∣∣ Ŝz ∣∣∣ ↑〉 〈↓ ∣∣∣ Ŝz ∣∣∣ ↓〉

 = ℏ
2

(
1 0
0 −1

)
(12.2.22)

We can extend our results to spin along any axis n̂ (which is equivalent to simply rotating
our coordinate basis). We will denote by |n̂,+〉 the eigenstate giving spin up along this
new axis, and by |n̂,−〉 the eigenstate giving spin down. In this notation: |↑〉 = |ẑ,+〉 and
|↓〉 = |ẑ,−〉.

Our goal is to expand |n̂,±〉 in the Ŝz eigenbasis, so in the form of spinors:

|n̂,±〉 =
(
ψ±

1
ψ±

2

)
(12.2.23)

Let us assume that n̂ points along (θ, ϕ) so that:

n̂z = cos θ (12.2.24)
n̂x = sin θ cosϕ (12.2.25)
n̂y = sin θ sinϕ (12.2.26)

then in follows that |n̂,±〉 are eigenvectors of n̂ · Ŝ:

n̂ · Ŝ = nxŜx + nyŜy + nzŜz (12.2.27)
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and hence:

n̂ · Ŝ = ℏ
2

(
nz nx − iny

nx + iny −nz

)
= ℏ

2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
(12.2.28)

Finding the eigenvalues and eigenvectors of the above matrix is straightforward. Some
algebra gives the characteristic polynomial as:

λ2 = ℏ2

4
=⇒ λ1 = ℏ

2
, λ2 = −ℏ

2
(12.2.29)

which is a reassuring sign. We proceed by finding the eigenspinors :{
cos θψ±

1 + sin θe−iϕψ±
2 = ±ψ1

sin θeiϕψ±
1 − cos θψ±

2 = ±ψ2
(12.2.30)

which gives after some algebraic manipulation:

ψ+
1

ψ+
2

= cot
(θ

2

)
e−iϕ (12.2.31)

ψ−
1

ψ−
2

= − tan
(θ

2

)
e−iϕ (12.2.32)

These give:

|n̂,+〉 =

cos
(
θ
2

)
e−iϕ/2

sin
(
θ
2

)
eiϕ/2

 |n̂,−〉 =

− sin
(
θ
2

)
e−iϕ/2

cos
(
θ
2

)
eiϕ/2

 (12.2.33a)

Another way do derive these equations is to realize that the spin operator S is the genera-
tor of the SU(2) Lie algebra, and thus it can be used to “rotate” states in spin space. More
specifically, note that e−iθ·S/ℏ rotates a spin about the θ̂ axis by θ (counter-clockwise). Con-
sequently we have that

|n̂,+〉 = e−iϕSz/ℏe−iθSy/ℏ |↑〉 (12.2.34)

To evaluate the matrix exponentials we use the fact that

e−iθ·S/ℏ = cos θ
2
1− i(θ̂ · σ) sin θ

2
(12.2.35)

which will be proven later, and find that

e−iθSy/ℏ =
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
, e−iϕSz/ℏ =

(
e−iϕ/2 0

0 eiϕ/2

)
(12.2.36)

Consequently

|n̂,+〉 =
(
e−iϕ/2 0

0 eiϕ/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
1
0

)
=
(

cos θ/2e−iϕ/2

sin θ/2eiϕ/2

)
(12.2.37)
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and

|n̂,−〉 =
(
e−iϕ/2 0

0 eiϕ/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
0
1

)
=
(
− sin θ/2e−iϕ/2

cos θ/2eiϕ/2

)
(12.2.38)

as found earlier. The advantage of this approach is that it can be generalised to any spin-s
state.

We can also go the other way, instead of finding the eigenstate given a spin direction, given
a spinor, we can find the associated spin direction for which it is an eigenstate. Consider
some spinor:

|ψ〉 =
(
c1e

iϕ1

c2e
iϕ2

)
(12.2.39)

where c1, c2 are real. We wish to find the direction n̂ along which it is an eigenstate with
eigenvalue ℏ

2 .

From the normalization condition, c2
1 + c2

2 = 1 it follows that we can find some angle θ
such that c1 = cos θ2 and c1 = sin θ

2 . If we pull out a phase factor ei(ϕ1+ϕ2)/2 then:

|ψ〉 =
(

cos θ2e
i(ϕ1−ϕ2)/2

sin θ
2e

−i(ϕ1−ϕ2)/2

)
≡ |n̂,+〉 (12.2.40)

So overall, n̂ points along (θ, ϕ) with:

θ = 2(arctan ρ2
ρ1

+ nπ), n = 0, 1, 2... (12.2.41)

ϕ = ϕ1 − ϕ2
2

(12.2.42)

12.3 Pauli matrices
The matrices (up to the constant ℏ

2) representing
1
2 -spin operators are called Pauli matri-

ces, and are denoted as:

σ = (σx, σy, σz) =⇒ Ŝ = ℏ
2

σ (12.3.1)

These matrices anti-commute with each other, so that:

{σi, σj} = δij , =⇒ [σi, σj ] = 2σiσj (12.3.2)

which can be verified through direct calculation.

Moreover, the commutation relation for Ŝ can be expressed as:

ℏ2

4
[σi, σj ] = iℏ

2
∑
k

εijkσk =⇒ σiσj = i
∑
k

εijkσk (12.3.3)

− II.182 −



12.3. PAULI MATRICES

so that:
σxσy = iσz , σyσz = iσx, σzσx = iσy (12.3.4)

Hence, we may combine all these identities into the commutation relation:

[σi, σj ] = 2i
∑
k

εijkσk (12.3.5)

The Pauli matrices are also traceless. Finally:

(n̂ · σ)2 = I (12.3.6)

To prove this, note that since Ŝz has eigenvalues ±ℏ
2 , we may write:(

Ŝz + Iℏ
2

)(
Ŝz −

Iℏ
2

)
= 0 (12.3.7)

Indeed, given an arbitrary spinor in this Hilbert space, |ψ〉 = α |↑〉+ β |↓〉 then:(
Ŝz + Iℏ

2

)(
Ŝz −

Iℏ
2

)
|ψ〉 =

(
Ŝz + Iℏ

2

)
(−βℏ |↓〉) = 0 (12.3.8)

Our choice of the z-axis is arbitrary, so it must be true that:(
n̂ · Ŝ + Iℏ

2

)(
n̂ · Ŝ− Iℏ

2

)
= 0 (12.3.9)

so that:
(n̂ · Ŝ)2 = ℏ2

4
I (12.3.10)

Finally, we also establish the identity:

(A · σ)(B · σ) = (A · B)I + i(A× B) · σ (12.3.11)

where A and B are vector operators commuting with the Pauli matrices. To prove this
result, note that (using summation notation for simplicity):

σiσj = 1
2

([σi, σj ] + {σi, σj}) = δijI + iεijkσk (12.3.12)

Thus:

(A · σ)(B · σ) = AiBjσiσj = AiBj(δijI + iεijkσk) (12.3.13)
= AiBjδijI + iεijkAiBjσk (12.3.14)
= AiBjδijI + iεkijAiBjσk (12.3.15)
= (A · B)I + i(A× B) · σ (12.3.16)

as desired.

Nownote that the Paulimatrices togetherwith the identitymatrix span the set of operators
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acting on spinors. Indeed, consider a general matrix T :

T =
(
α β
γ δ

)
(12.3.17)

Then, we need to find a, b, c, d not all equal to zero such that(
α β
γ δ

)
= a

(
0 1
1 0

)
+ b

(
0 −i
i 0

)
+ c

(
1 0
0 −1

)
+ d

(
1 0
0 1

)
=
(
c+ d a− ib
a+ ib −c+ d

)
(12.3.18)

Therefore: 
d+ c = α

d− c = δ

a− ib = β

a+ ib = γ

=⇒


a = 1

2(γ + β)
b = 1

2i(γ − β)
c = 1

2(α− δ)
d = 1

2(α+ δ)

(12.3.19)

The only case where these could all be equal to zero is if α = β = γ = δ = 0, showing that
these matrices are linearly independent.

So, if we have some operator T̂ , we can express it as:

T̂ = aI + β · σ (12.3.20)

where β = (b, c, d) we found earlier. Alternatively, using the spin operator:

T̂ = aI + 2β

ℏ
· Ŝ (12.3.21)

so we see that any operator on Hs, the space of spinors, can be written as a linear combi-
nation of the identity operator and the spin operator.

12.4 Spin rotation operator
Consider the spin rotation operator:

Û(θ) = exp(−iθ · S/ℏ) = exp
[
− i
(θ

2

)
θ̂ · σ

]
=

∞∑
n=0

(
− iθ

2

)n 1
n!

(θ̂ · σ)n (12.4.1)

Now note that:
(θ̂ · σ)2 = I =⇒ (θ̂ · σ)2n = I (12.4.2)

and similarly:
(θ̂ · σ)2n+1 = I(θ̂ · σ) = θ̂ · σ (12.4.3)
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Therefore:

Û(θ) =
∞∑
n=0

(
− iθ

2

)n 1
n!

(θ̂ · σ)n (12.4.4)

=
∞∑

n,even

(−1)n

n!

(
θ

2

)n
I +

∞∑
n,odd

(−1)n

n!
(−i)

(
θ

2

)n
θ̂ · σ (12.4.5)

= cos θ
2
I− i sin θ

2
(θ̂ · σ) (12.4.6)

We therefore have that the spin rotation operator by some angle θ is:

Û(θ) = cos θ
2
I− i sin θ

2
(θ̂ · σ) (12.4.7)

Note an interesting fact, a rotation of a spin by θ = 2π about an arbitrary axis n̂ returns

Û(πn̂) = −1 (12.4.8)

while a rotation by θ = 4π returns
Û(πn̂) = 1 (12.4.9)

Consequently, spin-1
2 particles must be rotated twice around themselves in order to return

to their original orientation. One way to visualise this weird behaviour is using Dirac’s
belt trick

Figure 12.1. Dirac’s belt trick shows how a belt with two rotations requires one to twist untwist
itself, and thus two twists to go back to its original configuration.

12.5 Dynamics of spin
Classical description

Recall from electromagnetism that the spin on a dipole moment µ under the influence of
a magnetic field B is given by:

τ = µ× B (12.5.1)
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so that the interaction energy is:
Hdip = −µ · B (12.5.2)

We may try to apply these results for a particle of mass m, charge q in a circular orbit of
radius r. Such a system would virtually look like a current:

I = q

T
= qv

2πr
(12.5.3)

with magnetic moment (we use Gaussian units):

µ = qv

2πr
· πr

2

c
= qvr

2c
= q

2mc
mvr = ql

2mc
(12.5.4)

but µ and l are parallel, and hence:
µ = q

2mc
l (12.5.5)

We define the ratio of the magnetic moment to the angular momentum as the gyromag-
netic ratio γ:

γ = q

2mc
(12.5.6)

Since the torque tends to align µ along B, the former will precess around the latter, just
like a gyroscope under the influence of gravity. The angular equation of motion reads:

τ = dl
dt

= µ× B = γ(l× B) (12.5.7)

implying that in a small interval of time δt, the angular momentum vector moves by δl
given by:

δl = γ(l× B)δt =⇒ l sin θδϕ = δl (12.5.8)

so that the the tip of l precesses by an angle:

δϕ = −γBδt (12.5.9)

The precession frequency ω0 is then:

ω0 = −γB (12.5.10)

Quantum mechanical description

The electromagnetic hamiltonian for a particle of massm, charge q in a magnetic field is:

Ĥ = (p− qA/c)2

2m
= |p|

2

2m
− q

2mc
(p ·A + A · p) + q2|A|2

2mc2 (12.5.11)

If we consider a vector potential:

A = B

2
(−yi + xj) =⇒ B = Bk, B very small (12.5.12)
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then the last term in (12.5.11) vanishes, being quadratic in B. Hence:

〈r | (p ·A) |ψ〉 = −iℏ∇ · (Aψ) (12.5.13)
= −iℏ[(∇ ·A)ψ + A · (∇ψ)] (12.5.14)

but due to we can always apply gauge transformations for∇ ·A = 0 so that:

〈r | (p ·A) |ψ〉 = −iℏA · (∇ψ) = 〈r |A · p |ψ〉 (12.5.15)

so that the middle term in (12.5.11) becomes:

Ĥint = − q

2mc
(2A · p) = − qB

2mc
(−ŷp̂x + x̂p̂y) = − q

2mc
L · B (12.5.16)

We can define the quantum dipole moment operator µ

µ = q

2mc
L =⇒ Ĥint = −µ · B (12.5.17)

where q
2mc is known as the gyromagnetic ratio, it measures the ratio of the magnetic mo-

ment to the angular momentum of a particle. Alternatively, we can project this equation
on the z-axis:

µz = qℏ
2mc

· n for n = 0, 1, 2... (12.5.18)

We define the quantity qℏ
2mc as the Bohr magneton, which for the electron has the value of:

eℏ
2mc

≈ 0.6× 10−8eV/G (12.5.19)

So we see that the orbital angular momentum is, quite expectedly, analogous to the stan-
dard angular momentum predicted by a classical description.

However, we have an additional contribution to the magnetic moment, called the spin
magnetic moment, which has no analogue in classical mechanics and is purely quantum
mechanical in nature.

Now note that the Pauli matrices together with the identity matrix span the space of 2×2
Hermitian matrices, so that any operator acting on spinors will be a linear combination of
the identity operator and spin operator. In the case of the spin magnetic moment operator
µs (which is a vector operator), the identity gets washed out since it is a scalar operator,
hence:

µs = γS (12.5.20)

for some unknown constant γ. Let us write it as:

µs = − ge

2mc
S (12.5.21)

where g is the ratio of the spin and angular momentum magnetic moments. The fact that
it is not equal to 1 shows that the spin of an electron cannot be attributes to just the rotation
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of its mass about the z-axis, but is rather something more intrinsic. Now assume that:

Ĥint = −µs · B = geℏ
4mc

σ · B (12.5.22)

Experimentally, it was found that g is very very close to 2. This is further supported by
Quantum electrodynamics.

The propagator is then:
Û(t) = e−iĤt/ℏ = eiγt(S·B)t/ℏ (12.5.23)

which is surprisingly in the form of the rotation operator by an angle:

θ(t) = −γBt (12.5.24)

giving a precession frequency:
ω0 = −γB (12.5.25)

For example, if we consider a magnetic field B = Bk:

Û(t) = exp(iγtSzB/ℏ) = exp(iω0tσz/2) (12.5.26)

so that:
Û(t) =

(
eiω0t/2 0

0 e−iω0t/2

)
(12.5.27)

For an electron in the state |n̂,+〉 for example:

|ψ(0)〉 =
(

cos θ2e
−iϕ/2

sin θ
2e
iϕ/2

)
(12.5.28)

so that after some time t:
|ψ(t)〉 =

(
cos θ2e

−i(ϕ−ω0t)/2

sin θ
2e
i(ϕ−ω0t)/2

)
(12.5.29)

the state has rotated in the Hilbert space with angular frequency ω0.

12.6 Paramagnetic resonance (long way)
Consider a spin-1

2 particle starting out in the state |ψ(0)〉 = |↑〉 interacting with the Hamil-
tonian:

Ĥ = −γB · Ŝ (12.6.1)

where:
B = B0z +B(cosωtx− sinωty) (12.6.2)

is the magnetic field, composed of a vertical component, and a clockwise rotating compo-
nent.

We want to find an expression for the state of the particle at a later time t:

|ψ(t)〉 = Û(t) |ψ(0)〉 (12.6.3)
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Since the Hamiltonian is time-dependent, it is quite difficult to directly calculate the prop-
agator Û(t). However, we can investigate this system in a frame rotating (with respect to
lab frame) with the same frequency ω = −ωz as the magnetic field. Mathematically, this
is equivalent as rotating the state of the system by ω = ωz. In this frame the state of the
system is described by:

|χ(t)〉 = e−iωtŜz/ℏ |ψ(t)〉 (12.6.4)

The TDSE in the lab frame reads:

iℏ
∂

∂t
|ψ(t)〉 = −γB · Ŝ |ψ(t)〉 (12.6.5)

=⇒ iℏ
∂

∂t

(
eiωtŜz/ℏ |χ(t)〉

)
= −γB · Ŝ

(
eiωtŜz/ℏ |χ(t)〉

)
(12.6.6)

=⇒ iℏ
(
iωŜz
ℏ

eiωtŜz/ℏ + eiωtŜz/ℏ ∂

∂t

)
|χ(t)〉 = −γB · Ŝ

(
eiωtŜz/ℏ |χ(t)〉

)
(12.6.7)

=⇒ iℏeiωtŜz/ℏ ∂

∂t
|χ(t)〉 =

(
ωŜze

iωtŜz/ℏ − γB · ŜeiωtŜz/ℏ) |χ(t)〉 (12.6.8)

We can now multiply by e−iωtŜz/ℏ to the left so that:

iℏ
∂

∂t
|χ(t)〉 = (ωŜz − e−iωtŜz/ℏγ(B · Ŝ)eiωtŜz/ℏ) |χ(t)〉 (12.6.9)

where we used the fact that [Â, eicÂ] = 0 for any constant c.

We then see that the rotated ket |χ(t)〉 also satisfies the TDSEwith an effectiveHamiltonian:

Ĥeff = ωŜz − e−iωtŜz/ℏγ(B · Ŝ)eiωtŜz/ℏ (12.6.10)

Let us try to simplify this expression. Firstly:

e−iωtŜz/ℏ(B · Ŝ)eiωtŜz/ℏ =
(

cos ωt
2

I− i sin ωt
2
σ̂z
)
(B · Ŝ)

(
cos ωt

2
I + i sin ωt

2
σ̂z
)

(12.6.11)

= cos2 ωt

2
(B · Ŝ) + i sin ωt

2
cos ωt

2
((B · Ŝ)σ̂z − σ̂z(B · Ŝ)) + sin ωt

2
σ̂z(B · Ŝ)σ̂z (12.6.12)

Now:

((B · Ŝ)σ̂z = ℏ
2

(B · σ)(z · σ) (12.6.13)

= ℏ
2

(Bz + i(B× z) · σ) (12.6.14)

and similarly:

σ̂z((B · Ŝ) = ℏ
2

(z · σ)(B · σ) (12.6.15)

= ℏ
2

(Bz − i(B× z) · σ) (12.6.16)

− II.189 −



12.6. PARAMAGNETIC RESONANCE (LONG WAY)

so that:
(B · Ŝ)σ̂z − σ̂z(B · Ŝ) = 2i(ByŜx − B̂xŜy) (12.6.17)

Also, using the fact that the square of any Pauli matrix is zero:

σ̂z(B× Ŝ)σ̂z = Bxσ̂zŜxσ̂z +Byσ̂zŜyσ̂z +Bzσ̂zŜzσ̂z (12.6.18)
= BzŜz − iBxσ̂zŜy + iByσ̂zŜx (12.6.19)
= BzŜz −BxŜx −ByŜy (12.6.20)

So 11.6.12 turns into:

cos2 ωt

2
(B · Ŝ)− sinωt(ByŜx − B̂xŜy) + sin2 ωt

2
(BzŜz −BxŜx −ByŜy) (12.6.21)

Thus:

e−iωtŜz/ℏ(B · Ŝ)eiωtŜz/ℏ = Ŝx(Bx cos2 ωt

2
−By sinωt− sin2 ωt

2
Bx) (12.6.22)

+ Ŝy(By cos2 ωt

2
+Bx sinωt− sin2 ωt

2
By) (12.6.23)

+ Ŝz(Bz cos2 ωt

2
+ sin2 ωt

2
Bz) (12.6.24)

and hence:

e−iωtŜz/ℏ(B · Ŝ)eiωtŜz/ℏ = Ŝx(Bx cosωt−By sinωt) + Ŝy(By cosωt+Bx sinωt) +BzŜz
(12.6.25)

Substituting back Bx = B cosωt and By = −B sinωt then:

e−iωtŜz/ℏ(B · Ŝ)eiωtŜz/ℏ = BŜx +B0Ŝz (12.6.26)

Hence, finally, we find that the effective hamiltonian takes the form:

Ĥeff = ωŜz − (BŜx +B0Ŝz) (12.6.27)

and thus:
Ĥeff = −γ

(
Bx +

(
B0 −

ω

γ

)
z
)

︸ ︷︷ ︸
Beff

·Ŝ (12.6.28)

where the effective magnetic field Beff is:

Beff = Bx +
(
B0 −

ω

γ

)
z (12.6.29)

The effective propagator in the rotating frame is thus:

Ûeff(t) = e−iĤefft/ℏ = exp
(
iγ(Beff · Ŝ)t

ℏ

)
(12.6.30)
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This is simply a rotation by θ(t) = −γBefft, so using (12.4.7):

Ûeff(t) = cos γBefft

2
1 + i sin γBefft

2
(B̂eff · σ) (12.6.31)

In the Ŝz basis, the we can use the expressions for the pauli matrices to write:

Ûeff(t)↔ cos γBefft
2

(
1 0
0 1

)
+ i sin γBefft

2
1
Beff

(Beff · σ) (12.6.32)

Now:

Beff · σ =

B0 − ω
γ 0

0 −
(
B0 − ω

γ

)+
(

0 B
B 0

)
(12.6.33)

so:

Beff · σ =

B0 − ω
γ B

B −
(
B0 − ω

γ

) (12.6.34)

Therefore:

Ûeff(t)↔
(

cos γBefft
2 0

0 cos γBefft
2

)
+ i sin γBefft

2

B0−ω/γ
Beff

B
Beff

B
Beff

−B0−ω/γ
Beff

 (12.6.35)

Now the state |↑〉 in the rotating frame is given by:

|χ(0)〉 ↔
(
e−iωt/2

0

)
(12.6.36)

so that:

|χ(t)〉 =
[(

cos γBefft
2 0

0 cos γBefft
2

)
+ i sin γBefft

2

B0−ω/γ
Beff

B
Beff

B
Beff

−B0−ω/γ
Beff

](e−iωt/2

0

)
(12.6.37)

=
(

cos γBefft
2 e−iωt/2

0

)
+ i sin γBefft

2

(
B0−ω/γ
Beff

e−iωt/2

B
Beff

e−iωt/2

)
(12.6.38)

= e−iωt/2
(

cos γBefft
2 + i sin γBefft

2
B0−ω/γ
Beff

iB
Beff

sin ωBeff
2

)
(12.6.39)

Finally, transforming back to the lab frame:

|ψ(t)〉 = e−iωt/2


[

cos γBefft
2 + i sin γBefft

2
B0−ω/γ
Beff

]
eiωt/2

iB
Beff

sin ωBeff
2 e−iωt/2

 (12.6.40)

Note that for the interesting case where B0 = ω
γ , this state corresponds to |n(θ(t), ϕ(t)),+〉
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with:
θ(t) = γBefft, and ϕ(t) = γB0t (12.6.41)

What about the spin magnetic moment? We can evaluate its expectation value:

〈µ̂z(t)〉 = γ
〈
ψ(t)

∣∣∣ Ŝz ∣∣∣ψ(t)
〉

(12.6.42)

= γ


[

cos γBefft
2 − i sin γBefft

2
B0−ω/γ
Beff

]
e−iωt/2

− iB
Beff

sin ωBeff
2 eiωt/2


T 

[
cos γBefft

2 + i sin γBefft
2

B0−ω/γ
Beff

]
eiωt/2

− iB
Beff

sin ωBeff
2 e−iωt/2


(12.6.43)

= γℏ2

4

(
cos2 γBefft

2
+ sin2 γBefft

2

(
B0 − ω/γ
Beff

)2
− B2

B2
eff

sin2 γBefft

2

)
(12.6.44)

Resonance occurs when B0 = ω
γ , where Beff = B0 and:

〈µ̂z(t)〉 = cos γB0t (12.6.45)

so the magnetic spin moment precesses with frequency γB0.

We can prove this precession more generally. If Ĥ = −γL · B, and B is homogeneous (in
space), then using Ehrenfest’s theorem:

d
〈
L̂
〉

dt
= 1
iℏ

〈
[L̂, Ĥ]

〉
= 1
iℏ

〈
[L̂,−γL̂ · B]

〉〉
=
〈∑

i

iγBi
ℏ

([L̂, L̂i]) (12.6.46)

=
〈∑

i

iγBi
ℏ

∑
j

[L̂j , L̂i]ej
〉

=
〈∑

i

iγBi
ℏ

∑
j,k

εjikiℏL̂kej
〉

(12.6.47)

=
〈∑

i

−γBi(ei × L̂)
〉

=
〈
(γL̂)× B

〉
(12.6.48)

=⇒
d
〈
L̂
〉

dt
= 〈µ̂〉 × B = 〈τ 〉 (12.6.49)

so we see that the expectation values do indeed follow the classical precession equation.

12.7 Paramagnetic resonance and Rabi oscillations (quick way)
Having sloshed through the horrendous algebra of the previous section, let’s now try to
work out the same problem in a more natural picture. Indeed in the previous section we
moved to a frame which was rotating with frequency ω, which resulting in transforming
the Hamiltonian into a time-independent form. This change of basis coincides with the
Interaction picture we discussed in Chapter 3, so let’s try to figure out the equations of
motion in this picture.
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In the Schrödinger picture, the Hamiltonian can be written as

Ĥ = H0 + V (t) (12.7.1)
H0 = −γ(B0 −B′)Ŝz, (12.7.2)
V (t) = −γB⊥(cos(ωt)Ŝx + sin(ωt)Ŝy)− γB′Ŝz (12.7.3)

where B′ is some unknown constant which we will figure out soon. In the Interaction
picture, we find that

|ψI(t)〉 = eiH0t |ψS(t)〉 = e−iγ(B0−B′)tσz/2, |ψI(t)〉 = e−iVI(t)t/ℏ |ψ(0)〉 (12.7.4)

which corresponds to moving to a frame rotating with frequency γ(B0 − B′)/2 about the
z − axis and

VI(t) = eiγ(B0−B′)tσz/2V (t)e−iγ(B0−B′)tσz/2 (12.7.5)

We then find that

eiγ(B0−B′)tσz/2 =
(
eiγ(B0−B′)t/2 0

0 e−iγ(B0−B′)t/2

)
, and V (t) =

(
B′ B⊥e

−iωt

B⊥e
iωt −B′

)
(12.7.6)

which when substituted into (12.7.5) yields

VI(t) = −γ ℏ
2

(
eiγ(B0−B′)t/2 0

0 e−iγ(B0−B′)t/2

)(
B′ B⊥e

−iωt

B⊥e
iωt −B′

)(
e−iγ(B0−B′)t/2 0

0 eiγ(B0−B′)t/2

)
(12.7.7)

= −γ ℏ
2

(
eiγ(B0−B′)t/2 0

0 e−iγ(B0−B′)t/2

)(
B′e−iγ(B0−B′)t/2 B⊥e

−iωteiγ(B0−B′)t/2

B⊥e
iωte−iω(B0−B′)t/2 −B′eiγ(B0−B′)t/2

)
(12.7.8)

= −γ ℏ
2

(
B′ B⊥e

iωteiγ(B0−B′)t

B⊥e
−iωte−iγ(B0−B′)t −B′

)
(12.7.9)

If we let B′ = B0 − ω
γ then we see that

VI(t) = −γ
((
B0 −

ω

γ

)
Ŝz +B⊥Ŝx

)
(12.7.10)

so the interaction picture interaction is time-independent. Letting the effective magnetic
field be

Beff = B⊥z +
(
B0 −

ω

γ

)
z =⇒ VI(t) = −γBeff · Ŝ (12.7.11)

then it follows that the interaction picture propagator is

UI(t) = eiγBeff·σt/2 = cos γBefft

2
1 + i

B⊥σx + (B0 − ω/γ)σz
Beff

sin γBefft

2
(12.7.12)

This matches exactly the result (12.6.35) we got in the previous section (just with a lot less
matrix algebra required). Hopefully this is a good showcase of how choosing the right
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picture to work in can vastly simplify a problem, this will also happen when discussing
time-dependent perturbation theory, scattering etc... Suppose we start out in a the state
|↑〉. Then we see that the state at time t in the interaction picture is given by

|ψI(t)〉 = cos γBefft

2
|↑〉+ i

B⊥ |↓〉+ (B0 − ω/γ) |↑〉
Beff

sin γBefft

2
(12.7.13)

If we are interested in the transition amplitude P↑,↓(t) then

P↑,↓(t) = B2
⊥

B2
eff

sin2
(
γBefft

2

)
, Beff =

√√√√(B0 −
ω

γ

)2
+B2

⊥ (12.7.14)

The oscillations are known as Rabi oscillationswhich have frequency 2Ω where

Ω = γ

√√√√(B0 −
ω

γ

)2
+B2

⊥ (12.7.15)

is known as the Rabi frequency. Note that when ω = γB0 then the transition amplitude
peaks to P = 1 when t = π

γB⊥
and we achieve paramagnetic resonance. The transition is

assured to happen periodically.

12.8 The Ammonia molecule
Although our discussion of Rabi oscillations originated from the dynamics of a spin in a
rotating magnetic field, our discussion extends equally well to any two-state system. One
important example is ammonia.

Ammonia NH3 is a molecule which takes a trigonal pyramidal shape due to the presence
of a lone electron pair on the nitrogen atom. Due to the symmetry of this configuration,
the ammonia molecule can be seen as a two-state system depending on the position of the
nitrogen atom below/above the hydrogen plane.

Ammonia is also a polar molecule, due to the electronegativity difference between nitro-
gen and hydrogen. The result is that nitrogen tends to attract the electron cloud towards
itself more strongly, forming a permanent dipole moment pointing to the center of the
molecule by symmetry. This dipole can interact with an external electric field, much like
how an electron’s spin couples with an external magnetic field. Suppose we apply a rotat-
ing magnetic field

This problem is then exactly the same as that of paramagnetic resonance. The result is that
the probability of transition from the |↑〉 to the |↓〉 state is
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13Addition of angular momenta

13.1 Total angular momentum operator

Suppose we have a set of operators Ĵ (1)
i and Ĵ (2)

i satisfying the algebra of angular momen-
tum operators in their respective Hilbert spacesH1,H2:

[J (1)
i , J

(1)
j ] = iℏϵijkJ

(1)
k (13.1.1)

[J (2)
i , J

(2)
j ] = iℏϵijkJ

(2)
k (13.1.2)

Suppose we want the angular momentum in the combined spaceH1⊗H2. Clearly it must
be defined as:

Ji ≡ Ĵ (1)
i ⊗ 1 + 1⊗ Ĵ (2)

i (13.1.3)

Indeed, we can check that this operator satisfies the commutator algebra:

[Ji, Jj ] = [Ĵ (1)
i ⊗ 1 + 1⊗ Ĵ (2)

i , Ĵ
(1)
j ⊗ 1 + 1⊗ Ĵ (2)

j ] (13.1.4)

= [Ĵ (1)
i ⊗ 1, Ĵ

(1)
j ⊗ 1] + [1⊗ Ĵ (2)

i ,1⊗ Ĵ (2)
j ] (13.1.5)

since operators Ĵ (1)
i ⊗ 1 and Ĵ (2)

i ⊗ 1must commute. Consequently:

[Ji, Jj ] = [Ĵ (1)
i , Ĵ

(1)
j ]⊗ 1 + 1⊗ [Ĵ (2)

i , Ĵ
(2)
j ] (13.1.6)

= iℏϵijk(J
(1)
k ⊗ 1 + 1⊗ J (2)

k ) (13.1.7)
= iℏϵijkJk (13.1.8)

as desired.

Total angular momentum operator

Consider two operators Ĵ (1)
i and Ĵ (2)

i satisfying the algebra of angular momentum
operators in their respective Hilbert spacesH1,H2. Then, the total angular momen-
tum operator on the combiend Hilbert spaceH1 ⊗H2 is:

Ji ≡ Ĵ (1)
i ⊗ 1 + 1⊗ Ĵ (2)

i (13.1.9)
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13.2 General problem
Now there are mainly two sets of CSCO (complete set of commuting operators). The first
option is to diagonalize J2

1, J2
2, Ĵ

(1)
z , Ĵ

(2)
z to construct the uncoupled direct product basis

|j1,m1〉 ⊗ |j2,m2〉 satisfying:

J2
1 |j1,m1〉 ⊗ |j2,m2〉 = j1(j1 + 1) |j1,m1〉 ⊗ |j2,m2〉 (13.2.1)
J2
2 |j1,m1〉 ⊗ |j2,m2〉 = j2(j2 + 1) |j1,m1〉 ⊗ |j2,m2〉 (13.2.2)
Ĵ (1)
z |j1,m1〉 ⊗ |j2,m2〉 = m1 |j1,m1〉 ⊗ |j2,m2〉 (13.2.3)
Ĵ (2)
z |j1,m1〉 ⊗ |j2,m2〉 = m2 |j1,m1〉 ⊗ |j2,m2〉 (13.2.4)

This basis is particularly useful when we are interested in the state of the components of a
system.

However what if we are interested in the overall angular momentum of the entire system?
Then we would have to choose to diagonalize J2, Ĵz, J2

1, J2
2

1 to construct the basis states
|j,m, j1, j2〉 so that.

J2 |j,m, j1, j2〉 = j(j + 1) |j,m, j1, j2〉 (13.2.5)
Ĵz |j,m, j1, j2〉 = m |j,m, j1, j2〉 (13.2.6)
J2
1 |j,m, j1, j2〉 = j1(j1 + 1) |j,m, j1, j2〉 (13.2.7)
J2
2 |j,m, j1, j2〉 = j2(j2 + 1) |j,m, j1, j2〉 (13.2.8)

Our problem is to find how to transform between these two bases, how do we express
|j,m, j1, j2〉 in the direct product (uncoupled) basis?

Let us expand the operator Ĵ2:

Ĵ2 = (J1 + J2) · (J1 + J2) (13.2.9)
= Ĵ2

1 + Ĵ2
2 + 2J1 · J2 (13.2.10)

since [J1, J2] = 0. Unfortunately, we do not quite know what J1 · J2 looks like, we must
therefore find an expression for this new operator. Consider:

Ĵ
(1)
+ Ĵ

(2)
− = (Ĵ (1)

x + iĴ (1)
y )(Ĵ (2)

x − iĴ (2)
y ) (13.2.11)

= Ĵ (1)
x Ĵ (2)

x + Ĵ (1)
y Ĵ (2)

y + i(Ĵ (1)
y Ĵ (2)

x − Ĵ (1)
x Ĵ (2)

y ) (13.2.12)

and similarly:

Ĵ
(1)
− Ĵ

(2)
+ = (Ĵ (1)

x − iĴ (1)
y )(Ĵ (2)

x + iĴ (2)
y ) (13.2.13)

= Ĵ (1)
x Ĵ (2)

x + Ĵ (1)
y Ĵ (2)

y − i(Ĵ (1)
y Ĵ (2)

x − Ĵ (1)
x Ĵ (2)

y ) (13.2.14)

1note that these all commute with each other by writing J2 = J2
1 + J2

2 + 2J(1)
z J

(2)
z + J

(1)
+ J

(2)
− + J

(1)
− J

(2)
+ and

using the standard commutation relations of J2 algebra
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Adding (13.2.12) and (13.2.14) we find that:

Ĵ
(1)
+ Ĵ

(2)
− + Ĵ

(1)
− Ĵ

(2)
+ = 2(J1 · J1 − Ĵ (1)

z Ĵ (2)
z ) (13.2.15)

Consequently, we can rearrange the above expression to Ĵ (1)
+ Ĵ

(2)
− + Ĵ

(1)
− Ĵ

(2)
+ + 2Ĵ (1)

z Ĵ
(2)
z =

2J1 · J2
2 and find that:

Ĵ2 = Ĵ2
1 + Ĵ2

2 + 2Ĵ (1)
z Ĵ (2)

z + Ĵ
(1)
+ Ĵ

(2)
− + Ĵ

(1)
− Ĵ

(2)
+ (13.2.19)

By physical arguments, we expect that:

|j1 + j2, j1 + j2〉 = |j1, j1〉 ⊗ |j2, j2〉 (13.2.20)

where we suppressed the j1, j2 quantum numbers in |j1 + j2, j1 + j2〉 (which should have
been |j1 + j2, j1 + j2, j1, j2〉) since they are implicitly understood. We shall use this nota-
tion throughout the chapter unless when stated otherwise.

To check this, we need to show that|j1, j1〉 ⊗ |j2, j2〉 is an eigenstate of L̂2 and L̂z with
associated eigenvalues (j1 + j2)(j1 + j2 + 1) and j1 + j2 respectively.

Therefore, let us apply the operator L̂z on |j1, j1〉 ⊗ |j2, j2〉:

Ĵz(|j1, j1〉 ⊗ |j2, j2〉) = (Ĵ (1)
z + Ĵ (2)

z ) |j1, j1〉 ⊗ |j2, j2〉 (13.2.21)
= j1 |j1, j1〉 ⊗ |j2, j2〉+ j2 |j1, j1〉 ⊗ |j2, j2〉 (13.2.22)
= (j1 + j2) |j1, j1〉 ⊗ |j2, j2〉 (13.2.23)

so we see that |j1, j1〉 ⊗ |j2, j2〉 is an eigenvector of Ĵz with eigenvalue j1 + j2 as expected.

Let us apply Ĵ2 in a similar fashion:

Ĵ2(|j1, j1〉 ⊗ |j2, j2〉) = (Ĵ2
1 + Ĵ2

2 + 2Ĵ (1)
z Ĵ (2)

z + Ĵ
(1)
+ Ĵ

(2)
− + Ĵ

(1)
− Ĵ

(2)
+ ) |j1, j1〉 ⊗ |j2, j2〉

(13.2.24)
= (j1(j1 + 1) + j2(j2 + 1) + 2j1j2) |j1, j1〉 ⊗ |j2, j2〉 (13.2.25)

where for example Ĵ (1)
+ Ĵ

(2)
− |j1, j1〉 |j2, j2〉 = 0 since the state |j1, j1〉 cannot be raised. We

simplify the expression further by factoring the term 2j1j2 in the first two products:

Ĵ2 |j1 + j2, j1 + j2〉 = (j1(j1 + j2 + 1) + j2(j1 + j2 + 1)) |j1, j1〉 ⊗ |j2, j2〉 (13.2.26)
= j(j + 1) |j1, j1〉 ⊗ |j2, j2〉 (13.2.27)

2alternatively we can work in reverse:

J1 · J2 = Ĵ(1)
z Ĵ(2)

z + Ĵ(1)
x Ĵ(2)

x + Ĵ(1)
y Ĵ(2)

y (13.2.16)

= Ĵ(1)
z Ĵ(2)

z + 1
4(Ĵ(1)

+ + Ĵ
(1)
− )(Ĵ(2)

+ + Ĵ
(2)
− ) − 1

4(Ĵ(1)
+ − Ĵ

(1)
− )(Ĵ(2)

+ − Ĵ
(2)
− ) (13.2.17)

= Ĵ(1)
z Ĵ(2)

z + 1
2(Ĵ(1)

+ Ĵ
(2)
− + Ĵ

(1)
− Ĵ

(2)
+ ) (13.2.18)

− II.197 −



13.2. GENERAL PROBLEM

wherewedefined j = j1+j2. So, we see that indeed |j1, j1〉⊗|j2, j2〉 is indeed an eigenvector
of Ĵ2 with the appropriate eigenvalue j(j + 1). We may therefore conclude that:

|j1 + j2, j1 + j2〉 = |j1, j1〉 ⊗ |j2, j2〉 (13.2.28)

To find the other eigenstates (with lower Ĵz eigenvalues) we can simply operate Ĵ− on
|j, j〉 = |j1 + j2, j1 + j2〉 = |j1, j1〉 ⊗ |j2, j2〉 successively. For example:

Ĵ− |j, j〉 =
√
j(j + 1)− j(j − 1) |j, j − 1〉 =

√
2j |j, j − 1〉 (13.2.29)

while on the other hand:

Ĵ
(1)
− + Ĵ

(2)
− |j1, j1〉 |j2, j2〉 =

√
2j1 |j1, j1 − 1〉⊗ |j2, j2〉+

√
2j2 |j1, j1〉⊗ |j2, j2 − 1〉 (13.2.30)

so that:

|j, j − 1〉 =
√
j1
j
|j1, j1 − 1〉 ⊗ |j2, j2〉+

√
j2
j
|j1, j1〉 ⊗ |j2, j2 − 1〉 (13.2.31)

The first term represents the state where the first subsystem has a reduced angular mo-
mentum along the z axis, whereas the second term represents the state where the second
subsystem has a reduced angular momentum along the z axis. Moreover, the larger the
angular momentum along the z axis, the more likely it is for it to be reduced.

Interestingly, the two subsystems have been correlated to form this entangled state. This
means that knowing the angular momentum of each subsystem is not enough to know the
angular momentum of the composite system.

To find |j, j − 2〉we simply operate Ĵ− again. Visually, we can see this as shown in Figure
12.1.

Figure 13.1. Diagram illustrating how to add angular momenta. Each state |j,m〉, which is repre-
sented by points. Operating Ĵ− is equivalent to moving down the semi-circle.

The number of ways to orient the first subsystem is 2j1 + 1, and similarly the number of
ways to orient the second subsystem is 2j2 + 1, hence the total number of angular momen-
tum eigenstates of the combined system is (2j1 +1)(2j2 +1). However, we have only found
2(j1 + j2) + 1 eigenstates |j,m〉 in total, since
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|j1 − j2| ≤ m ≤ j1 + j2 (13.2.32)

where the lower bound form occurs when the two spins are perfectly anti-parallel.

So howdowe reduce the total angularmomentum rather than just the angularmomentum
along the z-axis? In other words, how do we calculate |j − 1, j − 1〉?

Firstly, we have that |j, j − 1〉 and |j − 1, j − 1〉 are both eigenstates of Ĵ2 (which is Her-
mitian) with different eigenvalues. Consequently, they must be orthogonal. Moreover on
physical grounds we argue that |j − 1, j − 1〉, having spin j − 1 along the z-axis, must be
a superposition of |j1, j1 − 1〉 ⊗ |j2, j2〉 and |j1, j1〉 ⊗ |j2, j2 − 1〉.

Indeed we have that:

Ĵz |j − 1, j − 1〉 = ℏ(j − 1) |j − 1, j − 1〉 (13.2.33)

and expanding |j − 1, j − 1〉 into a linear superposition of |j1,m1〉 ⊗ |j2,m2〉, then:

Ĵz |j1,m1〉 ⊗ |j2,m2〉 = ℏ(m1 +m2) |j1,m1〉 ⊗ |j2,m2〉 (13.2.34)

For the superposition to be an eigenstate of Ĵz with eigenvalue j − 1 we need m1 + m2 =
j − 1 = j1 + j2 − 1 for each term. The only possibilities are thenm1 = j1,m2 = j2 − 1 and
m1 = j1 − 1,m2 = j2.

Hence we may write

|j − 1, j − 1〉 = α |j1, j1 − 1〉 ⊗ |j2, j2〉+ β |j1, j1〉 ⊗ |j2, j2 − 1〉 (13.2.35)

The only choice of α, β (up to an overall constant) which makes this state orthogonal to
|j, j − 1〉 is α =

√
j2
j and β = −

√
j1
j :

|j − 1, j − 1〉 =
√
j2
j
|j1, j1 − 1〉 ⊗ |j2, j2〉 −

√
j1
j
|j1, j1〉 ⊗ |j2, j2 − 1〉 (13.2.36)

One may wonder how such a configuration is possible, why doesn’t the total angular mo-
mentumaddup like the angularmomentumalong z does? Well, the two angularmomenta
don’t necessarily have to be aligned, they may be at angles to each other. Consequently,
they will not add up like scalars (such as the z-component of angular momenta) do.

We can represent the process that we have followed in the diagram below: We can sum-
marize our results to write:

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ ...⊕ (j1 − j2) (13.2.37)

whichmeans that the direct product of j1-space and j2-space gives the direct sumof j1+j2-
space, j1 + j2 − 1-space etc... until j1 − j2-space.

Consider for example the casewhere j1 = 1, j2 = 1
2 so that j = 3

2 . Then the highest angular
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Figure 13.2. Diagram illustrating how to add angular momenta. Each semi-circle of radius j repre-
sents the ensemble of states |j,m〉, which are each represented bypoints. Operating Ĵ− is equivalent
to moving down a semi-circle.

momentum state is |32 ,
3
2〉. Then:

|3
2
,
1
2
〉 =

√
2
3
|1, 0〉 ⊗ |1

2
,
1
2
〉+

√
1
3
|1, 1〉 ⊗ |1

2
,−1

2
〉 (13.2.38)

We may then construct the following state:

|1
2
,
1
2
〉 =

√
1
3
|1, 0〉 ⊗ |1

2
,
1
2
〉 −

√
2
3
|1, 1〉 ⊗ |1

2
,−1

2
〉 (13.2.39)

We define the constants:

C(j,m; j1, j2;m1,m2) ≡ 〈j,m | j1,m1 ⊗ j2,m2〉 (13.2.40)

as the Clebsch-Gordan coefficients. This allows us to easily transform between the un-
coupled and coupled bases, fully solving the problem of adding angular momenta. Let us
see some applications.

13.3 Spin-1
2 addition

Consider a system of two spin-1
2 particles, such as a hydrogen atom composed of one pro-

ton and one electron. Hence we have that j1 = j2 = 1
2 , and thus j = 1.

We also define the following shorthand notation:

|↑〉e = |1
2
,
1
2
〉
e

(13.3.1)

|↓〉e = |1
2
,−1

2
〉
e

(13.3.2)

|↑〉p = |1
2
,
1
2
〉
p

(13.3.3)

|↓〉p = |1
2
,−1

2
〉
p

(13.3.4)

Following the same procedure as in the previous section, we start with the maximal an-
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gular momentum state:

|1, 1〉 = |1
2
,
1
2
〉
e
⊗ |1

2
,
1
2
〉
p

= |↑〉e ⊗ |↑〉p (13.3.5)

Operating Ĵ− to this state:

|1, 0〉 = 1√
2

(|1
2
,−1

2
〉
e
⊗ |1

2
,
1
2
〉
p

+ |1
2
,
1
2
〉
e
⊗ |1

2
,−1

2
〉
p
) (13.3.6)

= 1√
2

(|↓〉e ⊗ |↑〉p + |↑〉e ⊗ |↓〉p) (13.3.7)

Applying Ĵ− again:

|1,−1〉 = 1√
2

( 1√
2
|1
2
,−1

2
〉
e
⊗ |1

2
,−1

2
〉
p

+ 1√
2
|1
2
,−1

2
〉
e
⊗ |1

2
,−1

2
〉
p

)
(13.3.8)

= |1
2
,−1

2
〉
e
⊗ |1

2
,−1

2
〉
p

= |↓〉e ⊗ |↓〉p (13.3.9)

Finally, we also have that:

|0, 0〉 = 1√
2

(|↓〉e ⊗ |↑〉p − |↑〉e ⊗ |↓〉p) (13.3.10)

It is important to note that the spin states |1, 1〉 , |1, 0〉 , |1,−1〉, called triplet states, are sym-
metric, whereas |0, 0〉, known as the singlet state, is anti-symmetric.

Thus, if we consider an ensemble of two electrons, then we may construct its state as
the direct product of a state vector in the spatial Hilbert space and a state vector in the
spin Hilbert space. If the spatial component is symmetric, the spin state must be anti-
symmetric, and vice versa.

The basis states of the two-electron Hilbert space is therefore:

|Ψ1〉 = 1√
2

(|ψ1, ψ2〉 − |ψ2, ψ1〉)⊗ |1, 1〉 (13.3.11)

|Ψ2〉 = 1√
2

(|ψ1, ψ2〉 − |ψ2, ψ1〉)⊗ |1, 0〉 (13.3.12)

|Ψ3〉 = 1√
2

(|ψ1, ψ2〉 − |ψ2, ψ1〉)⊗ |1,−1〉 (13.3.13)

|Ψ4〉 = 1√
2

(|ψ1, ψ2〉+ |ψ2, ψ1〉)⊗ |0, 0〉 (13.3.14)

13.4 Adding orbital angular momentum and spin
Consider the addition of orbital angular momentum and spin-1

2 : J = L+S. We are looking
for eigenstates of Ĵ2, Ĵz, L̂

2, Ŝ2, denoted by |j,mj , l〉. We have that:
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Ĵ2 = L̂2 + Ŝ2 + 2L · S (13.4.1)
= L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + Ŝ+L̂− (13.4.2)

Clearly the maximal angular momentum state for j = l + 1
2 is:

|l + 1
2
, l + 1

2
〉 = |l, l〉 ⊗ |↑〉 (13.4.3)

Indeed:
Ĵz |l + 1

2
, l + 1

2
〉 =

(
l + 1

2

)
|l + 1

2
, l + 1

2
〉 (13.4.4)

and

Ĵ2 |l + 1
2
, l + 1

2
〉 = ℏ2(l(l + 1) + 3

4
+ l
)
|l + 1

2
, l + 1

2
〉 (13.4.5)

=
(
l + 1

2

)(
l + 3

2

)
|l + 1

2
, l + 1

2
〉 (13.4.6)

as desired. Now, we may apply the lowering operator Ĵ− to find that:

Ĵ− |l + 1
2
, l + 1

2
〉 =
√

2l + 1 |l + 1
2
, l − 1

2
〉 (13.4.7)

At the same time however, Ĵ− = L̂− + Ŝ− so that:

Ĵ− |l + 1
2
, l + 1

2
〉 = (L̂− + Ŝ−) |l, l〉 ⊗ |↑〉 (13.4.8)

=
√
l(l + 1)− l(l − 1) |l, l − 1〉 ⊗ |↑〉+

√
3
4

+ 1
4
|l, l〉 ⊗ |↓〉 (13.4.9)

=
√

2l |l, l − 1〉 ⊗ |↑〉+ |l, l〉 ⊗ |↓〉 (13.4.10)

Therefore:

|l + 1
2
, l − 1

2
〉 =

√
2l

2l + 1
|l, l − 1〉 ⊗ |↑〉+ 1√

2l + 1
|l, l〉 ⊗ |↓〉 (13.4.11)

More generally, the state |l + 1
2 ,m〉 will be a linear superposition of |l,m− 1

2〉 ⊗ |↑〉 and
|l,m+ 1

2〉 ⊗ |↓〉. Hence:

|l + 1
2
,m〉 = α |l,m− 1

2
〉 ⊗ |↑〉+ β |l,m+ 1

2
〉 ⊗ |↓〉 (13.4.12)
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We now impose the condition:

Ĵ2 |l + 1
2
,m〉 =

(
l + 1

2

)(
l + 3

2

)
|l + 1

2
,m〉

=α
[
l(l + 1) + 3

4
+m− 1

2
+ β

α

√
l(l + 1)−

(
m− 1

2

)(
m+ 1

2

)]
|l,m− 1

2
〉 ⊗ |↑〉

+ β

[
l(l + 1) + 3

4
−m− 1

2
+ α

β

√
l(l + 1)−

(
m− 1

2

)(
m+ 1

2

)]
|l,m+ 1

2
〉 ⊗ |↓〉

=α
[
l(l + 1) +m+ 1

4
+ β

α

√
l(l + 1)−m2 + 1

4

]
|l,m− 1

2
〉 ⊗ |↑〉

+ β

[
l(l + 1)−m+ 1

4
+ α

β

√
l(l + 1)−m2 + 1

4

]
|l,m+ 1

2
〉 ⊗ |↓〉 (13.4.13)

so comparing term by term:

l(l + 1) +m+ 1
4

+ β

α

√
l(l + 1)−m2 + 1

4
=
(
l + 1

2

)(
l + 3

2

)
(13.4.14)

⇐⇒ β

α

√
l(l + 1)−m2 + 1

4
= l −m+ 1

2
(13.4.15)

and similarly:

l(l + 1)−m+ 1
4

+ α

β

√
l(l + 1)−m2 + 1

4
=
(
l + 1

2

)(
l + 3

2

)
(13.4.16)

⇐⇒ α

β

√
l(l + 1)−m2 + 1

4
= l +m+ 1

2
(13.4.17)

Dividing (13.4.15) by (13.4.17) we find that

β

α
=

√√√√ l −m+ 1
2

l +m+ 1
2

(13.4.18)

Combining this with normalization α2 + β2 = 1 we finally get that:

α =

√
l +m+ 1

2
2l + 1

, β =

√
l −m+ 1

2
2l + 1

(13.4.19)

Consequently:

|l + 1
2
,m〉 =

√
l +m+ 1

2
2l + 1

|l,m− 1
2
〉 ⊗ |↑〉+

√
l −m+ 1

2
2l + 1

|l,m+ 1
2
〉 ⊗ |↓〉 (13.4.20)
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It follows immediately that:

|l − 1
2
,m〉 =

√
l −m+ 1

2
2l + 1

|l,m− 1
2
〉 ⊗ |↑〉 −

√
l +m+ 1

2
2l + 1

|l,m+ 1
2
〉 ⊗ |↓〉 (13.4.21)

In summary one may write that:

l ⊗ 1
2

=
(
l + 1

2

)
⊕
(
l − 1

2

)
(13.4.22)
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14Entanglement, the EPR paradox
and Quantum information

14.1 Composite systems & Entanglement
Suppose we have two systems A,B in states i, j so that they are described by the state
vectors |i〉A and |j〉B , so that the state of both systems is described by:

|i, j〉AB = |i〉A ⊗ |j〉B (14.1.1)

Surprisingly, not all states of the composite systemAB are in the form of a tensor product.

For example, consider two 2-state systems:

A : |u1〉 , |u2〉 (14.1.2)
B : |v1〉 , |v2〉 (14.1.3)

The general state of systems A,B are given by the superpositions:

|A〉 = α |u1〉+ β |u2〉 (14.1.4)
|B〉 = γ |v1〉+ δ |v2〉 (14.1.5)

Then the most general state of the composite system is:

|Ψ〉AB = αγ |u1〉 ⊗ |v1〉+ αδ |u1〉 ⊗ |v2〉+ βγ |u2〉 ⊗ |v1〉+ βδ |u2〉 ⊗ |v2〉 (14.1.6)

Using Baye’s theorem, the probability of measuring system B in the state |v1〉 given that
system A is in the state |u1〉 is:

P (v1|u1) = P (u1 ∪ v1)
P (u1)

(14.1.7)

= P (u1 ∪ v1)
P (u1 ∪ v1) + P (u1 ∪ v2)

(14.1.8)

= 1
1 + P (u1 ∪ v2)/P (u1 ∪ v1)

(14.1.9)

= 1
1 + δ/γ

(14.1.10)
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So P (v1|u1) is independent of the coefficients of |u1〉(which is α) and |u2〉 (which is β).
This implies that the systems A and B are independent/uncorrelated.

So systems described by product states |Ψ〉AB = |A〉 |B〉must be uncorrelated. Correlated
systems, such as a hydrogen atom, are not generally written as tensor products.

Such states that cannot be written as product of states are called entangled states.

Entangled states

Two particles are said to be entangled when they do not have their own quantum
states, but rather they are described as a single state which cannot be expressed as
a tensor product.

However, it turns out that the tensor product states do span the Hilbert space of all state
vectors for the system (both correlated and uncorrelated) AB:

|Ψ〉AB =
∑
ij

cij |i〉A |j〉B (14.1.11)

Proof. Consider some state |ϕ〉AB that cannot be expressed as a superposition as shown in
(14.1.11). We construct the state |χ〉AB as:

|χ〉AB = |ϕ〉AB −
∑
ij

cij |i〉A |j〉B , cij = 〈i, j |ϕ〉AB (14.1.12)

Now the probability of system A in the state |χ〉AB to be in the state |l〉A is:∑
j

|l, j|χ〉AB = |l, j|ϕ〉 −
∑
ij

cij 〈l, j | i, j〉 = 0 (14.1.13)

implying that |χ〉AB is the zero vector. Consequently:

|ϕ〉AB =
∑
ij

cij |i〉A |j〉B (14.1.14)

as desired.

Consider a hydrogen atom composed of a proton and an electron. In the position repre-
sentation:

ϕi(xe) = 〈xe |ϕi〉 , φi(xp) = 〈xp |φj〉 (14.1.15)

The state of the hydrogen atom modelled as an uncorrelated system (very unrealistic!)
would then be:

〈xe, xp |ψij〉 = 〈xe |ϕi〉 〈xp |φi〉 = ϕi(xe)φi(xp) (14.1.16)

As a correlated system, we may write:

〈xe, xp |ψ〉 =
∑
ij

cij 〈xe |ϕj〉 〈xp |φi〉 =
∑
ij

ϕi(xe)φj(xp) (14.1.17)
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This is very very strange. In classical probability theory, we cannot generally write corre-
lated events’ probabilities using uncorrelated event’s probabilities. In quantummechanics
we can do this.

An interesting property of entangled systems lies in the collapse of their wave-function.

Consider for example the state:

|ψ〉 = |u1, v1〉+ |u2〉 (α |v1〉+ β |v2〉) (14.1.18)

If we perform a measurement on system A, and find |u1〉A, then the state of the composite
system collapses to:

|ψ′〉 = |u1, v1〉 (14.1.19)

Therefore we also collapse the state of systemB to |v1〉B by performing a measurement on
system A. This is what we mean by correlated/entangled systems.

If instead we find |u2〉A then the state of the composite system collapses to:

|ψ′〉 = |u2〉 (α |v1〉+ β |v2〉) (14.1.20)

so the outcome of a measurement on system B is no longer uniquely determined.

Another interesting property of entangled systems lies in their time evolution.

For two uncorrelated subsystems, the total Hamiltonian is separable as:

Ĥ = ĤA + ĤB (14.1.21)

from which it follows that:

[ĤAB, ĤA] = [ĤA + ĤB, ĤA] = 0 (14.1.22)

Therefore, we canmeasure the total energy of the subsystemA (or B) and of the composite
system simultaneously. We can find a simultaneous diagonalized basis for ĤAB , ĤA and
ĤB as was discussed in the chapter on multi-particle systems.

Now let’s consider the evolution of entangled states. Each subsystemwill evolve according
to its TDSE:

iℏ
∂

∂t
|i〉A = ĤA |i〉A (14.1.23)

iℏ
∂

∂t
|j〉B = ĤB |i〉B (14.1.24)

Since we may write the general state of the composite system as:

|i〉AB =
∑
ij

cij |i〉A |j〉B (14.1.25)
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and the total Hamiltonian is:

ĤAB = ĤA + ĤB + Ĥint (14.1.26)

Note that now the hamiltonian is no longer separable:

[ĤAB, ĤA] 6= 0 (14.1.27)

so it is impossible to measure the energy of the total system and the energy of a subsystem
simultaneously, the two operators don’t commute.

Consequently the LHS of the TDSE reads:

iℏ
∂

∂t
= iℏ

∑
ij

[
dcij
dt
|i〉A |j〉B + cij

(∂ |i〉A
∂t
|j〉B + |i〉A

∂ |j〉B
∂t

)]
(14.1.28)

whereas the RHS of the TDSE reads:

ĤAB |i〉A |j〉B =
∑
ij

cijĤA |i〉A |j〉B + ĤB |i〉A |j〉B + Ĥint (14.1.29)

Equating (14.1.28) with (14.1.29) gives:

iℏ
∑
ij

dcij
dt
|i〉A |j〉B =

∑
ij

cijĤint |i〉A |j〉B (14.1.30)

Therefore the superposition coefficients evolve according solely to the interaction term in
the Hamiltonian, that is, the term which couples subsystem A with subsystem B.

Sandwhiching (14.1.30) with 〈k|A 〈l|B we finally find that:

iℏ
dckl
dt

=
∑
ij

cij
〈
k, l

∣∣∣ Ĥint

∣∣∣ i, j〉
AB

(14.1.31)

Consider for example an interaction hamiltonian such that cij
〈
k, l

∣∣∣ Ĥint

∣∣∣ i, j〉
AB

doesn’t
vanish only for i = k = k0 and j = l = l0, so that it starts out unentangled. Only ck0l0 will
not eventually vanish with time, but this also means that the systems will eventually get
entangled.

14.2 Examples of entanglement
Consider the apparatus of a Mach-Zehnder interferometer, consisting of a source of pho-
tons incident on a half-silvered mirror, and two photon detectors at the sides of the beam
splitter.

We stated that each photon actually travels through both paths, it will be both transmitted
and reflected. Let’s put this in quantitative terms.
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Let’s denote the state |0〉 as the vacuum-state, which contains no photons, and |1〉 as the
state containing one photon. After a photon hits the beam splitter, its state will therefore
be:

|BS〉 = α |0〉R |1〉T + β |1〉R |0〉T (14.2.1)

satisfying |α|2 = |β|2 = 1
2 . This is yet again an entangled state

We also see entanglement in α-decay. When a uranium-238 nucleus decays, it emits an
α-particle leaving thorium-234. Since the nucleus had no initial momentum, conservation
laws force the momentum of the α-particle and thorium isotope to be in opposite direc-
tions. However, because the α-particle can be emitted in any direction, we cannot state a
priori what the momentum of the two decay products must be.

We resolve this issue by postulating that the α-particle and the thorium isotope are entan-
gled, so that whenever the momentum of one is measured definitely, the state of the other
must also collapse with opposite momentum.

If the α-particle collided with an asteroid for example, no matter the distance with the
thorium isotope, the latter will also assume a definite momentum.

14.3 EPR Argument
Suppose we have a nucleus that decays into an electron and positron. Alice measures
the component of spin of the electron in some direction a. Similarly, bob measures the
component of the spin of the positron in some direction b.

Nuclear physics states that the nucleus starts out with no net spin, so by conservation of
angular momentum, the measured spin of the electron in some directionmust be opposite
to that of the positron in that same direction.

Consequently, if Alice measures the spin first, and finds that Sa = ±1
2 . Then, it is guaran-

teed that Bob measures the spin of the positron as Sb = ∓1
2 .

For simplicity, we can choose the z-axis to be along a without loss of generality. Then we
can construct the state vector using addition of angular momenta:

|ψ〉 = 1√
2

(|z, ↑〉e |z, ↓〉p − |z, ↓〉p |z, ↑〉p) (14.3.1)

After Alice has made the measurement that the electron is spin-up, the state collapses into
the first term:

|ψ〉 = |z, ↑〉e |z, ↓p〉 (14.3.2)

Now what will Bob measure? The state has collapsed into a spin-down state relative to
the z-axis. Since Bob is measuring along some other direction b = (θ, ϕ), we find that the
eigenstate pointing up along b is:

|b, ↑〉p = cos θ
2
e−iϕ/2 |z, ↑〉p + sin θ

2
eiϕ/2 |z, ↓〉p (14.3.3)
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Therefore, the probability that Bob observes spin up along his axis of measurement is:

P (b, ↑) = | 〈b, ↑ | z, ↓〉p |
2 =

∣∣∣∣ sin θ2e−iϕ/2
∣∣∣∣2 = sin2 θ

2
(14.3.4)

and thus:
P (b, ↑) = cos2 θ

2
(14.3.5)

Note that if θ = 0, then Bob is guaranteed to measure spin down, as would be expected
from spin conservation.

Interestingly, the angle θ is dependent on the angle that Alice chooses. So why does Bob’s
measurement depend on Alice’s measurement?

Perhaps more terrifyingly, suppose Bob and Alice are light years apart, and perform the
measurement simultaneously. It seems like Bob’s measurement will instantaneously pro-
vide information on what Alice’s measurement was, thus violating the postulates of Spe-
cial relativity!

Einstein, Podolski and Rosen postulated that the result of Alice’s measurement was pre-
determined by a so-called hidden variable, so no information was really ever travelling
between Alice and Bob.

14.4 Bell’s inequality
Let σA and σB be the values measured by Alice and Bob respectively.

Therefore, (σA, σB) can take four different values, namely(1
2
,
1
2

)
,

(
− 1

2
,
1
2

)
,

(1
2
,−1

2

)
,

(
− 1

2
,−1

2

)
(14.4.1)

The expectation value of σAσB is:

〈σAσB〉 = 1
4
(
P (A↑)P (B↑|A↑) + P (A↓)P (B↓|A↓)− P (A↑)P (B↓|A↑)− P (A↓)P (B↑|A↓)

)
(14.4.2)

Also, P (A↑) = P (A↓) = 1
2 and we have found that:

P (B↑|A↑) = P (B↓|A↓) = sin2 θ

2
, P (A↓|A↑) = P (A↑|A↓) = cos2 θ

2
(14.4.3)

Therefore:
〈σAσB〉 = 1

4

(
sin2 θ

2
− cos2 θ

2

)
= −1

4
cos θ = −1

4
a · b (14.4.4)

In the hidden variable theory postulated by EPR, there is some function σe(v, a) where v
is an n-vector containing the hidden variables, gives the probability of measuring |a,+〉e.
Similarly there must also be some function σp(v,b). Both must take values ±1

2 stochasti-
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cally. By conservation of angular momentum we do know that:

σe(v, a) + σp(v,b) = 0 (14.4.5)

Then:

〈σe(a)σp(b)〉 =
ˆ
dnvρ(v)σe(a)σp(b) (14.4.6)

= −
ˆ
dnvρ(v)σe(a)σe(b) (14.4.7)

Suppose we now choose another vector c instead of b. Then:

〈σe(a)σp(b)〉 − 〈σe(a)σp(c)〉 = −
ˆ
dnvρσe(va)(σe(v,b)− σe(v, c)) (14.4.8)

We also know that σ2
e(v,b) = 1

4 so that:

〈σe(a)σp(b)〉 − 〈σe(a)σp(c)〉 = −
ˆ
dnvρσe(v, a)(σe(v,b)− σe(v, c)) · 4σ2

e(v,b) (14.4.9)

= −
ˆ
dnvρσe(v, a)σe(v,b)(1− 4σe(v,b)σe(v, c))︸ ︷︷ ︸

± 1
4

(14.4.10)

It follows that the term in the bracket is either 0 or 2. We can overestimate the above integral
by taking σe(v, a)σe(v,b) = 1

4 . Then:

| 〈σe(a)σp(b)〉 − 〈σe(a)σp(c)〉 | ≤
1
4

ˆ
dnvρ(1− 4σe(v,b)σe(v, c)) (14.4.11)

= 1
4

(
1 + 4 〈σe(b)σp(c)〉

)
(14.4.12)

where the v was removed in the last line in the process of averaging σe and σp. This is
known as Bell’s inequality:

| 〈σe(a)σp(b)〉 − 〈σe(a)σp(c)〉 | ≤
1
4

(
1 + 4 〈σe(b)σp(c)〉

)
(14.4.13)

It turns out that the predictions of quantummechanics do not satisfy the above inequality.
Indeed plugging in (14.4.4), the LHS reads:

| 〈σe(a)σp(b)〉 − 〈σe(a)σp(c)〉 | = |
1
4
a · (c− b)| (14.4.14)

whereas the RHS reads:
1
4

(
1 + b · c

)
(14.4.15)
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Choose a,b orthogonal a · b = 0 and c = a sinφ+ b cosφ. Then Bell’s inequality becomes:

|1
4

sinφ| ≤ |1
4

(1− cosφ)| (14.4.16)

which is not satisfied!

Quantum mechanics is therefore inconsistent with the theory of local hidden variables.

There are several implications of Bell’s inequality. Firstly, it shows that it simply does not
make sense to ask the question "What spin would Alice measure?" beforehand, since the
electron itself does not have a definite spin due to a hidden variable until a measurement
is made.

14.5 Realism and locality
There are two fundamental ideas at the foundation of science, realism and locality.

Realism and Locality

Realism requires observables to have values independent of any measurement oc-
curring. In other words measurements do not disturb the state of a system.
Locality requires that the effect of an event happening at some location at some
other location takes at least the time it takes for light to travel between these two
locations.

The attractive aspect of local hidden variable theories is that the salvage realism and local-
ity. Bell’s inequality however supports quantum mechanics, throwing these two concepts
out of the window.

Consider for example the entangled state which we discussed in α-decay of uranium-238.
Suppose the α-particle is in a laboratory set up, where a team of nuclear physicists are
studying its properties. Knowingwhat is happeningwithin the laboratory is is not enough
to predict the behaviour of the particle. Indeed, one also needs knowledge of the entangled
thorium isotope.

14.6 Polarization
To actually test the predictions of quantum mechanics and determine the disagreement
with Bell’s inequalities, several experiments have been performed. Most of these however
haven’t used the decaying nuclei but rather the polarization of light.

Despite being spin-1 particles, quantum field theory and several experiments have shown
that photons only have two possible eigenvalues for spin, ±ℏ.

Consider a photon moving in the y-direciton. We can define the two photon states as |H〉
and |V 〉 corresponding to linear vertical polarization along the z-axis and linear horizontal
polarization along the x-axis respectively.
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Any photon propagating in the y-direction therefore is in some superposition:

|Vθ〉 = cos θ |V 〉+ sin θ |H〉 (14.6.1)

where θ is the angle to the z-axis at which the polarizer must be held for the photon to be
transmitted 100% of the time. In other words, the photon in |Vθ〉 is vertically polarized at
an angle θ.

Note that:
|Vθ+π/2〉 = |Hθ〉 = − sin θ |V 〉+ cos θ |H〉 (14.6.2)

Let us now turn to the experiments that verified Bell’s inequality, known as the Aspect
experiments.

Two entangled photons are released from the decay of a calcium atom with zero angular
momentum. They are entangled in a state:

|P 〉 = 1√
2

(|V, V 〉+ |H,H〉) (14.6.3)

Notice that:

1√
2

(|Vθ, Vθ〉+ |Hθ,Hθ〉) = 1√
2
[
(cos2 θ |V, V 〉+ sin2 θ |H,H〉+ sin θ cos θ(|H,V 〉+ |V,H〉))

+ (sin2 θ |V, V 〉+ cos2 θ |H,H〉 − sin θ cos θ(|H,V 〉+ |V,H〉))
]

(14.6.4)

= 1√
2

(|V, V 〉+ |H,H〉) (14.6.5)

so that if one photon is vertically (horizontally) polarized, so is the other photon. Suppose
one observer measures the polarization of one photon at some angle θ1, and similarly we
observe the polarization at some angle θ2.

Now we find that:

〈σθ1σθ2〉 = P (Vθ1)P (Vθ2 |Vθ1)+P (Hθ1)P (Hθ2 |Hθ1)−P (Vθ1)P (Hθ2 |Vθ1)−P (Hθ1)P (Vθ2 |Hθ1)
(14.6.6)

Since nothing is known about the spin of the photon before the measurement, P (Vθ1) =
P (Hθ1) = 1

2 .

Just like in the case of entangled electron-positron systems, we find that the probability of
measuring vertical polarization at some angle θ is:

P (Vθ2 |Vθ1) = P (Hθ2 |Hθ1) = | 〈Vθ2 |Vθ1〉 |2 = cos2(θ2 − θ1) (14.6.7)

and similarly:

P (Hθ2 |Vθ1) = P (Vθ2 |Hθ1) = | 〈Hθ2 |Vθ1〉 |2 = sin2(θ2 − θ1) (14.6.8)
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Therefore we find that:
〈σθ1σθ2〉 = cos 2(θ2 − θ1) (14.6.9)

However, Bell’s inequality assuming local hidden variables in this experiment would take
the form:

| 〈σθ1σθ2〉 −
〈
σθ1σθ′

2

〉
| ≤ |1 +

〈
σθ1σθ′

2

〉
| (14.6.10)

Substituting the predictions from quantum mechanics we get:

| cos 2(θ2 − θ1)− cos 2(θ′
2 − θ1)| ≤ |1 + cos 2(θ′

2 − θ1)| (14.6.11)

Now taking θ′
2 = θ2 + θ1 we get the inequality:

| cos 2(θ2 − θ1)− cos 2θ2| ≤ |1 + cos 2θ2| (14.6.12)

which is clearly not satisfied. Take for example θ2 = 7π
12 and θ1 = π

6 , so that θ′
2 = 11π

12 . Then
the LHS reads

√
3

2 wheras the RHS reads 1−
√

3
2 .

The Aspect experiments were the first to find what quantum mechanics predicted, thus
showing that local hidden variable theories are incompatible with experiment.

14.7 Faster than light travel
We still have not resolved the issue of using entanglement to send information at speeds
faster than light. However, it turns out that any sort of information sent through entangle-
ment will be unreadable.

Consider for example the following experiment. Alice and Bob entangle two ensembles
of 100 electrons each, {a1, a2, ..., a100} and {b1, b2, ..., b100}. The entanglement is such that
if a1 is measured spin-up in some direction n, then a2 must be measured spin-down in the
same direction.

Bob stays on earth with his electrons, whereas Alice and her electrons move to a planet
one light year away. On January 1, 2021 a soccer match between Zimbabwe and Yemen.
Before separating, Alice and Bob decided that if Zimbabwe wins, Bob would measure the
spin of his electrons in the z-direction. Since he cannot control the spin state of the elec-
trons, they will be 50% spin up and 50% spin down. This will collapse the state of Alice’s
electrons instantaneously into either spin up or spin down in the z-direction. Hence, when
Alice measures the spin of the electrons in the z direction, they will be 50% spin up and
50% spin down. If instead Yemen wins, Bob will measure the spin of his electrons in the
y-direction, collapsing the state of Alice’s electrons. If Alice now measures the spin in the
z-direction, she will still get 50% spin up and 50% spin down. Consequently, the two en-
sembles of atoms in case Zimbabwewins and Yemenwins are indistinguishable for Alice’s
measurements.

One could however argue that Alice and Bob could compare their differentmeasurements.
If there was a correlation between Alice and Bob’s measurement, so that if one measures
spin up the other measures spin down, and vice versa, then Alice will know that she mea-
sured the spin in the same direction as Bob, so she will know if Zimbabwe or Yemen won.
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If instead there is no correlation, she will know that she measured spin in a direction or-
thogonal to Bob, and hence she will again infer what direction Bobmade his measurement
in.

Unfortunately there is yet another flaw in this scheme. To compare their measurements,
Alice and Bob would need to communicate, and this requires 2 light years...

Consequently, even though the electrons have collapsed in such a way as to suggest that
information has been sent from Bob to Alice, the latter cannot read this message unless she
has previous knowledge of the state of Bob’s electrons before January 1, 2021. This however
cannot be done, since measuring the state of the electrons breaks the entanglement.

14.8 Classical bits
A bit is any piece of information which can take two possible values. Suppose we flip a
coin, and decide to associate the value 0 with the outcome "heads", and the value 1 with
the outcome "tails". Flipping the coin will then give either a 0 or a 1 with certainty, there
are two possible outcomes. The result of a coin flip therefore contains 1 bit of information.

Bits are all quantum bits, or qubits, but in many scenarios the quantumness of these bits
does not manifest itself. Such bits are modelled as classical bits.

Adopting dirac notation, we will designate the two states of a classic bit as |0〉 or |1〉.

A possible state for a six coin toss could be |010011〉. There are 26 possible states in this
vector space.

Suppose we ask what is the temperature in the lecture room? If we are only interested in
an estimate of the number to some degree of precision, then we can write the temperature
in base 2, and find the number of bits contained in this information.

We can draw the time evolution of these bits using loop diagrams. For example:

(a) Two possible loop diagrams.
(b) Impossible loop diagram doesn’t satisfy uni-
tarity

The yellow loop diagram is representative of a classical coin toss. A coin that is tossed into
the state "1" will remain in that state.

The green loop diagram is representative of a system switching states. For example, the
stop sign has two possible states, red and green, and alternates between the two.

The red loop diagram for a 2-bit system is not a physically sensible one. Indeed, if the
system finds itself in the state |10〉, it has lost track of where it comes from. This time
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evolution therefore does not satisfy unitarity, we cannot construct a classical "propagator"
for this system which is unitary.

14.9 Quantum cryptography
Encryption consists in rendering a message, originally in binary code known as plaintext,
into a cryptogram through the use of a cryptographic key.

For the cryptogram to be uncrackable by an eavesdropper who is not in possession of the
key, it was shown by Claude Shannon that the key must be random and as long as the
message itself. Keys satisfying these properties are known as one time pads.

One problem, known as the key distribution problem, quickly arises however: how does
the sender send the key to the receiver without revealing it to the eavesdropper?

Indeed, suppose the sender and receiever use a communication channel to transmit in-
formation about the key. The eavesdropper, with sufficient computational power, could
break through the communication channel and get a copy of the key, thus breaking the
encryption of the message. Any method of communication relying on classical physics
will be vulnerable, since the eavesdropper can "measure" the key without disturbing it.

However we know that in the realm of quantum mechanics reality is not realizable, in
otherwords the eavesdropper cannotmeasure the keywithout disturbing it. Furthermore,
we also know that entangled photons violate non-locality, and may also be used in the
distribution of keys, since measuring the key would immediately break the entanglement
of these photons.

14.10 BB84 Protocol
The BB84 is one the most popular protocols which exploit quantummechanics to solve the
key distribution problem.

Suppose Alice and Bob wish to create a cryptographic key through a quantum commu-
nication channel. They also have a classical (insecure) communication channel to their
disposal.

(i) Alice chooses either theH/V basis or theHπ
4
/Vπ

4
basis to transmit information over

the quantum communication channel.

(ii) Alice sends one bit of information (either a 1 or a 0) in the chosen basis.

(iii) Bob chooses either the H/V basis or the Hπ
4
/Vπ

4
basis to receive information.

(iv) Repeat (i)-(iii) until sufficient bits of information have been transmitted.

(v) In the classical channel, Alice and Bob tell each other what bases they used for each
bit of information. Any bit where they didn’t use the same basis is discarded.

(vi) To test for eavesdroppers, Alice and Bob choose a subset of the transmitted bits, and
if they match, use the remaining bits to read the cryptographic key.
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Figure 14.2. Apparatus for the BB84 protocol between Alice in the wonderland and Bob Ross.

Let’s examine the steps carefully.

Firstly, Alice chooses one of the two available bases for the photon polarization. In theH/V
basis for example, if Alice wants to send a 1 then she will have to send a photon in the state
|V 〉. Bob must similarly choose a basis for detection. Here are the possible outcomes of
Bob’s measurements:

A basis H/V H/V H/V H/V Hπ
4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4

A sent bit 1 0 1 0 1 0 1 0

B basis H/V H/V Hπ
4
/Vπ

4
Hπ

4
/Vπ

4
H/V H/V Hπ

4
/Vπ

4
Hπ

4
/Vπ

4

B received bit 1 0 1/0 1/0 1/0 1/0 1 0

where 1/0 means that there is an equal probability of measuring bit 1 or bit 0. Next, Alice
and Bob share what basis they used for each photon, and since they can only see a 100%
correlation when they both use the same basis, they discard photons where different bases
were employed.

In the absence of the eavesdropper, Alice and Bob would then use the remaining bits,
which are necessarily copies of each other, may then be used as cryptographic keys.

But what if an eavesdropper Eve were to intercept the photons and measure their polar-
ization in either theH/V or the |Hπ

4
〉 bases? Since Eve does not yet knowwhat bases Alice

and Bob have used for each photon, there is a chance that her basis will not coincide with
Alice’s base. Consequently, when Eve sends back a photon with the measured polariza-
tion to Bob (in order to mitigate her measurement), there will be a chance for this photon’s
polarization to not coincide with the polarization of the photon sent by Alice. Hence, even
if Bob and Alice use the same basis, due to the intervention of Eve, their bits may not
coincide!

For example, suppose both Alice and Bob use the H/V basis, and the eavesdropper uses
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the |Hπ
4
〉 basis. If Alice sends 1, so a photon in state |V 〉, then there is a possibility (50%)

that the Eve will measure |Hπ
4
〉, and send a photon in this state to Bob. Bob will therefore

have a probability ofmeasuring either |V 〉 or |H〉, and in the latter case thiswill not coincide
with what Alice sent initially. When Alice and Bob compare their results, they will notice
that Eve intervened.

A basis H/V H/V H/V H/V Hπ
4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4

A sent bit 1 0 1 0 1 0 1 0

E basis H/V H/V Hπ
4
/Vπ

4
Hπ

4
/Vπ

4
H/V H/V Hπ

4
/Vπ

4
Hπ

4
/Vπ

4

E received bit 1 0 1/0 1/0 1/0 1/0 1 0

B basis H/V H/V H/V H/V Hπ
4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4
Hπ

4
/Vπ

4

B received bit 1 0 1/0 1/0 1/0 1/0 1 0

Hence, if Alice sends 100 photons for each bit in each basis, so that she sends 800 photons
in total, then 600 of these photons will coincide, and 200 will not coincide. Hence there is
a 75% chance that even though Eve is eavesdropping, the photon polarization that Alice
sends will eventually be measured by Bob.

14.11 Eckert Protocol
Again, Alice and Bob need to establish a cryptographic key. They have a source of entan-
gled pairs of photons in the state:

|ψ〉 = 1√
2

(|Vθ〉A |Hθ〉B − |Hθ〉A |Vθ〉B) (14.11.1)

(i) Alice chooses randomly a basis from θ = 0, π8 ,
π
4 . Similarly, Bob chooses randomly a

basis from θ = −π
8 ,

π
8 ,

π
4 .

(ii) Alice and Bob make measurements on the polarization of their photons in their re-
spective bases.

(iii) Alice and Bob reveal which basis they used for each photon over the classical com-
munication channel.

(iv) Alice and Bob classify their measurement into group 1, where they employed differ-
ent bases, and group 2, where they employed the same basis.

(v) Using the group 1measurements, Alice and Bob determine whether or not quantum
non-local correlations have been exhibited. If so, they use group 2 measurements to
create a cryptographic key.

Clearly, if Alice andBobuse the samevalue of θ, theirmeasurementswill be anti-correlated.

− II.218 −



14.11. ECKERT PROTOCOL

Figure 14.3. Apparatus for the Eckert protocol between Alice in the wonderland and Bob Ross

More generally, if Alice chooses α, and Bob chooses β as their polarizers’ axes orientation,
then we find that:

P++(α, β) = | 〈Vα, Vβ |ψ〉 |2 = 1
2
| cosα sin β − sinα cosβ|2 = 1

2
sin2(α− β) (14.11.2)

Similarly:

P−−(α, β) = | 〈Hα,Hβ |ψ〉 |2 = 1
2
| sinα cosβ − cosα sin β|2 = 1

2
sin2(α− β) (14.11.3)

Also:
P+−(α, β) = P−+(α, β) = 1

2
cos2(α− β) (14.11.4)

It follows that if α = β, then P++ = P−− = 0 and P+− = P−+ = 1, giving perfect anti-
correlation. Hence, in the absence of an eavesdropper, if Alice and Bob share what basis
they used, they know that the measurements in group 2 (where they employed the same
basis) will be perfect copies of each other with 1↔ 0.

But what if the eavesdropper Eve were to intercept the photons and measure their polar-
ization? We can define the correlation function as the probability of correlation minus the
probability of anti-correlation:

C(αi, βj) = sin2(αi − βj)− cos2(αi − βj) = − cos 2(αi − βj) (14.11.5)

This is where group 1, the group ofmeasurementswhere different baseswere used, comes
into play. Indeed, using group 1 measurements Alice and Bob can evaluate the following
expression:

S = C(α1, β1) + C(α1, β3) + C(α3, β1)− C(α3, β3) (14.11.6)

Setting α1 = 0, α3 = π
4 , β1 = π

8 , β3 = −π
8 , we find that:

S = − 1√
2
− 1√

2
− 1√

2
− 1√

2
= −2

√
2 (14.11.7)
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If Eve eavesdrops and performs a polarization measurement, then she could create a new
entangled pair. However, Alice and Bob’s measurements for the new pair, which will be
used to create the key, will not necessarily coincidewithwhat Evemeasured for the original
pair.

So, Eve could try creating a pair of photonswith polarization coincidingwith hermeasure-
ment, so for example |V 〉A |H〉B . However, this has collapsed the state vector and broken
the entanglement. The non-local correlations we derived earlier will no longer be present.
The measurements performed by Alice will in no way depend or be correlated on what
Bob measures.

Indeed, we find that:

P++(α, β) = | 〈Vα, Vβ |V,H〉 |2 = | cosα sin β|2 = cos2 α sin2 β (14.11.8)

Similarly:

P−−(α, β) = | 〈Hα,Hβ |V,H〉 |2 = | − sinα cosβ|2 = cos2 β sin2 α (14.11.9)

Also:

P+−(α, β) = cos2 α cos2 β (14.11.10)
P−+(α, β) = sin2 α sin2 β (14.11.11)

so that:

C ′(αi, βj) = cos2 α sin2 β + cos2 β sin2 α− cos2 α cos2 β − sin2 α sin2 β (14.11.12)
= − cos(2αi) cos(2βj) (14.11.13)

Again, substituting α1 = 0, α3 = π
4 , β1 = π

8 , β3 = −π
8 we find that:

S′ = −
√

2 < S (14.11.14)

So, we see that in the case where Eve has interfered, the non-local behaviour is disrupted.

14.12 Quantum teleportation
A loop immediately surfaces from our considerations of quantum cryptography protocols:
what if the eavesdropper makes an exact copy of the intercepted photons before a measure-
ment is made.

Is it possible to create an exact copy, a clone of an unknown quantum state? It turns out
that this is impossible, as we shall now prove.

No-cloning theorem

It is impossible to clone quantum states.
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Proof. Consider twoquantumsystemsA,B sharing the sameHilbert spaceH, and suppose
we wish to transform a system beginning in the state |ψ〉A |ϕ〉B to the state |ψ〉a |ψ〉B .

To do so, we need to create a propagator Û(t) = e−iĤt/ℏ such that:

Û |ψ〉A |ϕ〉B = eiα |ψ〉A |ψ〉B (14.12.1)

where the phase factor does not change the "physicality" of the state.

Let |φ〉A be another state inH. Then:

〈ψ |φ〉 〈ϕ |ϕ〉 = 〈ψ|A 〈ϕ|B |φ〉A |ϕ〉B (14.12.2)
= (Û |φ〉B |ψ〉A)†Û |φ〉A |ϕ〉B (14.12.3)
= e−iβ 〈ψ|A 〈ψ|B |φ〉A |φ〉B (14.12.4)
= e−iβ 〈ψ |φ〉2 (14.12.5)

(14.12.6)

Since |ϕ〉 is normalized, we find that:

〈ψ |φ〉 = e−iβ 〈ψ |φ〉2 (14.12.7)

implying that either 〈ψ |φ〉 = 0 or 〈ψ |φ〉 = eiβ . However, this cannot be possible true
for any arbitrary state φ. It follows that we cannot create a propagator cloning a quantum
state.

Although it is not possible to clone a state, it turns out that we can teleport a state.

Suppose Alice wishes to teleport an unknown state ψ of photon 1, to Bob, so that he may
recreate the photon with this information. In general:

|ψ〉1 = α |V 〉1 + β |H〉1 (14.12.8)

Suppose we also have a source of entangled photons, producing photons 2 and 3 in the
state:

|ϕ〉23 = 1√
2

(|V 〉2 |H〉3 − |H〉2 |V 〉3) (14.12.9)

The entangled photons are emitted so that photon 2 is sent to Alice and photon 3 is sent to
Bob.

Since photons 2 and 3 are entangled, if Alice were able to couple photon 1 and 2, then Bob
would be able to use quantum non-locality to receive information about |ψ〉1.

But how does Alice accomplish this? Firstly note that the state of the entire system con-
sisting of the three photons is:

|Ψ〉123 = α√
2

(|V 〉1 |V 〉2 |H〉3 − |V 〉1 |H〉2 |V 〉3) + β√
2

(|H〉1 |V 〉2 |H〉3 − |H〉1 |H〉2 |V 〉3)

(14.12.10)
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Figure 14.4. Apparatus for quantum teleportation of a photon fromAlice in the wonderland to Bob
Ross

Let us define the following entangled states for photons 1,2:

|Ψ±〉12 = 1√
2

(|V 〉1 |H〉1 ± |V 〉2 |H〉2) (14.12.11)

|Φ±〉12 = 1√
2

(|V 〉1 |V 〉1 ± |H〉2 |H〉2) (14.12.12)

We may then write |Ψ〉123 in terms of the above states, known as Bell states:

|Ψ〉123 = 1
2

(
|Ψ−〉12 (−α |V 〉3 − β |H〉3) + |Ψ+〉12 (−α |V 〉3 + β |H〉3)

+ |Φ−〉12 (β |V 〉3 α |H〉3) + |Φ+〉12 (−β |V 〉3 + α |H〉3)
)

(14.12.13)

In other words, the state of the combined system is a linear combination of the Bell states
for photons 1 and 2, with coefficients given by the state of photon 3. These coefficients are
all different, so if Alice were to perform a Bell measurement, that is a measurement that
would collapse |Ψ〉123 into one of the Bell states, then this would also collapse the state of
photon 3 into one of the four coefficients.

The table below shows how the Bell measurements performed by Alice on photons 1 and
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2 affect the state of photon 3 measured by Bob:

Measurement |ϕ〉3
|Ψ−〉12 −α |V 〉3 − β |H〉3
|Ψ+〉12 −α |V 〉3 + β |H〉3
|Φ−〉12 β |V 〉3 α |H〉3
|Φ+〉12 −β |V 〉3 + α |H〉3

So, if Alice tells Bob which of the Bell states she measured over a classical communication
channel (this requires only 2 bits of information, since there are 4 possible Bell states),
then Bob knows the shape of the state of photon 3. By performing polarization measure-
ment, hemay then determine α and β by applying appropriate transformations, and hence
reconstruct the original state of photon 1.

|ϕ〉3 Transformation

−α |V 〉3 − β |H〉3

(
−1 0
0 −1

)

−α |V 〉3 + β |H〉3

(
−1 0
0 1

)

β |V 〉3 α |H〉3

(
0 1
1 0

)

−β |V 〉3 + α |H〉3

(
0 1
−1 0

)

One can easily verify that all these matrices are unitary, and therefore preserve the nor-
malization of |ϕ〉3.

For example, if Alice measures |Φ−〉, then Bob would then perform a measurement on

photon 3. He then operates the matrix
(

0 1
1 0

)
on the photon state, creating an identical

copy of |ψ〉1. In the process of doing so, Alice has not learnt anything about |ψ〉1, since her
measurement collapsed the state of photons 1,2. Consequently, the no-cloning theorem
was not violated, since the original photon state was destroyed.

Bob however may be compelled to send information about |ψ1〉 to Alice, thus violating the
no-cloning theorem. However, to do so, Bobwould have to repeat this protocol of quantum
teleportation, and thus destroys his own copy of photon 1.

14.13 Performing Bell measurements
There remains one ambiguity in this procedure, how exactly does Alice perform Bell mea-
surements on photons 1 and 2?

Recall that a beam splitter splits a beam of light by reflecting one half and reflecting the
other half. Since the two photons are all incident on the beam splitter in two distinct direc-
tions, we may define the possible input spacial states of the photons on the beam syplitter
as |a〉 and |b〉 as shown below.
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Figure 14.5. Input states |a〉 and |b〉, and output states |c〉 and |d〉 of a 50-50 beam splitter

The beam splitter will have the following effect:

|a〉 −→ 1√
2

(i |c〉+ |d〉) (14.13.1)

|b〉 −→ 1√
2

(|c〉+ i |d〉) (14.13.2)

where i is due to the phase shift in light when reflected.

So, if a photon in the state 1√
2(|V 〉 − |H〉) ⊗ |b〉 is incident on the beam splitter, it will

transform into 1
2(|V 〉 − |H〉)⊗ (|c〉+ i |d〉).

In the apparatus of quantum teleportation, we see that photon 1 is arranged to be in the
input |a〉 and photon 2 is arranged to be in the input |b〉. Then we may write the incoming
state of photons 1 and 2 as:

|Φ〉in = (α |V 〉1 + β |H〉1) |a〉1 (γ |V 〉2 + δ |H〉2) |b〉2 (14.13.3)

After hitting the beam splitter, we find that:

|Φ〉12 = 1
2

(α |V 〉1 + β |H〉1)(i |c〉1 + |d〉1)(γ |V 〉2 + δ |H〉2)(|c〉2 + i |d〉2) (14.13.4)

However, note that due to exchange degeneracy, the photons leaving the beam splitter are
indistinguishable. We must therefore construct the bosonic state:

|Φ〉out = 1√
2

(|Φ〉12 + |Φ〉21) (14.13.5)
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Some lengthy algebra "simplifies" the above expression to:

|Φ〉out =iαγ + βδ√
2

1√
2

(|c〉1 |c〉2 + |d〉1 |d〉2) 1√
2

(|V 〉1 |V 〉2 + |H〉1 |H〉2) (14.13.6)

+iαγ − βδ√
2

1√
2

(|c〉1 |c〉2 + |d〉1 |d〉2) 1√
2

(|V 〉1 |V 〉2 − |H〉1 |H〉2)

+iαδ + βγ√
2

1√
2

(|c〉1 |c〉2 + |d〉1 |d〉2) 1√
2

(|V 〉1 |H〉2 + |H〉1 |V 〉2)

+iαδ − βγ√
2

1√
2

(|c〉1 |d〉2 + |c〉1 |d〉2) 1√
2

(|V 〉1 |H〉2 − |H〉1 |V 〉2)

(14.13.7)

This is simply the superposition of Bell states for both the position and polarization part
of the state vector for photons 1 and 2. For example, the first three lines correspond to the
photons being detected on the same side, either of the beam splitter, either |c〉 or |d〉. The
last line instead correponds to the photons being detected on opposite sides.

Suppose Alice places two detectors on the output modes of the beam splitter. Whenether
both detectors have been activated, this will correspond to the photons being detected on
different output states, that is they will have collapsed in the state described by the fourth
line in |Φ〉out:

i
αδ − βγ√

2
1√
2

(|c〉1 |d〉2 + |c〉1 |d〉2) 1√
2

(|V 〉1 |H〉2 − |H〉1 |V 〉2) (14.13.8)

The polarization part corresponds to |Φ−〉12, so |Φ〉123 must have collapsed to the first term
in (14.12.13). Bob will then apply the necessarily transformation on photon 3, effectively
teleporting the photon.

Note that if only one of the detectors on the beam splitter is activated, then we cannot
distinguish between the three possible Bell states. More complex apparati are then needed.
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15Time-independent Perturbation theory

15.1 The problem
We have learned to solve several exact systems, such as the harmonic oscillator, the step
potential, and the hydrogen atom. Unfortunately, in real life these exact systems come
up on extremely rare occasions. The systems studied in modern research are significantly
more complex, but can usually be regarded as a perturbed hamiltonian, that is, an exactly
solvable hamiltonian plus a smaller perturbation hamiltonian.

For example, most potentials may be approximated as harmonic oscillators at their mini-
mum, with a small anharmonic perturbation.

Whenever we have a Hamiltonian:

Ĥ = Ĥ(0) + δĤ (15.1.1)

where Ĥ(0) is a well known hamiltonian, and δĤ is the perturbation we impose on the
system, we may use perturbation theory. However, we can cleverly insert a parameter λ in
front of the perturbation term:

Ĥ(λ) = Ĥ(0) + λδĤ, λ ∈ [0, 1] (15.1.2)

It appears like we’re shooting ourselves in the foot as we’re solving an even more general
problem of diagonalizing a family of Hamiltonians, but the introduction of λwill allow us
to set up the perturbation equations more easily.

Let us plot the energy spectrum of the unperturbed and perturbed hamiltonians:

We plot the energy spectrum of Ĥ(0) on the y-axis, and let λ evolve on the x-axis. We
see that non-degenerate states will behave differently from degenerate states. Indeed the
first excited state, which is degenerate, may split due to the perturbation. δĤ may cause
one state to have a higher energy than the other. One must therefore differentiate between
degenerate and non-degenerate perturbation theory. The ground state in this example
may be analyzed using the latter, whereas the first excited state will require the former.
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Figure 15.1. Evolution of energy spectra with λ

15.2 Non-degenerate perturbation theory
Suppose we have fully diagonalized Ĥ0, so we know the eigenstates |k(0)〉 and the associ-
ated eigenvalues so:

Ĥ(0) |k(0)〉 = E
(0)
k |k

(0)〉 (15.2.1)

Suppose we also order the energy spectrum:

E
(0)
0 ≤ E(0)

1 ≤ E(0)
2 ≤ ... (15.2.2)

If the eigenstate |n(0)〉 is non-degenerate then we will not have equality so:

E
(0)
n−1 < E(0)

n < E
(0)
n+1 (15.2.3)

Let us label the perturbed hamiltonian’s eigenstates as |n〉λ (we need the lambda since the
spectra will evolve with λ generally) so that the equation we wish to solve is:

Ĥ(λ) |n〉λ = En(λ) |n〉λ (15.2.4)

It is clear that |n〉0 = |n(0)〉when λ = 0. We can Taylor expand about λ to find:

|n〉λ = |n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ ...+ λk |n(k)〉+ ... (15.2.5)
En(λ) = E(0)

n + λE(1)
n + λ2E(2)

n + ...+ λkE(k)
n + ... (15.2.6)

We can substitute this into the TISE:

(Ĥ(0) + λδĤ − En(λ)) |n〉λ = 0 (15.2.7)
⇐⇒ ((Ĥ(0) − E(0)

n )− λ(E(1)
n − δĤ)− λ2E(2)

n − ....− λkE(k)
n ) (15.2.8)

(|n(0)〉+ λ |n(1)〉+ λ2 |n(2)〉+ ...+ λk |n(k)〉+ ...) = 0 (15.2.9)

It is important to note that(15.2.7) will be a polynomial equation in λ. Moreover, since it
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must hold for all λ in an interval range, we need the coefficients of all powers of λ to vanish.

Hence:

λ(0) : (Ĥ(0) − E(0)
n ) |n(0)〉 = 0 (15.2.10)

λ(1) : (Ĥ(0) − E(0)
n ) |n(1)〉 = (E(1)

n − δĤ) |n(0)〉 (15.2.11)
...
λ(k) : (Ĥ(0) − E(0)

n ) |n(k)〉 = (E(1)
n − δĤ) |n(k−1)〉+ E(2)

n |n(k−2)〉+ ...+ E(k)
n |n(0)〉

(15.2.12)
...

These can be solved recursively, starting from |n(0)〉we can find |n(1)〉, fromwhich we find
|n(2)〉whose equation involves |n(0)〉 and |n(1)〉, and so forth...

Now suppose that |n(1)〉 has a component along |n(0)〉, say α |n(0)〉. Now observe that since
(Ĥ(0) − E(0)

n ) |n(0)〉 = 0, we will have that:

(Ĥ(0) − E(0)
n )(|n(1)〉+ c |n(0)〉) = (Ĥ(0) − E(0)

n ) |n(1)〉 = E(1)
n − δĤ) |n(0)〉 (15.2.13)

so |n(1)〉+c |n(0)〉will be a solution of the perturbative equation. Hence, wemay set c = −α
and remove the component along |n(0)〉. We may do so for all states |n(i)〉 so that〈

n(0)
∣∣∣n(i)

〉
= 0, 1 ≤ i (15.2.14)

Let’s now take (15.2.10) and dot it with 〈n(0)|:〈
n(0)

∣∣∣ Ĥ(0) − E(0)
n

〉
= E(1)

n −
〈
n(0)

∣∣∣ δĤ ∣∣∣n(0)
〉

(15.2.15)

Since
〈
n(0)

∣∣∣ Ĥ(0) − E(0)
n

〉
= E

(0)
n − E(0)

n = 0 we then find that:

E(1)
n =

〈
n(0)

∣∣∣ δĤ ∣∣∣n(0)
〉

(15.2.16)

Let’s redo this for (15.2.12) keeping in mind the orthogonality of |n(k)〉 states with |n(0)〉:

0 = −
〈
n(0)

∣∣∣ δĤ ∣∣∣n(k−1)
〉

+ E(k)
n =⇒ E(k)

n =
〈
n(0)

∣∣∣ δĤ ∣∣∣n(k−1)
〉

(15.2.17)

We have therefore found the first order energy correction. However, to find higher or-
der terms we need to find the the associated eigenstates, starting with |n(1)〉. We can dot
(15.2.11) with 〈k(0)|where k 6= n. Then:〈

k(0)
∣∣∣ Ĥ(0) − δĤ

∣∣∣n(1)
〉

= −
〈
k(0)

∣∣∣ δĤ ∣∣∣n(0)
〉

(15.2.18)

so that:
(E(0)

k − E
(0)
n )

〈
k(0)

∣∣∣n(1)
〉

= −
〈
k(0)

∣∣∣ δĤ ∣∣∣n(0)
〉

(15.2.19)
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For sake of brevity let δHkn =
〈
k(0)

∣∣∣ δĤ ∣∣∣n(0)
〉
:

〈
k(0)

∣∣∣n(1)
〉

= − δHkn

E
(0)
k − E

(0)
n

(15.2.20)

Then using the resolution of the identity:

|n(1)〉 =
∑
k

|k(0)〉
〈
k(0)

∣∣∣n(1)
〉

(15.2.21)

but since we established that
〈
n(0)

∣∣∣n(1)
〉

= 0 we get:

|n(1)〉 = −
∑
k 6=n
|k(0)〉 δHkn

E
(0)
k − E

(0)
n

(15.2.22)

This is the first order correction to the eigenstates. We can similarly find higher order
terms. This allows us to find the second order energy correction:

E(2)
n =

〈
n(0)

∣∣∣ δĤ ∣∣∣n(1)
〉

= −
∑
k 6=n

〈
n(0)

∣∣∣ δĤ ∣∣∣ k(0)
〉 δHkn

E
(0)
k − E

(0)
n

(15.2.23)

= −
∑
k 6=n

δHnkδHkn

E
(0)
k − E

(0)
n

(15.2.24)

Since theHamiltonianmust beHermitian, the perturbationmust also beHermitian so that
δHkn = (δHnk)∗ and thus:

E(2)
n = −

∑
k 6=n

|δHnk|2

E
(0)
k − E

(0)
n

(15.2.25)

In conclusion:

|n〉λ = |n(0)〉 − λ
∑
k 6=n

δHkn

E
(0)
k − E

(0)
n

|k(0)〉+ o(λ2)

En(λ) = E(0)
n − λδHnn − λ2 ∑

k 6=n

|δHnk|2

E
(0)
k − E

(0)
n

+ o(λ3)

(15.2.26a)

(15.2.26b)

Interestingly, (15.2.26b) always overestimates the real ground state energy E0(λ). Indeed
when n = 0 (remember we ordered the energy spectrum so that the lowest energy comes
first) (15.2.26b) gives:

E
(0)
0 ≈ E(0)

0 + λδH00 =
〈
0(0)

∣∣∣ Ĥ(0)
∣∣∣ 0(0)

〉
+ λ

〈
0(0)

∣∣∣ δĤ ∣∣∣ 0(0)
〉

(15.2.27)

=
〈
0(0)

∣∣∣ Ĥ(0) + λδĤ
∣∣∣ 0(0)

〉
(15.2.28)

=
〈
0(0)

∣∣∣ Ĥ(λ)
∣∣∣ 0(0)

〉
≥ E0(λ) (15.2.29)

where we used the variational principle in the last line. Indeed for the ground state the
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second order correction:
− λ2 ∑

k>0

|δH0k|2

E
(0)
k − E

(0)
0

< 0 (15.2.30)

since E(0)
k > E

(0)
0 .

More generally, for the nth energy state the second order correction may be split into two
sums:

− λ2 ∑
k 6=n

|δHnk|2

E
(0)
k − E

(0)
n

= λ2 ∑
k<n

|δHnk|2

E
(0)
n − E(0)

k

− λ2 ∑
k>n

|δHnk|2

E
(0)
k − E

(0)
n

(15.2.31)

Since the energy spectrum was ordered the first term will be positive, whereas the second
will be negative due to the negative sign. Hence the states higher than n will push the
energy level up, whereas the states lower than nwill push the energy level down.

Suppose we have a hamiltonian:

Ĥ(λ) = Ĥ(0) + λV̂ =
(
E

(0)
1 0
0 E

(0)
2

)
+ λ

(
0 V
V ∗ 0

)
(15.2.32)

The eigenvalues of this matrix are:

E ± (λ) = E
(0)
1 + E

(0)
2

2
± E

(0)
1 − E(0)

2
2

√√√√√1 + λ2|V |2(
E

(0)
1 −E(0)

2
2

)2 (15.2.33)

Now we may use the complex taylor expansion

f(ϵ) =
√

1 + ϵ2 = 1 + ϵ2

2
− ϵ4

8
+ ϵ6

16
+ o(ϵ8) (15.2.34)

The radius of convergence of this expansion is 1 so that for fast convergence we require
|ϵ| � 1, that is:

|λV | < |E
(0)
1 − E(0)

2 |
2

(15.2.35)

So we need the perturbation to be smaller than the energy level differences, not only the
energy levels themselves. More generally we require:∣∣∣∣ δHkn

E
(0)
k − E

(0)
n

∣∣∣∣� 1 (15.2.36)

We see that for degenerate states this term blows up, and the inequality clearly cannot be
satisfied.

− III.231 −



15.3. ANHARMONIC OSCILLATOR

15.3 Anharmonic oscillator
Let’s try to apply time independent perturbation theory to the anharmonic oscillator, with
exact hamiltonian:

Ĥ(0) = p̂2

2m
+ 1

2
mω2x̂2 (15.3.1)

We adimensionalize the problem by setting a length scale d2 = ℏ
mω . We impose a pertur-

bation
λδĤ = λℏω

x̂4

d4 (15.3.2)

Now we may use the typical ladder operator formalism:

x̂ = d√
2

(a+ a†) (15.3.3)

p̂ = −i ℏ√
2d

(a− a†) (15.3.4)

so that:
λδĤ = λℏω

4
(a+ a†)4 (15.3.5)

The first order energy correction to the ground state is then:

E
(1)
0 =

〈
0
∣∣∣ δĤ ∣∣∣ 0〉 = 3ℏω

4
(15.3.6)

The second order correction is:

E
(2)
0 = −

∑
k 6=0

|δH0k|2

E
(0)
k − E

(0)
0

(15.3.7)

Now it remains to evaluate the matrix elements δH0k:

δH0k = ℏω
4

〈
0
∣∣∣ (a+ a†)4

∣∣∣ k〉 (15.3.8)

= ℏω
4

(4 〈4 | k〉+ 6
√

2 〈2 | k〉+ 3 〈0 | k〉) (15.3.9)

Thus:

δH02 = 3
√

2ℏω
2

(15.3.10)

δH04 =
√

6ℏω
2

(15.3.11)

so that:

E
(2)
0 = − |δH02|2

E
(0)
2 − ℏω

2

− |δH04|2

E
(0)
4 − ℏω

2

= −21
8
ℏω (15.3.12)
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Thus:
E0(λ) = ℏω

2
(1 + 3

2
λ− 21

4
λ2 + o(λ4)) (15.3.13)

15.4 Degenerate perturbation theory lifted at first order
Setting up the equations

Consider an exact hamiltonian Ĥ(0) with degenerate spectrum ordered as:

E
(0)
0 < E

(0)
1 < ... < E(0)

n = E
(0)
n+1 = ... = E

(0)
n+N−1 < E

(0)
n+N < ... (15.4.1)

composed of N degenerate orthonormal states from n to n+N − 1 with the same energy.
Let us label their eigenstates as:

|n(0); 1〉 , |n(0); 2〉 , ... |n(0);N〉 (15.4.2)

Ĥ(0) |n(0); i〉 = E(0)
n |n(0); i〉 ,

〈
n(0); k

∣∣∣n(0); i
〉

= δik, 1 ≤ k, i ≤ N (15.4.3)

which span the subspaceHN . Then it will be orthogonal and complementary to Ĥ which
contains all the other eigenstates with different energies (these can be degenerate or non-
degenerate, doesn’t matter a hoot). We see that the total Hilbert space will be the direct
sumH = HN ⊕ Ĥ, so thatHN ⊥ Ĥ and thus:〈

p(0)
∣∣∣n(0); k

〉
= 0, ∀ |p(0)〉 ∈ Ĥ, ∀ |n(0); k〉 ∈ HN (15.4.4)

Then as always the degenerate state |n(0); k〉will evolve with λ as a power series:

|n; k〉λ = |n(0); k〉+ λ |n(1); k〉+ λ2 |n(2); k〉+ ...+ λk |n(k); k〉+ ... (15.4.5)

En,k(λ) = E(0)
n + λE

(1)
n,k + λ2E

(2)
n,k + ...+ λkE

(k)
n,k + ... (15.4.6)

Now the equation we wish to solve is:

Ĥ(λ) |n; k〉λ = En,k(λ) |n; k〉λ (15.4.7)

As before we will find that:

λ(0) : (Ĥ(0) − E(0)
n ) |n(0); k〉 = 0 (15.4.8)

λ(1) : (Ĥ(0) − E(0)
n ) |n(1); k〉 = (E(1)

n,k − δĤ) |n(0); k〉 (15.4.9)
...

λ(i) : (Ĥ(0) − E(0)
n ) |n(i); k〉 = (E(1)

n,k − δĤ) |n(i−1); k〉+ E
(2)
n,k |n

(i−2); k〉+ ...+ E
(i)
n,k |n

(0); k〉
(15.4.10)

...

We can assume that
〈
n(0); k

∣∣∣n(p); k
〉

= 0 for p = 1, 2, 3... by methods identical to non-
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degenerate perturbation theory.

Finding E(1)
n,k by dotting (15.4.9) with 〈n(0); l|

Let’s now dot (15.4.9) with some degenerate state 〈n(0); l| ∈ HN so that:

0 = E
(1)
n,k

〈
n(0); l

∣∣∣n(0); k
〉
−
〈
n(0); l

∣∣∣ δĤ ∣∣∣n(0); k
〉

(15.4.11)

⇐⇒ En,kδkl =
〈
n(0); l

∣∣∣ δĤ ∣∣∣n(0); k
〉

(15.4.12)

Therefore, we need δĤ to be diagonal in the block spanned by the basis of HN . Hence,
when performing degenerate perturbation theory we need to:

Use a basis which makes the perturbation hamiltonian diagonal in the degenerate subspace

The elements of this diagonal block will be the first energy corrections:

E
(1)
n,k = δHkk ≡

〈
n(0); k

∣∣∣ δĤ ∣∣∣n(0); k
〉

(15.4.13)

Interestingly, this first order correction depends on k, so two different degenerate states in
HN will (generally) evolve differently with the perturbation. When this does occur:

E
(1)
n,k 6= E

(1)
n,l , ∀k 6= l (15.4.14)

then we say that the degeneracy is lifted at first order corrections. Visually, we see this as
the splitting of the degenerate states in Figure 15.1.

Finding a good basis

To check whether or not δĤ is diagonalized in a basis as required by (15.4.13), we check
if these basis vectors are non-degenerate eigenstates of some other hermitian operator Â,
and if [Â, δĤ] = 0.

Indeed, suppose we have two states |n(0); p〉 and |n(0); q〉 are eigenvectors of Â with asso-
ciated eigenvalues λp 6= λq respectively. Then:

0 =
〈
n(0); p

∣∣∣ [Â, δĤ]
∣∣∣n(0); q

〉
= λp

〈
n(0); p

∣∣∣ δĤ ∣∣∣n(0); q
〉
− λq

〈
n(0); p

∣∣∣ δĤ ∣∣∣n(0); q
〉

(15.4.15)

=⇒
〈
n(0); p

∣∣∣ δĤ ∣∣∣n(0); q
〉

= 0, p 6= q (15.4.16)

where we don’t have to take complex conjugate of λp since Â is hermitian, thus proving
that δĤ is diagonal (in theHN subspace) in this basis.
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Finding |n(1); k〉 |Ĥ by dotting (15.4.9) with |p(0)〉

Now we may dot (15.4.9) with |p(0)〉 ∈ Ĥ to find that:

(E(0)
p − E(0)

n )
〈
p(0)

∣∣∣n(1); k
〉

=
〈
p(0)

∣∣∣∣∣∣∣����
0

E
(1)
n,k − δĤ

∣∣∣∣∣∣∣n(0); k
〉

(15.4.17)

⇐⇒ (E(0)
p − E(0)

n )
〈
p(0)

∣∣∣n(1); k
〉

=
〈
p(0)

∣∣∣ δĤ ∣∣∣n(0); k
〉

(15.4.18)

⇐⇒
〈
p(0)

∣∣∣n(1); k
〉

=

〈
p(0)

∣∣∣ δĤ ∣∣∣n(0); k
〉

E
(0)
p − E(0)

n

(15.4.19)

⇐⇒ |n(1); k〉 |Ĥ = −
∑
p

〈
p(0)

∣∣∣ δĤ ∣∣∣n(0); k
〉

E
(0)
p − E(0)

n

|p(0)〉 (15.4.20)

where |n(1); k〉 |Ĥ is the component of |n(1); k〉 in Ĥ. Since we’re only summing over |p(0)〉 ∈
Ĥ we have only found the component in Ĥ.

Finding |n(1); k〉 |HN
by dotting (15.4.10) with |n(0); l〉

We still haven’t found the component in the degenerate spaceHN , to do so we dot |n(0); l〉
with (15.4.10) using i = 2:〈

n(0); l
∣∣∣ Ĥ(0) − E(0)

n

∣∣∣n(2); k
〉

=
〈
n(0); l

∣∣∣E(1)
n,k − δĤ

∣∣∣n(1); k
〉

+ E
(2)
n,k

〈
n(0); l

∣∣∣n(0); k
〉

(15.4.21)
We find that deconstructing |n(1); k〉 into |n(1); k〉 |HN

and |n(1); k〉 |Ĥ:

0 =
〈
n(0); l

∣∣∣E(1)
n,k − δĤ

∣∣∣n(1); k
〉
|HN

+
〈
n(0); l

∣∣∣E(1)
n,k − δĤ

∣∣∣n(1); k
〉
|Ĥ + E

(2)
n,kδlk (15.4.22)

Since |n(0); l〉 and |n(1); k〉 |Ĥ are orthogonal (they belong to two orthogonal subspaces) we
find that:

0 =
〈
n(0); l

∣∣∣E(1)
n,k − δĤ

∣∣∣n(1); k
〉
|HN
−
〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ + E

(2)
n,kδlk (15.4.23)
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Let us now simplify:

〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|HN

= 〈n(0); l| δĤ|

projector onto HN︷ ︸︸ ︷(∑
q

|n(0); q〉 〈n(0); q|
)
|n(1); k〉 (15.4.24)

=
∑
q

〈
n(0); l

∣∣∣ δĤ ∣∣∣n(0); q
〉〈
n(0); q

∣∣∣n(1); k
〉

(15.4.25)

= E
(1)
n,l

〈
n(0); l

∣∣∣n(1); k
〉

(15.4.26)

Since we’re in both cases projecting ontoHN , we may as well write:〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|HN

= E
(1)
n,l

〈
n(0); l

∣∣∣n(1); k
〉
|HN

(15.4.27)

Hence, substituting back into (15.4.23):

−
〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ + (E(1)

n,k − E
(1)
n,l )

〈
n(0); l

∣∣∣n(1); k
〉

HN

+ E
(2)
n,kδlk = 0 (15.4.28)

Since in the second term we are already projecting into the degenerate subspace with the
dot product, we may remove theHN label. Consequently:

−
〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ + (E(1)

n,k − E
(1)
n,l )

〈
n(0); l

∣∣∣n(1); k
〉

+ E
(2)
n,kδlk = 0 (15.4.29)

Setting l = k we have that
〈
n(0); k

∣∣∣n(1); k
〉

= 0 so:

E
(2)
n,k =

〈
n(0); k

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ = −

∑
p

|δĤnk,p|2

E
(0)
p − E(0)

n

(15.4.30)

Setting l 6= k we find that:〈
n(0); l

∣∣∣n(1); k
〉

= 1
E

(1)
n,k − E

(1)
n,l

〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ (15.4.31)

Notice how important it is for the degeneracy to be resolved to first order, or else the de-
nominator E(1)

n,k − E
(1)
n,l would have blown up. Thus we find that:

|n(1); k〉HN
=
∑
l 6=k

〈
n(0); l

∣∣∣ δĤ ∣∣∣n(1); k
〉
|Ĥ

E
(1)
n,k − E

(1)
n,l

|n(0); l〉 (15.4.32)

− III.236 −



15.5. DEGENERATE PERTURBATION THEORY LIFTED AT SECOND ORDER

15.5 Degenerate perturbation theory lifted at second order
What is a good basis?

Now suppose that degeneracy is not lifted to first order corrections, so that the situation
looks like:

We will now have that: 〈
n(0); l

∣∣∣ δĤ ∣∣∣n(0); k
〉

= E(1)
n δlk (15.5.1)

so the first order energy correction will not depend on k, l. Consequently dotting the first
order perturbation equation with |n(0); l〉 will not give us any new information, and this
step will therefore be skipped.

Let us form the linear combinations:

|ψ(0)〉 =
N∑
k=1
|n(0); k〉 a(0)

k (15.5.2)

with unknown coefficients a(0)
k . Since we are looking for N such states due to the dimen-

sion of HN , we should label the desired basis by |ψ(0)
I 〉 with coefficients a(0)

Ik in the degen-
erate basisHN :

|ψ(0)
I 〉 =

N∑
k=1
|n(0); k〉 a(0)

Ik , I = 1, 2...N (15.5.3)

Note that for |ψ(0)
I 〉 to be a valid orthonormal basis we require:

〈
ψ

(0)
I

∣∣∣ψ(0)
J

〉
= δIJ ⇐⇒

N∑
k=1

(a(0)
Ik )∗a

(0)
Jk = δIJ (15.5.4)

Our goal is to determine a(0)
Ik in order to construct a good basis from the degenerate eigen-

basis.

Setting up equations

|ψI〉 = |ψ(0)
I 〉+ λ |ψ(1)

I 〉+ λ2 |ψ(2)
I 〉+ o(λ3) (15.5.5)

EIn(λ) = E(0)
n + λE(1)

n + λ2E
(2)
In + o(λ3) (15.5.6)
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satisfying:
Ĥ |ψI〉 = EIn(λ) |ψI〉 (15.5.7)

As always we get the perturbation equations:

λ0 : (Ĥ(0) − E(0)
n ) |ψ(0)

I 〉 = 0 (15.5.8)

λ : (Ĥ(0) − E(0)
n ) |ψ(1)

I 〉 = (E(1)
n − δĤ) |ψ(0)

I 〉 (15.5.9)

λ2 : (Ĥ(0) − E(0)
n ) |ψ(2)

I 〉 = (E(1)
n − δĤ) |ψ(1)

I 〉+ E
(2)
In |ψ

(0)
I 〉 (15.5.10)

Finding |ψ(1)
I 〉 component in Ĥ

We find the |ψ(1)
I 〉 component in Ĥ by dotting (15.5.9) with 〈p(0)| ∈ Ĥ:〈

p(0)
∣∣∣ Ĥ(0) − E(0)

n

∣∣∣ψ(1)
I

〉
=
〈
p(0)

∣∣∣E(1)
n − δĤ

∣∣∣ψ(0)
I

〉
(15.5.11)

⇐⇒ (E(0)
p − E(0)

n )
〈
p(0)

∣∣∣ψ(1)
I

〉
= −

N∑
k=1

δHp,nka
(0)
Ik (15.5.12)

thus implying that:

|ψ(1)
I 〉 |Ĥ = −

∑
p

N∑
k=1

δHp,nka
(0)
Ik

E
(0)
p − E(0)

n

|p(0)〉 (15.5.13)

Finding a(0)
Ik

We dot (15.5.10) with 〈n(0); l|:〈
n(0); l

∣∣∣E(1)
n − δĤ

∣∣∣ψ(1)
I

〉
|Ĥ +

〈
n(0); l

∣∣∣E(1)
n − δĤ

∣∣∣ψ(1)
I

〉
|HN

+ E
(2)
In a

(0)
Il = 0 (15.5.14)

Now since degeneracy is not broken to first order we will find that:

〈
n(0); l

∣∣∣ δĤ ∣∣∣ψ(1)
I

〉
|HN

= 〈n(0); l| δĤ|

projector onto HN︷ ︸︸ ︷(∑
q

|n(0); q〉 〈n(0); q|
)
|ψ(1)
I 〉 (15.5.15)

=
∑
q

〈
n(0); l

∣∣∣ δĤ ∣∣∣n(0); q
〉〈
n(0); q

∣∣∣ψ(1)
I

〉
(15.5.16)

= E
(1)
n,l

〈
n(0); l

∣∣∣ψ(1)
I

〉
(15.5.17)

so that
〈
n(0); l

∣∣∣E(1)
n − δĤ

∣∣∣ψ(1)
I

〉
|HN

= 0. Similarly, we also have that
〈
n(0); l

∣∣∣E(1)
n

∣∣∣ψ(1)
I

〉
|Ĥ =

0 meaning that:
−
〈
n(0); l

∣∣∣ δĤ ∣∣∣ψ(1)
I

〉
|Ĥ + E

(2)
In a

(0)
Il = 0 (15.5.18)

− III.238 −



15.5. DEGENERATE PERTURBATION THEORY LIFTED AT SECOND ORDER

Substituting (15.5.13) into the above:

E
(2)
In a

(0)
Il =

〈
n(0); l

∣∣∣ δĤ ∣∣∣ψ(1)
I

〉
|Ĥ (15.5.19)

= −
∑
p

N∑
k=1

δHp,nka
(0)
Ik

E
(0)
p − E(0)

n

〈
n(0); l

∣∣∣ δĤ ∣∣∣ p(0)
〉

(15.5.20)

= −
∑
p

N∑
k=1

δHp,nkδHnl,p

E
(0)
p − E(0)

n

a
(0)
Ik (15.5.21)

This may be rearranged as:

N∑
k=1

(
−
∑
p

δHp,nkδHnl,p

E
(0)
p − E(0)

n

− E(2)
In δkl

)
a

(0)
Ik = 0 (15.5.22)

Let us introduce a matrix M with components:

M
(2)
l,k = −

∑
p

δHp,nkδHnl,p

E
(0)
p − E(0)

n

(15.5.23)

then one finds that: ∑
k

(M (2)
l,k − E

(2)
In δlk)a

(0)
Ik = 0 (15.5.24)

or alternatively:
(M(2) − E(2)

In 1)aI = 0 (15.5.25)

which is an eigenvalue equation for M! Hence the eigenvalues of M are the second order
energy corrections, and the eigenvectors are aI = (a(0)

I1 a
(0)
I2 ... a

(0)
IN ), the coefficients to

construct the good basis.

To find the component of |ψ(1)
I 〉 alongHn we must resort to the λ3 order equation, but the

calculations are completely analogous to before.
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16The WKB approximation

We consider a particle with energy E moving through a constant potential V < E. Recall
then that the de Broglie wavelength for a plane wave ψ(x) = Ae±ipx/ℏ of momentum p =√

2m(E − V ) is:
λ = h

p
= 2πℏ

p
(16.0.1)

In the WKB approximation, we consider cases where λ � L, where L is the length scale
of the problem, that is, the order of magnitude of the lengths we are interested in.

For example, consider a particle of energyE in a potential V (x). In the classical framework,
the position dependent momentum satisfies:

p2(x) = 2m(E − V (x)) (16.0.2)

so we will thus define p2(x) as such in quantum mechanics as well.

Therefore, we may analogously define the position dependent or local de Broglie wave-
length as:

λ(x) = 2πℏ
p(x)

(16.0.3)

Then the TISE reads:

− ℏ2

2m
∇2ψ(x) = (E − V (x))ψ(x) =⇒ p̂2ψ(x) = p2(x)ψ(x) (16.0.4)

In the classically allowed region where E ≥ V , we define the typical wavenumber k(x),
but now local as:

p2(x) = 2m(E − V (x)) = ℏ2k2 (16.0.5)

while in the classically forbidden region whereE < V we define the imaginary wavenum-
ber κ(x) as:

− p2(x) = 2m(V (x)− E) = ℏ2κ2 (16.0.6)

Looking at (16.0.4), it seems reasonable now to introduce an exponential wavefunction
ansatz:

ψ(x, t) =
√
ρ(x, t)eiS(x,t)/ℏ (16.0.7)
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where ρ(x, t) is the probability density. The associated probability current is:

J = ℏ
m
Im
[√

ρe−iS/ℏ
(1

2
∇ρ
√
ρ

+ i

ℏ
(∇S)√ρ

)
eiS/ℏ

]
(16.0.8)

= ℏ
m
Im
(1

2
∇ρ+ i

ℏ
(∇S)ρ

)
(16.0.9)

=⇒ J = ρ
∇S
m

(16.0.10)

Compared to the fluid dynamics definition J = ρv, we may identify the velocity as:

v = ∇S
m

=⇒ p = ∇S (16.0.11)

With this in mind, let’s substitute the ansatz ψ(x, t) = eiS(x,t)/ℏ where S(x, t) ∈ C 1 into
(16.0.4):

−ℏ2
(
i

ℏ
S′′ − 1

ℏ2 (S′)2
)
eiS/ℏ = p2(x)eiS/ℏ (16.0.12)

⇐⇒ (S′)2 − iℏS′′ − p2(x) = 0 (16.0.13)

If V (x) is slowly varying, so that V (x) = V0 then p(x) = p0
√

2m(E − V0), which we have
already solved:

ψ(x) = eip0x/ℏ (16.0.14)

Comparing with our ansatz we identify S(x) = p0x, implying that S′′(x) = 0. Therefore,
if we consider a slowly varying potential V (x) which varies from a constant V0 only in-
finitesimally, then we can’t expect S′′(x) to increase considerably, so we may take it to be
negligible.

To do so, we may take ℏ to be a small parameter about which we may expand S(x) as a
power series:

S(x) = S0(x) + ℏS1(x) + o(ℏ2) (16.0.15)

Substituting this into:
(S′)2 − iℏS′′ − p2(x) = 0 (16.0.16)

and keeping terms of first order only we find that:

(S′
0(x) + ℏS′

1(x) + o(ℏ2))2 − iℏ(S′′
0 (x) + o(ℏ))− p2(x) = 0 (16.0.17)

((S′
0(x))2 − p2(x)) + ℏ(2S′

0S
′
1 − iS′′

0 ) + o(ℏ2) = 0 (16.0.18)

Sincewe’re treating ℏ as the small parameter wemay equate the coefficients in parenthesis:(S′
0(x))2 = p2(x)

S′
1(x) = i

2
S′′

0 (x)
S′

0(x)
(16.0.19)

1if we kept S(x, t) ∈ R, then this would be an unphysical solution, since it is not normalizable
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The first is easily solved:
S0(x) = ±

ˆ x

x0

p(x′)dx′ (16.0.20)

The second instead is more difficult:

S′
1 = i

2
±p′(x)
±p(x)

= i

2
d

dx
(ln p(x))′ (16.0.21)

=⇒ S1 = i

2
ln p(x) + c0 (16.0.22)

Therefore:
S = ±

ˆ x

x0

p(x′)dx′ + iℏ
2

ln p(x) + c0 (16.0.23)

and hence:

ψ(x) = eiS0(x)/ℏ exp
[
i

ℏ

(
iℏ
2

ln p(x) + c0

)]
= AeiS0(x)/ℏ exp

(
− ln

√
p(x)

)
(16.0.24)

or more succintly:

ψ(x) = A√
p(x)

exp
[
± i

ℏ

ˆ x

x0

p(x′)dx′
]

(16.0.25)

In the notation of (16.0.7), we have that:

ρ(x) = C

p(x)
, S(x) =

ˆ x

x0

p(x′)dx′ (16.0.26)

If E > V then we defined p(x) = ℏk(x) so:

ψ(x) = A√
k(x)

exp
[
± i
ˆ x

x0

k(x′)dx′
]

(16.0.27)

while if E < V then we defined p(x) = iℏκ(x) so:

A√
κ(x)

exp
[
±
ˆ x

x0

κ(x′)dx′
]

(16.0.28)

Note that as the momentum, and hence wavenumber, becomes smaller, the probability
density increases. Classically this makes sense, we are more likely to find the particle
in regions where it spends more time, that is, where it has lower velocity. Indeed, the
probability density is:

ρ = |ψ|2 = |A|
2

k(x)
= ℏ|A|2

p(x)
= ℏ|A|2

m

1
v(x)

(16.0.29)

Instead, the probability density is:

J = ρ

m

∂S

∂x
= ℏ|A|2

mk(x)
ℏk(x) = ℏ2|A|2

m
(16.0.30)
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16.1. VALIDITY OF APPROXIMATION

which is constant. This was expected, as the continuity equation for a time-independent
probability density gives a homogeneous probability current.

16.1 Validity of approximation
The WKB approximation is only valid when:

ℏ|S′′
0 | � |S′

0|2 =⇒ ℏ
∣∣∣∣dpdx

∣∣∣∣� p2 =⇒
∣∣∣∣ ddx

( ℏ
p(x)

)∣∣∣∣� 1 (16.1.1)

We recognize the local de Broglie wavelength λ(x) = 2πℏ
p(x) and write:

∣∣∣∣dλ(x)
dx

∣∣∣∣� 2π (16.1.2)

so the wavelength must vary slowly for the WKB approximation to work. We can connect
this with the variation of the potential:

p2 = 2m(E − V (x)) =⇒
∣∣∣∣dVdx

∣∣∣∣ = 1
m

∣∣∣∣pdpdx
∣∣∣∣ (16.1.3)

multiplying by λ = ℏ
p :

λ

∣∣∣∣dVdx
∣∣∣∣ = ℏ

m

∣∣∣∣dpdx
∣∣∣∣� ℏ

m

p2

ℏ
= p2

m
(16.1.4)

where we used
∣∣∣∣ dpdx ∣∣∣∣� p2

ℏ . We therefore conclude that:

λ(x)
∣∣∣∣dVdx

∣∣∣∣� p2

2m
(16.1.5)

Physically, this means that the variation of the potential over a de Broglie wavelengthmust
be smaller than the kinetic energy of the particle.

For example, suppose we have some potential V (x) acting on a particle with energy E.
Suppose also that for x close to a:

V (x)− E = b(x− a), g > 0 (16.1.6)

so that the potential is approximately linear. Then, we see that:

p(x) =
√

2m(E − V (x)) =
√

2mb(x− a) =⇒ λ = ℏ√
2mb(x− a)

(16.1.7)

Taking the derivative, we find that:

dλ

dx
= ℏ√

2mb
1
2

1
(a− x)3/2 (16.1.8)
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16.2. CONNECTION FORMULAE

which is clearly not small for x → a. We therefore cannot use WKB near turning points.
In these regions, we will have to solve the problem exactly, and try to connect them with
the wkb approximate solution.

16.2 Connection formulae
We consider an infinite potential at x = 0 and a slowly varying unbound potential V (x).
A particle of energy E is in this potential, such that V (a) = E for some a > 0. Suppose
using WKB we have found that for x� a

ψ(x) = 2A√
k(x)

cos
( ˆ a

x
k(x)dx′ − π

4

)
− B√

k(x′)
sin
( ˆ a

x
k(x′)dx′ − π

4

)
(16.2.1)

while for x� a:

ψ(x) = A√
k(x)

exp
(
−
ˆ x

a
κ(x′)dx′ − π

4

)
− B√

k(x)
exp

( ˆ x

a
κ(x′)dx′ − π

4

)
(16.2.2)

Since the wave function must be normalizable, we must set B = 0, so A 6= 0:

ψ(x� a) = 2A√
k(x)

cos
( ˆ a

x
k(x′)dx′ − π

4

)
(16.2.3)

ψ(x� a) = A√
k(x)

exp
(
−
ˆ x

a
κ(x′)dx′ − π

4

)
(16.2.4)

We can rewrite the first as:

ψ(x� a) = 2A√
k(x)

cos
( ˆ a

x
k(x′)dx′ − π

4

)
(16.2.5)

= 2A√
k(x)

cos
( ˆ a

0
k(x′)dx′ −

ˆ x

0
k(x′)dx′ − π

4︸ ︷︷ ︸
δ

)
(16.2.6)

= 2A√
k(x)

[
cos

( ˆ x

0
k(x′)dx′

)
cos δ + sin

( ˆ x

0
k(x′)dx′

)
sin δ

]
(16.2.7)

Now we impose that the wave-function vanish at the origin. This gives:

cos δ = 0 =⇒ δ = (2n+ 1)π
2

, ∀n ∈ Z (16.2.8)

=⇒
ˆ a

0
k(x)dx =

(
n+ 3

4
π

)
, ∀n ∈ Z (16.2.9)

which is the Bohr-Sommerfield quantization. This integral can be eavluated, and gives
which approximate energy levels are valid, only those for which the integrand is a specific
multiple of π.

In this case:
ψ(x� a) = c√

k(x)
sin
( ˆ x

0
k(x′)dx′

)
(16.2.10)
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16.3. DERIVING THE CONNECTION FORMULAE

where we set c = 2A sin δ.

16.3 Deriving the connection formulae
We consider the Airy equation:

d2ψ

du2 = uψ (16.3.1)

Its solution is:
ψ(u) = c

ˆ
Γ
eik

3/3eiku
dk

2π
(16.3.2)

where we integrate over some contour in the complex plane.

Since k is a complex number, it will give an exponential decaying integrand if Im(k3) > 0.
Then letting k = |k|eiθk we get k3 = |k|3e3iθk . For its imaginary part to be positive we
need 0 < 3θk < π. Note that if Im(k3) > 0 for some θk then the same applies for θk + 2π

3 .
Consequently, in the Fourier space there will be three regions where Im(k3) > 0:

Figure 16.1. Regions in Fourier space with Im(k3) > 0

Now from complex analysis we know that the contour must satisfy:

eik
3/3eiku = 0 vanish at the ends of Γ (16.3.3)

If we use Γ = C1 and c = 1 we recover the Airy functions:

ψ(u) = Ai(u) = 1
π

ˆ ∞

0
cos

(
k3

3
+ ku

)
dk (16.3.4)
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16.3. DERIVING THE CONNECTION FORMULAE

Using a different contour Γ = C2, we find another solution:

Bi(u) = −i
ˆ

C1

eik
3/3eiku

dk

2π
+ 2i

ˆ
C2

eik
3/3eiku

dk

2π
(16.3.5)

= 1
π

ˆ ∞

0

[
e−k3/3+ku + sin

(
k3

3
+ ku

)]
dk (16.3.6)
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17Time-dependent Perturbation theory

17.1 The Interaction picture
We consider time-dependent Hamiltonians of the form:

Ĥ(t) = Ĥ(0) + δĤ(t) (17.1.1)

where the base hamiltonian Ĥ(0) is time-independentwhile the perturbation δĤ(t) is time-
dependent. Due to the time-dependence we can no longer consider states of definite en-
ergy, since the TISE equation which leads to the energy eigenequation was only derivable
for time-independent hamiltonians. Because of this complicationwe need to further clarify
what quantity we are looking for.

Suppose that we turn on the perturbation at some ti, and keep it on until t = tf when it is
turned off. Before the perturbation is activated the system is in some state, the perturbation
then alters it, so that after tf the system is in some other state. What is this new state given
the initial state?

To deal with the time evolution we introduce a new picture, known as the interaction
picture.

Recall that in the Schrödinger picture, we time-evolve the states |ψS(0)〉 using the propa-
gator ÛS(t), keeping the operators unchanged:

|ψS(t)〉 = ÛS(t) |ψS(0)〉 (17.1.2)

which when substituted into:

iℏ
d

dt
|ψS(t)〉 = Ĥ(t) |ψS(t)〉 =⇒ iℏ

dÛS
dt

= ĤSÛS (17.1.3)

In the Heisenberg picture, we time evolve the operators using similarity transformations
in Û(t), keeping the states unchanged. So, the states in this picture are:

|ψH(t)〉 = Û †
S(t) |ψS(t)〉 = |ψS(0)〉 (17.1.4)

We are rotating (not physically) the states in the Hilbert space to wash out the time-
dependence of states in the Schrödinger picture. This unfortunately comes at the expense
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17.1. THE INTERACTION PICTURE

of the operators gaining a time dependence through the similarity transformation:

ÂH = Û †
S(t)ÂSÛS(t) (17.1.5)

where ÂS and ÂH are arbitrary operators in the Schrödinger and Heisenberg picture re-
spectively. Expectation values of observables therefore transform as:〈

ψS(t)
∣∣∣ Â ∣∣∣ψS(t)

〉
=
〈
ψS(0)

∣∣∣ Û †(t)ÂÛ(t)
∣∣∣ψS(0)

〉
≡
〈
ψS(0)

∣∣∣ ÂH(t)
∣∣∣ψS(0)

〉
(17.1.6)

In our case Ĥ = Ĥ(0) + δĤ(t). If δĤ = 0 then the propagator would read:

ÛS(t) = e−iĤ(0)t/ℏ (17.1.7)

so given a state ψS(t) in the Schrödinger picture we can view it in the rotating frame as:

|ψI(t)〉 = eiĤ
(0)t/ℏ |ψS(t)〉 (17.1.8)

This removes the time evolution generated by Ĥ(0), so its Schrödinger equation should
hopefully be simpler. Also, note that if δĤ = 0 then:

|ψI(t)〉 = eiĤ
(0)t/ℏ |ψ(t)〉 = |ψI(t)〉 = eiĤ

(0)t/ℏe−iĤ(0)t/ℏ |ψ(0)〉 = |ψ(0)〉 (17.1.9)

so the state would indeed be still, as expected by the Heisenberg picture. However, when
the perturbation is turned on the state |ψI(t)〉 will evolve through time. This new state
|ψI(t)〉 gives the interaction picture, which is a mix of the Schrödinger picture and the
Heisenberg picture. When the hamiltonian is time independent (Ĥ(0)) it reduces to the
Heisenberg picture, while for time-dependent hamiltonians (δĤ(t)) it reduces to the Schrödinger
picture as we shall now see.

To find |ψI(t)〉we look at its Schrödinger equation:

iℏ
∂

∂t
|ψI(t)〉 = −Ĥ(0) |ψI(t)〉+ ei

ˆH(0)t/ℏ(Ĥ(0) + δĤ) |ψS(t)〉 (17.1.10)

= −Ĥ(0) |ψI(t)〉+ ei
ˆH(0)t/ℏ(Ĥ(0) + δĤ)ei

ˆH(0)t/ℏ |ψI(t)〉 (17.1.11)

Note that Ĥ(0) commutes with ei ˆH(0)t/ℏ, so expanding the brackets the first two terms will
cancel out giving:

iℏ
∂

∂t
|ψI(t)〉 = ei

ˆH(0)t/ℏδĤe−i ˆH(0)t/ℏ |ψI(t)〉 (17.1.12)

We now define δĤI = ei
ˆH(0)t/ℏδĤe−i ˆH(0)t/ℏ. This is the perturbation hamiltonian in the

rotating frame (interaction picture), and it gives the time evolution of the states |ψI(t)〉:

iℏ
∂

∂t
|ψI(t)〉 = δĤI |ψI(t)〉 (17.1.13)

which follows exactly the evolution of states in the Schrödinger picture.
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17.2. TWO-LEVEL SYSTEM

Consider an orthonormal eigenbasis:

Ĥ(0) |n〉 = En |n〉 (17.1.14)

Then we postulate that since |ψ〉:

|ψI(t)〉 =
∑
n

cn(t) |n〉 =⇒ |ψ(t)〉 =
∑
n

cn(t)e−iEnt/ℏ |n〉 (17.1.15)

where the coefficients are now time-dependent. Substituting this ansatz into (17.1.13):

iℏ
∑
m

ċm(t) |m〉 =
∑
n

cn(t)δĤI |n〉 (17.1.16)

=
∑
n,m

cn(t) |m〉
〈
m
∣∣∣ δĤI

∣∣∣n〉 (17.1.17)

=
∑
n,m

cn(t)δĤI
mn |m〉 (17.1.18)

where δĤI
mn =

〈
m
∣∣∣ δĤI

∣∣∣n〉. Equating components:

iℏċm(t) =
∑
n

cn(t)δĤI
mn (17.1.19)

We can convert the matrix elements to the Schrödinger picture as:

δĤI
mn =

〈
m
∣∣∣ δĤI

∣∣∣n〉 = ei(Em−En)t/ℏ
〈
m
∣∣∣ δĤS

∣∣∣n〉 = ei(En−Em)t/ℏδHS
mn (17.1.20)

Letting ωmn = (Em−En)
ℏ then we get:

δĤI
mn = eiωmntδHS

mn (17.1.21)

and hence:
iℏċm(t) =

∑
n

cn(t)eiωmntδĤS
mn(t) (17.1.22)

17.2 Two-level system
Let’s consider a two-level system with eigenstates |a〉 , |b〉 and energies Ea, Eb so that:

ωab = Ea − Eb
ℏ

, Ĥ =
(
a 0
0 b

)
(17.2.1)

Suppose we also introduce a perturbation at t = 0:

δĤ(t) =
(

0 α
α∗ 0

)
δ(t) ≡ Uδ(t) (17.2.2)

This has off diagonal components so it will shuffle the |a〉 and |b〉 states together. We ask,
suppose the system starts out in the state |a〉 at t = −∞, what is the probability that it is
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17.2. TWO-LEVEL SYSTEM

in the state |b〉 at t =∞?

Note that this question is the same as asking, suppose the state starts out in |a〉 at t = 0−,
what is the probability that it is then measured in |b〉 at t = 0+? Indeed for t ∈ (−∞, 0):

|ψ(t)〉 = e−iEat/ℏ |a〉 (17.2.3)

so the state is only affected by a phase factor before the perturbation is on. Immediately
after t = 0, the state will be in some state:

|ψ(0+)〉 = γa |a〉+ γb |b〉 =⇒ Pb(0+) = |γb|2 (17.2.4)

so for t ∈ (0,∞) we find that:

|ψ(t)〉 = γAe
iEat/ℏ |a〉+ γBe

iEbt/ℏ |b〉 =⇒ Pb(t) = |γb|2 (17.2.5)

Our problem is thus to determine γb.

In the interaction picture the state of the system will be given by:

|ψI(t)〉 = ca(t) |a〉+ cB(t) |b〉 (17.2.6)

with ca(0−) = 1 and cb(0−) = 0. This state will evolve following (17.1.22), giving the
following system of differential equations:

iℏċa(t) = eiωabtδHab(t)cb(t) (17.2.7)
iℏċb(t) = e−iωabtδHba(t)ca(t) (17.2.8)

Now the exponential function e±iωabt, unlike ca(t), must be continuous at t = 0. Therefore
since δHab = αδ(t) and δHba = α∗δ(t), we may substitute the exponentials with their
values at t = 0:

iℏċa(t) = αδ(t)cb(t) (17.2.9)
iℏċb(t) = α∗δ(t)ca(t) (17.2.10)

Dealing with the delta function in physics is quite hard, no physical signal in the world is
truly a delta function. Wemay approximate the perturbation instead using the regulation:

δ(t) ≈
{ 1
t′ , 0 ≤ t ≤ t′

0 otherwise
(17.2.11)

So, the new initial conditions are ca(0) = 1, cb(0) = 0 (we no longer have to use the 0±

symbols since the perturbation is not a delta function). We are tasked with finding ca(t′)
and cb(t′).
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We have that for t ∈ [0, t′]:

iℏċa(t) = α

t′
cb(t) (17.2.12)

iℏċb(t) = α∗

t′
ca(t) (17.2.13)

implying that:

iℏc̈a(t) =
α
t′

iℏ
ca(t) =⇒ c̈a(t) = −|α|

ℏt′
ca(t) (17.2.14)

The solution to our problem is therefore:

ca(t) = β0 cos
( |α|t
ℏt′

)
+ β1 sin

( |α|t
ℏt′

)
, cb(t) ∝ β0 sin

( |α|t
ℏt′

)
+ β1 cos

( |α|t
ℏt′

)
(17.2.15)

Now we must set cb(0) = 0 =⇒ β1 = 0, as well as ca(0) = 1 =⇒ β0 = 1, giving:

ca(t) = cos
( |α|t
ℏt′

)
, cb(t) = − i|α|

α
sin
( |α|t
ℏt′

)
(17.2.16)

For t ≥ t′ we find that:

ca(t ≥ t′) = cos
( |α|

ℏ

)
, cb(t ≥ t′) = − i|α|

α
sin
( |α|

ℏ

)
(17.2.17)

and hence:

|ψ(t > t′)〉 = cos
( |α|

ℏ

)
e−iEat/ℏ |a〉 − i|α|

α
sin
( |α|

ℏ

)
e−iEbt/ℏ |b〉 (17.2.18)

yielding:

Pa(t) = sin2
( |α|

ℏ

)
, Pb(t) = cos2

( |α|
ℏ

)
(17.2.19)

17.3 Setting up the perturbation equations
We consider the time-dependent Hamiltonian:

Ĥ(t) = Ĥ(0) + λδĤS(t) (17.3.1)

where λ is treated as a small parameter. We expand the state in the interaction picture:

|ψI(t)〉 = |ψ(0)
I 〉+ λ |ψ(1)

I (t)〉+ λ2 |ψ(2)
I (t)〉+ ... (17.3.2)

which we substitute into the Schrödinger equation to find that:

iℏ
∂

∂t
(|ψ(0)

I 〉+ λ |ψ(1)
I (t)〉+ λ2 |ψ(2)

I (t)〉+ ...) = λδĤI(|ψ(0)
I 〉+ λ |ψ(1)

I (t)〉+ λ2 |ψ(2)
I (t)〉+ ...)

(17.3.3)
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Equating coefficients of λk for k = 0, 1, ... we find that:

iℏ
∂

∂t
|ψ(0)
I (t)〉 = 0 (17.3.4)

iℏ
∂

∂t
|ψ(k)
I (t)〉 = δĤI |ψ(k−1)

I 〉 , k = 1, 2, ... (17.3.5)

The first is to be expected, since |ψ(0)
I (t)〉 is an eigenvalue of Ĥ(0), a time-independent

hamiltonian. Plugging in t = 0, and assuming that the system starts out in the state
|ψI(0)〉 = |ψ(0)〉 then:

|ψI(0)〉 = |ψ(0)〉 = |ψ(0)
I (0)〉+ λ |ψ(1)

I (0)〉+ λ2 |ψ(2)
I (0)〉+ ... (17.3.6)

implying that

|ψ(0)
I (0)〉 = |ψ(0)〉 (17.3.7)

|ψ(k)
I (0)〉 = 0, k = 1, 2, ... (17.3.8)

Note that the zeroth order equation with these initial conditions gives:

|ψ(0)
I (t)〉 = cnst. =⇒ |ψ(0)

I (t)〉 = |ψ(0)〉 (17.3.9)

Therefore, the first order equation reads.

iℏ
∂

∂t
|ψ(1)
I (t)〉 = δĤI(t) |ψ(0)〉 =⇒ |ψ(1)

I (t)〉 =
ˆ t

0

δĤI(t′)
iℏ

|ψ(0)〉 dt′ (17.3.10)

where we are forced to use 0 as the lower limit of integration to satisfy |ψ(1)
I (0)〉 = 0.

Similarly, to second order we find that:

|ψ(2)
I (t)〉 =

ˆ t

0

δĤI(t′)
iℏ

|ψ(1)
I (t)〉 dt′ =

ˆ t

0

δĤI(t′)
iℏ

ˆ t′

0

δĤI(t′′)
iℏ

|ψ(0)〉 dt′′dt′ (17.3.11)

Suppose we expand our state in the eigenbasis {|n〉} of Ĥ(0):

|ψI(t)〉 =
∑
n

cn(t) |n〉 (17.3.12)

and similarly:
|ψ(k)
I (t)〉 =

∑
n

c(k)
n (t) |n〉 (17.3.13)

Then, substituting (17.3.13) into (17.3.9) we find that

|ψI(0)〉 =
∑
n

cn(0) |n〉 = |ψ(0)
I (t)〉 =

∑
n

c(0)
n (t) |n〉 =⇒ c(0)

n = cn(0) (17.3.14)
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Similarly, substituting (17.3.13) into (17.3.10) we find that:

∑
n

c(1)
n (t) |n〉 =

ˆ t

0

δĤI(t′)
iℏ

∑
m

cm(0) |m〉 (17.3.15)

=
∑
n,m

ˆ t

0

cm(0)
iℏ
|n〉
〈
n
∣∣∣ δĤI(t′)

∣∣∣m〉 (17.3.16)

=⇒ c(1)
n (t) =

∑
m

ˆ t

0

cm(0)
iℏ

〈
n
∣∣∣ δĤI(t′)

∣∣∣m〉 (17.3.17)

Recalling that δĤI
nm(t′) = eiωnmtδĤS

nm(t′) we finally find that:

c(1)
n (t) =

∑
m

ˆ t

0
eiωnmt′ cm(0)

iℏ
δĤS

nm(t′) (17.3.18)

17.4 Constant perturbation
Let us consider a system starting out in an initial state |i〉, and acted upon by a constant
perturbation δĤ ≡ V̂ which switches on at t = 0. We want to know the probability that
the system ends up in some final eigenstate |f〉 upon measurement.

Therefore, we have that cn(0) = δni, since the state starts out in the eigenstate |i〉. Conse-
quently, letting Vfi =

〈
f
∣∣∣ V̂ ∣∣∣ i〉
c

(1)
f (t0) =

ˆ t

0
eiωfit

′ Vfi
iℏ
dt′ (17.4.1)

= 1
iℏ
Vfi
iωfi

(eiωfit0 − 1) (17.4.2)

= − 2i
ℏωfi

eiωfit0/2 sin ωfit0
2

(17.4.3)

= − 2iVfi
Ef − Ei

eiωfit0/2 sin ωfit0
2

(17.4.4)

The probability that the system transitions from |i〉 to |f〉 after time t0 is:

P
(1)
i→f (t0) = |c(1)

f (t0)|2 = 4|Vfi|2

(Ef − Ei)2 sin2 ωfit0
2

(17.4.5)

The transition probability is periodic, and vanishes at

t0 = 2mπ
|ωfi|

= 2mℏπ
|Ef − Ei|

(17.4.6)
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Furthermore, as Ef → Ei:

lim
Ef →Ei

Pi→f = |Vfi|2
t20
ℏ2 lim

Ef →Ei

sin2 ωfit0
2(

ωfit0
2

)2 =
( |Vfi|t0

ℏ

)2
(17.4.7)

This probability is unbounded, so we see that the first order perturbation is only valid for
small enough t0.

Now suppose that we have a continuous of energy levelsEf towhich transitions can occur.
Our goal is to integrate over this continuum, and find the transition rate, the probability
of some transition happening per unit time.

17.5 Continuum of states
The momentum of a free particle takes a continuum of values, so asking how many par-
ticles have momentum between two values is a senseless question. To solve this issue, we
suppose we insert our free particle in some box of length L, hoping that in the end this
parameter will get cancelled out, just like the broadening of the delta function did in the
two-state system.

For a box of length L, we can use the momentum eigenstate |k〉:

ψk(x) = 1√
L3
eikxxeikyyeikzz (17.5.1)

Applying periodic boundary conditions we get the proper momentum quantization:

kxL = 2πnx, kyL = 2πny, kzL = 2πnz (17.5.2)

and consequently for some small momentum interval cube [kx + dkx, ky + dky, kz + dkz]:

dkxL = 2πdnx, dkyL = 2πdny, dkzL = 2πdnz (17.5.3)

The number of states in this cube is

dn = dnxdnydnz =
(
L

2π

)3
d3k (17.5.4)

Suppose instead of looking at the number of states within some momentum interval, I
want the number of states within some energy interval. Defining the density of states
ρ(E) as the number of states per unit energy, so that ρ(E)dE gives the number of states
with energy within an interval dE, then we require:

dn =
(
L

2π

)3
d3k = ρ(E)dE (17.5.5)

Recall that:
E = ℏ2k2

2m
=⇒ dE = ℏ2k

m
dk (17.5.6)
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In spherical coordinates, we may write k = (k, θ, ϕ) so that:

d3k = k2 sin θdkdθdϕ = m

ℏ2k sin θdθdϕdE (17.5.7)

Substituting this into (17.5.5) one finds that:(
L

2π

)3m

ℏ2k sin θdθdϕ = ρ(E) (17.5.8)

or defining the solid angle dΩ = sin θdθdϕ then:

ρ(E) =
(
L

2π

)3m

ℏ2kdΩ (17.5.9)

17.6 Fermi’s golden rule
As mentioned previously, we now integrate over the continuum of states to find the tran-
sition probability:

∑
f

Pi→f (t0) ≡
ˆ
P

(1)
i→f (t0)ρ(Ef )dEf (17.6.1)

=
ˆ 4|Vfi|2

(Ef − Ei)2 sin2
(
ωfit0

2

)
ρ(Ef )dEf (17.6.2)

Now we know that the probability of transition will be low for large |Ef −Ei|, so the con-
tributions to the integral will come from a narrow band ∆E of energies near Ei. We may
assume that both |Vfi|2 and ρ(Ef ) are slowly varying, and bring them out of the integral:

∑
f

Pi→f (t0) = 4|Vfi|2ρ(Ef )
ˆ

∆E
sin2

(
ωfit0

2

) 1
ℏ2ω2

fi

dEf (17.6.3)

= 4|Vfi|2ρ(Ef )
ℏ

ˆ
∆E

sin2
(
ωfit0

2

) 1
ω2
fi

dωfi (17.6.4)

(17.6.5)

Let’s plot the integrand over ωfi https://www.desmos.com/calculator/ndmxj0vog7:

We see that the majority (about 95%) of the integral will come from the first oscillation in
the interval:

− 2π
t0
≤ ωfi ≤

2π
t0

=⇒ Ei −
2πℏ
t0
≤ Ef ≤ Ei + 2πℏ

t0
(17.6.6)

For this energy range to be narrow,weneed t0 to be large enough. This follows immediately
from the uncertainty principle t0∆E ≥ ℏ. However, it should also be small enough so that
first order perturbation is still approximately adequate. Therefore, we may integrate over
infinity, since contributions outside the given energy bands are very small for large enough
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Figure 17.1. Plot of sin2 (ωfit0
2
) 1

ω2
fi

t0: ˆ ∞

−∞
sin2

(
ωfit0

2

) 1
ω2
fi

dωfi = t0π

2
(17.6.7)

The total transition probability is then

∑
f

Pi→f (t0) = 2π
ℏ
|Vfi|2ρ(Ef )t0 (17.6.8)

We see that the probability of transition is directly proportional to the time elapsed. The
constant of proportionality is the transition rate:

Γi→[f ] = 2π
ℏ
|Vfi|2ρ(Ef ) (17.6.9)

where [f ] means that we are considering transitions to a continuum of final states |f〉.

Indeed, one might wonder what the f in this expression is. Because we assumed that the
matrix elements and the probability density of states does not vary much, we can take any
state in the contributing energy band as the final state.

Validity of Fermi’s golden rule

Fermi’s golden rule is only valid for times t0 which are small enough for first order pertur-
bation to suffice, but large enough for us to bring out the density of states and perturbation
matrix elements out of the integral in (17.7.13). It is important to ascertain that these two
conditions are compatible with each other, and that it is possible to find such time intervals
where Fermi’s golden rule applies.
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Firstly, we saw that the result from perturbation theory only holds when:

t0 �
ℏ
|Vfi|

(17.6.10)

However, from the energy-time uncertainty principle, we also require that t0 be large
enough for the sinx

x behaviour to be approximately a delta function, giving a narrow energy
range ∆E:

t0∆E = t0ℏωfi ≥ ℏ =⇒ t0 ≥
1
ωfi

(17.6.11)

Combined, we find that Fermi’s golden rule applies only in cases where:

1
ωfi
≤ t0 �

ℏ
|Vfi|

(17.6.12)

17.7 Harmonic perturbation
We now consider harmonic perturbations of the form:

δĤ(t) =
{

2H ′ cosωt, 0 < t < t0

0, otherwise
(17.7.1)

where H ′ is time independent. We ask again what the probability of a transition from
some initial state |i〉 to some |f〉 is.

Therefore, we have that cn(0) = δni, since the state starts out in the eigenstate |i〉. Conse-
quently, letting H ′

fi =
〈
f
∣∣∣ Ĥ ′

∣∣∣ i〉

c
(1)
f (t0) =

ˆ t0

0
eiωfit

′ 2H ′
fi

iℏ
cosωt′dt′ (17.7.2)

=
H ′
fi

iℏ

ˆ t0

0

(
ei(ωfi+ω)t′ + ei(ωfi−ω)t′

)
dt′ (17.7.3)

= −
H ′
fi

ℏ

[
ei(ωfi+ω)t0 − 1

ωfi + ω
+ ei(ωfi−ω)t′ − 1

ωfi − ω

]
(17.7.4)

Absorption

In the case where ωfi − ω ≈ 0, then :

Ef − Ei − ℏω ≈ 0 =⇒ Ef ≈ Ei + ℏω (17.7.5)

This is known as stimulated absorption, the system absorbs some energy ℏω by transi-
tioning to a higher energy state.
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In this case, we find that:

c
(1)
f (t0) = −

H ′
fi

ℏ
ei(ωfi−ω)t0 − 1

ωfi − ω
(17.7.6)

= −
H ′
fi

ℏ
eiωfit0/2 e

i(ωfi−ω)t0/2 − e−i(ωfi−ω)t0/2

ωfi − ω
(17.7.7)

= −
2iH ′

fi

ℏ(ωfi − ω)
eiωfit0/2 sin (ωfi − ω)t0

2
(17.7.8)

(17.7.9)

The probability that the system transitions from |i〉 to |f〉 after time t0 is:

P
(1)
i→f (t0) = |c(1)

f (t0)|2 =
4|H ′

fi|2

ℏ2(ωfi − ω)2 sin2 (ωfi − ω)t0
2

(17.7.10)

The transition probability is periodic, and vanishes at

t0 = 2mπ
|ωfi − ω|

(17.7.11)

Now suppose that we have a continuum of energy levelsEf to which transitions can occur.
The total probability of transitions is then given by summing over the continuum of states:

∑
f

Pi→f (t0) ≡
ˆ
P

(1)
i→f (t0)ρ(Ef )dEf (17.7.12)

=
ˆ 4|H ′

fi|2

ℏ2(ωfi − ω)2 sin2
((ωfi − ω)t0

2

)
ρ(Ef )dEf (17.7.13)

Now we know that the probability of transition will occur for Ef ≈ Ei + ℏω, so the con-
tributions to the integral will come from a narrow band ∆E of energies. We may assume
that both |Vfi|2 and ρ(Ef ) are slowly varying over this interval, and bring them out of the
integral:

∑
f

Pi→f (t0) = 4|H ′
fi|2ρ(Ei + ℏω)

ˆ
∆E

sin2 (ωfi−ω)t0
2

ℏ2(ωfi − ω)2 dEf (17.7.14)

The calculation is exactly analogous as in the continuous perturbation, and the end result
for the transition rate is:

Γi→[f ] = 2π
ℏ
|H ′

fi|2ρ(Ei + ℏω) (17.7.15)

Emission

In the case where ωfi + ω ≈ 0, then :

Ef − Ei + ℏω ≈ 0 =⇒ Ef ≈ Ei − ℏω (17.7.16)
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This is known as stimulated emission, the system emits some energy ℏω by transitioning
to a lower energy state.

Fermi’s golden rule is identical to that for absorption, only that nowwe needEf = Ei−ℏω:

Γi→[f ] = 2π
ℏ
|H ′

fi|2ρ(Ei − ℏω) (17.7.17)

17.8 Dyson series derivation
We provide an alternative derivation for the Fermi golden rule using the Dyson series.
This is just a reformulation of the derivations from the previous section but using slightly
more advanced methods.

Suppose we have a Hamiltonian H = H0 + V (t) where V (t) is a time-dependent pertur-
bation that was adiabatically turned on at t → −∞. We consider two states, |i〉 and |f〉,
that are eigenstates of the unperturbed hamiltonian Ĥ0 with energies Ei and Ef respec-
tively. If the system starts out in the state |i〉 at time t0, then after time t we see that in the
Schrodinger picture:

|i(t)〉 55 = e−iH0t/ℏÛI(t, t0)eiH0t/ℏ |i〉 (17.8.1)

where UI(t, t0) is the interaction-picture propagator, and given by the Dyson series

UI(t, t0) = T
[

exp
(
− i

ℏ

ˆ t

t0

dt′ VI(t′)
)]

(17.8.2)

17.9 Hydrogen ionization
Suppose we have a photon of energy Eγ incident on a hydrogen atom in its ground state,
and ionizing it into the continuum of free states with momentum k. This means that:

Ef = ℏ2k2

2m
= Eγ − Ry ≥ 0 (17.9.1)

where Ry = αℏc
a0

= 13.6 eV as always.

To investigate this effect, we will consider harmonic perturbations by the photon. We
therefore want the wavelength of the photon to be large enough for the perturbation to
be constant over the atom, so λγ � a0.

Noting that λγ = 2πc
ω implying that:

λ

a0
= 2πc

ω

2Ry
αℏc

= 4πRy
αℏω

� 1 (17.9.2)

giving the following upper bound on the energy of the photon:

ℏω
Ry �

4π
α
≈ 1772 (17.9.3)
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Furthermore, we alsowant ℏω � Ry , because the free electron should not feel the coulomb
attraction. If the photon has an energy in the order of magnitude of the Rydberg energy,
the electron may be bound again by the proton through the Coulomb interaction.

We consider an electric field at an angle θ to the z-axis:

E = 2E0 cosωt =⇒ V (r) = −2E0r cos θ cos θ′ cosωt (17.9.4)

where θ′ is the typical angular coordinate, while θ is the angle between the E field and the
z-axis. This yields a perturbation

δĤ = 2eE0r cos θ cos θ′ cosω = 2H ′ cosωt (17.9.5)

where H ′ = eE0r cos θ cos θ′. As desired, this is a harmonic perturbation, so our discus-
sions from the previous section still hold.

Our initial state is the hydrogen ground state.

ψGS(r) = 1√
πa3

0

e−r/a0 (17.9.6)

while the final states are:
uk(r) = 1√

V
eik·r (17.9.7)

Here V is the volume over which we normalize the plane wave which we used in the
discussion of continuum states.

We orient our axes so that the momentum of the electron k points along the z-axis.

To use Fermi’s golden rule, we must first evaluate the matrix elements:〈
f
∣∣∣ Ĥ ′

∣∣∣ i〉 =
ˆ

1√
V
e−ik·r(eE0r cos θ cos θ′) 1√

πa3
0

e−r/a0d3r (17.9.8)

= eE0√
πa3

0V

ˆ
e−ikr cos θ′

r cos θ cos θ′e−r/a0r2 sin θ′drdθ′dϕ′ (17.9.9)

= eE0√
πa3

0V
cos θ2π

ˆ
r3e−r/a0e−ikr cos θ′ cos θ′ sin θ′drdθ′ (17.9.10)

= − eE0√
πa3

0V
cos θ2π

ˆ
r3e−r/a0e−ikr cos θ′ cos θ′drd(cos θ′) (17.9.11)

The radial integral is:
ˆ
r3 exp

[
− r

(
ik cos θ′ + 1

a0

)]
dr = 6(

ik cos θ′ + 1
a0

)4 (17.9.12)

= 6a4
0(

ia0k cos θ′ + 1
)4 (17.9.13)
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reducing the angular integral to:
ˆ π

0

6a4
0 cos θ′(

ia0k cos θ′ + 1
)4d(cos θ′) = −

ˆ 1

−1

6ua4
0

(ia0ku+ 1)4 (17.9.14)

= − 16ia5
0k

(1 + a2
0k

2)3 (17.9.15)

and hence 〈
f
∣∣∣ Ĥ ′

∣∣∣ i〉 = eE0√
πa3

0V
cos θ2π 16ia5

0k

(1 + a2
0k

2)3 (17.9.16)

which simplifies to

〈
f
∣∣∣ Ĥ ′

∣∣∣ i〉 = 32eE0

√
π

a3
0V

ia0k

(1 + a2
0k

2)3 cos θ (17.9.17)

The differential transition rate is then:

dΓ = 2π
ℏ

V

8π3
m

ℏ2k

(
32eE0

√
π

a3
0V

ia0k

(1 + a2
0k

2)3 cos θ
)2
dΩ (17.9.18)

and hence:

dΓ
dΩ

= 256
π

e2E2
0a

2
0

ℏ
ma2

0
ℏ2

k3a3
0

(1 + (ka0)2)6 cos2 θ (17.9.19)

= 256
π

(eE0a0)2

ℏ
ma2

0
ℏ

(ka0)3

(1 + (ka0)2)6 cos2 θ (17.9.20)

Since ω � Ry
ℏ , we can state that ω ≥ 10Ry

ℏ and thus ka0 =
√

ℏω
Ry ≥ 2.5. The 1 in the

denominator can therefore be ignored, giving

dΓ
dΩ

= 256
π

(eE0a0)2

ℏ
ma2

0
ℏ

1
(ka0)9 cos2 θ (17.9.21)

Recalling that
´

cos2 θdΩ = 4π
3 we finally find that the total transition rate is:

Γ = 512
3

(eE0a0)2

ℏRy
1

(ka0)9 (17.9.22)

17.10 Einstein’s argument
Let’s consider a collection of atoms which we model as two-state systems with energy
levels Ea, Eb, and corresponding eigenstates |a〉 , |b〉.

These states interact with light containing photons of temperature T . Suppose these pho-
tons have frequency ωba = Eb−Ea

ℏ . If the atom is initially in |a〉, then it will absorb a photon,
transitioning to |b〉. If instead the atom is initially in |b〉, then it will emit another photon
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by transitioning to |b〉.

The latter mechanism, which is stimulated emission, is used in laser technology. In lasers
we have three levels, the electrons in the ground state are stimulated into transitioning to
the third level, and then decay into the second level emitting photons of definite energy.

However, this is not the full picture, we also have a process known as spontaneous emis-
sion.

Let’s suppose there are Na atoms in |a〉 and Nb atoms in |b〉, as well as photons at temper-
ature T . We work in the canonical ensemble, so that Ṅa = Ṅb = 0, and we assume we are
in thermodynamic equilibrium, implying that:

Nb

Na
= e−βEb

e−βEa
= e−βℏωba (17.10.1)

Finally, the spectral energy density (energy per volume per frequency range) of the pho-
tons is given by Planck’s law:

u(ω)dω = ℏ
π2c3

ω3dω

eβℏω − 1
(17.10.2)

In absorption, |a〉 → |b〉, the rate of transition should be proportional to Na, since if more
atoms occupy |a〉 then we would expect the transition to be more likely. Similarly, we also
expect that the rate should be proportional to u(ωba), the number of photonswith sufficient
energy to be absorbed. Let’s then postulate that the transition rate per atom is:

Γabs = Babu(ωba)Na (17.10.3)

where Bab is a proportionality constant. Similarly, for stimulated emission:

Γemi = Bbau(ωba)Nb (17.10.4)

where Bba is a proportionality constant. To have equilibrium, we require that:

Ṅb = Γabs − Γemi = Babu(ωba)Na −Bbau(ωba)Nb = 0 (17.10.5)

=⇒ BabNa = BbaNb =⇒ Bab
Bba

= e−βℏωba (17.10.6)

This is problematic, because while Bab
Bba

is temperature independent as we shall soon calcu-
late, the RHS depends on temperature through β.

Let’s introduce a new process, known as spontaneous emission. This will again be a tran-
sition |b〉 → |a〉, which now occurs independently of the number of photons. Its rate will
be:

Γspon = ANb (17.10.7)

− III.262 −



17.11. LIGHT-ATOM INTERACTIONS

for some proportionality constant A. If we introduce this into (17.10.5) then:

Ṅb = −ANb −BbaNbU(ωba) +BabU(ωbaNa0 = 0 (17.10.8)

=⇒ A =
(
Bab

Na

Nb
−Bba

)
U(ωba) (17.10.9)

=⇒ U(ωba) = A

Bab
(
Na
Nb
− Bba

Bab

) (17.10.10)

=⇒ U(ωba) = A

Bab

1(
eβℏωba − Bba

Bab

) (17.10.11)

Comparing this with Planck’s law, we see that:

Bba
Bab

= 1, A

Bab
= ℏω3

ba

π2c3 (17.10.12)

The first result is familiar, indeed we saw that the transition rates for absorption and emis-
sion in the ionization of hydrogen are equal.

17.11 Light-atom interactions
We consider electromagnetic radiation with long wavelengths λ � a0, so that we may
approximate the associated electric field as homogeneous over an atom:

E(t) = 2E0 cosωtn (17.11.1)

implying that the perturbation Hamiltonian takes the form of

δĤ ≡ V (r, t) = −qE(t) · r = −2qE0 cosωt(n · r) (17.11.2)

where q is the charge of atom which is interacting with the radiation.

Let us define d = qr as the dipole operator, giving:

δĤ = −2E0 cosωt(d · n) (17.11.3)

We have already solved this problem in the section on the Harmonic perturbation, with
Ĥ ′ = −E0d · n. We found that:

Pb→a(t) = 4|H ′
ab|2

ℏ2

sin2
(
ωba−ω

2 t
)

(ω2
ba − ω)2 (17.11.4)

= 4|E0|2

ℏ2 | 〈a |d · n | b〉 |2
sin2

(
ωba−ω

2 t
)

(ω2
ba − ω)2 (17.11.5)

Now the electric field is a superposition of incoherent waves with different frequency ωi,
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amplitude E0(ωi) and polarization ni. Our result therefore gets modified to:

P ib→a = 4|E0(ωi)|2

ℏ2 | 〈a |d · ni | b〉 |2
sin2

(
ωba−ωi

2 t
)

(ω2
ba − ωi)2 (17.11.6)

We will sum over all frequencies ωi of the electromagnetic radiation near ωba (those far
away don’t contribute much, as we saw in the Fermi golden rule).

Recall that the electric field energy density is:

uE = |E|
2

8π
= 4E2

0 cos2 ωt

8π
=⇒ 〈uE〉 = 1

4π
E2

0 (17.11.7)

The average magnetic field energy density is identical for plane waves:

〈uB〉 = 〈uE〉 = 1
4π
E2

0 (17.11.8)

giving an energy density of:
u(ωi) = 1

2π
(E0(ωi))2 (17.11.9)

Substituting (17.11.9) into (17.11.6):

P ib→a = 8πu(ωi)
ℏ2 | 〈a |d · ni | b〉 |2

sin2
(
ωba−ωi

2 t
)

(ω2
ba − ωi)2 (17.11.10)

Integrating over frequencies ω of the radiation in the range near ωab:

∑
i

P ib→a = 8π
ℏ2

ˆ
u(ωi)| 〈a |d · ni | b〉 |2

sin2
(
ωba−ωi

2 t
)

(ω2
ba − ωi)2 dω (17.11.11)

= 8π
ℏ2 u(ωba)

〈 ∣∣∣ 〈a |d · ni | b〉 ∣∣∣ 2
〉
ni

ˆ sin2
(
ωba−ωi

2 t
)

(ω2
ba − ωi)2 dω (17.11.12)

where we averaged the dipole operator matrix elements over all possible polarization di-
rections ni. Herewewent through the same logical reasoning of stating that for sufficiently
large t the sinx

x term contributes only near ω = ωab, so u(ω) may be taken to be constants
over this integral. Instead, | 〈a |d · ni | b〉 |2 may vary even over a small frequency interval,
since waves of the same frequency ωba can still have different polarizations. This justifies
taking the average over all directions.

The integral was evaluated previously to be 1
2 tπ so the transition rate will be:

Γb→a = 4π2

ℏ2 u(ωba)
〈 ∣∣∣ 〈a |d · ni | b〉 ∣∣∣ 2

〉
ni

(17.11.13)
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The matrix element average may be simplified further:〈 ∣∣∣ 〈a |d · ni | b〉 ∣∣∣ 2
〉
ni

= 〈(〈a |d | b〉 · ni)∗(〈a |d | b〉 · ni)〉ni
(17.11.14)

=
∑
jk

〈
(
〈
a
∣∣∣ d̂j ∣∣∣ b〉nji )∗(

〈
a
∣∣∣ d̂k ∣∣∣ b〉nki )〉ni

(17.11.15)

=
∑
jk

(
〈
a
∣∣∣ d̂j ∣∣∣ b〉)∗(

〈
a
∣∣∣ d̂k ∣∣∣ b〉) 〈njnk〉ni

(17.11.16)

(17.11.17)

Now by symmetry we have that 〈njnk〉ni
= 1

3δjk, therefore:〈 ∣∣∣ 〈a |d · ni | b〉 ∣∣∣ 2
〉
ni

= 1
3
| 〈a |d | b〉 |2 (17.11.18)

Our final result for the transition rate is then:

Γb→a = 4π2

3ℏ2 u(ωba)| 〈a |d | b〉 |2 (17.11.19)

which closely resembles the form of a Fermi Golden rule. It is important to note that this
is a transition rate for a single atom, if we had N such atoms the above result would scale
accordingly.

Recall that in Einstein’s argument we found that Γb→a = Babu(ωba)Nb, so comparisonwith
(17.11.19) gives:

Bab = Bba = 4π2

3ℏ2 | 〈a |d | b〉 |
2 (17.11.20)

and hence:

A = 4ω3
ba

3ℏc3 | 〈a |d | b〉 |
2 (17.11.21)

From (17.10.7) we find that for a given population N of atoms in state |b〉:

dN

dt
= −AN =⇒ N(t) = N0e

−At (17.11.22)

giving a decay lifetime of τ = 1
A .

17.12 Selection rules
When evaluating the rate of transitions in Hydrogen, one will notice a pattern in the tran-
sitions that are possible. There are a set of rules which state exactly which transitions are
realizable, and which aren’t.
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18The Hydrogen atom: gross structure

18.1 Setting up the Hamiltonian
We will now tackle the principal problem of quantum mechanics, the hydrogen atom.

Consider a quantum system made of an electron with charge −e, mass me and a proton
with charge e and mass mp. We denote the position and momentum of the proton by xp
and pp, and similarly for the electron. These satisfy the commutation relations:

[x̂ip, p̂jp] = iℏδij (18.1.1)
[x̂ie, p̂je] = iℏδij (18.1.2)
[x̂ie, p̂jp] = 0 (18.1.3)

(18.1.4)

We may then write the hamiltonian as:

Ĥ =
pp

2mp
+ p2

e

2me
+ V (|xe − xp|) (18.1.5)

We can go to the CM frame of reference where:

X = mexe +mpxp
me +mp

(18.1.6)

x = xe − xp (18.1.7)

and similarly:

P = pp + pe (18.1.8)
p = αpe − βpp (18.1.9)

To find α, β we need to impose:

[x̂i, p̂j ] = iℏδij =⇒ α+ β = 1 (18.1.10)

and
[p̂i, X̂j ] = 0 =⇒ αme − βmp = 0 (18.1.11)
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so that:
α = me

me +mp
, β = mp

me +mp
(18.1.12)

Let us introduce the reduced mass µ = memp

me+mp
and the total mass M = me + mp, which

gives:

p = µ

( pe
mp
−

pp
me

)
(18.1.13)

Obviously, the commutation rules are still satisfied for the CM operators. Indeed:

[X̂i, P̂j ] =
[
mx̂ie +mpx̂

i
p

m+mp
, p̂jp + p̂je

]
= iℏ

(
mp

m+mp
+ m

m+mp

)
δij = iℏδij (18.1.14)

All other canonical commutation relations for this new set of operators may be verified
similarly.

To rewrite the Hamiltonian with these new operators, it is useful to express the original
operators as:

pp = mp

M
P− p (18.1.15)

pe = me

M
P + p (18.1.16)

The kinetic energy operator then becomes:

p2
p

2mp
+ p2

e

2me
= 1

2mp

(
mp

M
P− p

)2
+ 1

2me

(
me

M
P + p

)2
(18.1.17)

= P2

2M
+ p2

2µ
(18.1.18)

as expected, the CM motion and relative motion are independent.

Finally, wewrite V (|xe−xp|) = V (|x|) so the Hamiltonian separates into the center of mass
motion and relative motion subsystems’ Hamiltonians:

Ĥ =

︷︸︸︷
P2

2M
ĤCM

+ p2

2µ
+ V (r)︸ ︷︷ ︸
Ĥrel

(18.1.19)

where we defined r = |x|.

Since [Ĥrel, ĤCM ] = 0 we may consider wave functions that are of the form:

ψ(x,X) = ψCM (X)ψrel(x) (18.1.20)
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Using separation of variables:

ψrel(x) P2

2M
ψCM (X) + ψCM (X)

[p2

2µ
+ V (r)

]
ψrel(x) = EψCM (X)ψrel(x) (18.1.21)

and dividing through by ψ(x,X) we get:

1
ψCM (X)

P2

2M
ψCM (X) + 1

ψrel(x)

[p2

2µ
+ V (r)

]
ψrel(x) = E (18.1.22)

As always, the first term is onlyX-dependent, whereas the second term is only x-dependent,
so the two must be both equal to a constant such that their sum is E. We denote these two
constants as ECM and Erel so that:

P2

2M
ψCM (X) = ECMψCM (X) (18.1.23)[p2

2µ
+ V (r)

]
ψrel(x) = Erelψrel(x) (18.1.24)

ECM + Erel = E (18.1.25)

Notice that the center of mass system moves as a free particle, and this must of course be
the case since the hydrogen atom overall is not in any potential, it is free to roam around.

Finally, we can set the potential V to be the Coulomb potential:

V (r) = −Ze
2

r
(18.1.26)

where Z is the atomic number of the atom (for hydrogen Z = 1).

so [p2

2µ
− Ze2

r

]
ψrel(x) = Erelψrel(x) (18.1.27)

18.2 Finding the energy levels
Using the results from the chapter on angular momentum:

− ℏ2

2µ

(
∂2UEl
∂r2 − l(l + 1)

r2 UEl

)
− Ze2

r
UEl = EUEl (18.2.1)

or more suggestively: [
d2

dr2 + 2µ
ℏ2

(
E + Ze2

r
− l(l + 1)ℏ2

2µr2

)]
UEl = 0 (18.2.2)

Let us also undimensionalize this problem by setting r = a0
2Zx where a0 = ℏ2

µe2 is known
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as the Bohr radius (this choice simplifies the problem best):[4Z2

a2
0

d2

dx2 + 2µ
ℏ2

(
E + Ze2

x

2Z
a0
− l(l + 1)ℏ2

2µx2
4Z2

a2
0

)]
UEl = 0 (18.2.3)

=⇒
[
d2

dx2 + a2
0

4Z2
2µ
ℏ2

(
E + Ze2

x

2Z
a0
− l(l + 1)ℏ2

2µx2
4Z2

a2
0

)]
UEl = 0 (18.2.4)

=⇒
[
− d2

dx2 + l(l + 1)
x2 − 1

x
− a0E

2Ze2

]
UEl = 0 (18.2.5)

where we used 2ℏ2Z2

µa2
0

= 2ℏ2Z
µa0

me2

ℏ2 = 2Ze2

a0
for the coefficient of E, and a2

0
4Z2

2µ
ℏ2

2Z2e2

a0
= a0µe2

ℏ2 =
1 for the coefficient of 1

x .

Let us now define yet another adimensional parameter κ2 = − a0E
2Ze2 so that:[

− d2

dx2 + l(l + 1)
x2 − 1

x
+ κ2

]
UEl = 0 (18.2.6)

Using a series solutions approach, we will get a three-term recursion relation, which is
not quite desirable. We must simplify the equation further, or find a useful mathematical
ansatz.

We will use the latter approach, by considering the limiting behaviour of the physical
solutions we are interested in.

Clearly, in the limit as x→∞, the dominant term is κ2UEl so that the differential equation
becomes:

d2UEl
dx2 = κ2u =⇒ UEl = e±κx (18.2.7)

After all of this renaming-variable-bonanza, we may as well define ρ = κxwhich is again
adimensional. Then (18.2.6) turns into:[

− d2

dρ2 + l(l + 1)
ρ2 − 1

κρ
+ 1

]
UEl = 0 (18.2.8)

To check consistency, we see that as ρ→∞ the dominant term is UEl so that

d2UEl
dρ2 = UEl =⇒ UEl = e±ρ (18.2.9)

as we found earlier. On physical grounds, we only want normalizable solutions at infinity
so the positive exponent solution may be discarded.

If instead ρ→ 0 then the dominant term is the centrifugal term, so that:

d2UEl
dρ2 = l(l + 1)

ρ2 UEl =⇒ UEl ∼ ρl+1 (18.2.10)

so we may substitute the ansatz UEl = ρl+1e−ρf(ρ), and hope that this will yield some
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other differential equation which can be solved for f through series methods.

The algebra is lengthy but it yields:

ρ
d2f

dρ2 + 2(l + 1− ρ)df
dρ

+
[1
κ
− 2(l + 1)

]
f = 0 (18.2.11)

This may at first sight look horrendous, but note that the first term ρd
2f
dρ2 lowers the expo-

nent of a series solution by 1, while the second and third terms maintains the exponent, so
we have a two-term recursion relation, just as we wanted!

Substituting the series ansatz f =
∑∞
k=0 akρ

k we finally get:

ak+1 =
2(k + l + 1)− 1

κ

(k + 1)(k + 2l + 2)
ak (18.2.12)

We now have a problem, as k → ∞ we get that ak+1
ak
→ 2

k , just like in the case of the
harmonic oscillator.

In the case of e2ρ we have that:

e2ρ =
∞∑
k=0

bkρ
k =

∞∑
k=0

2k

k!
ek (18.2.13)

so that bk = 2k

k! . But then:
bk+1
bk

= 2
k + 1

≤ 2
k

= ak+1
ak

(18.2.14)

So our series solution will give f ∼ e2ρ giving an unnormalizable solution 1. We solve this
problem by truncating the series at some point.

We want f to be a polynomial of degreeN so that aN 6= 0 and aN+1 = 0. Then we require:

aN+1 = 0 =⇒ 1
κ

= 2(N + l + 1) (18.2.15)

which is the energy quantization condition we were looking for (recall κ2 ∼ E).

We define the principal quantum number as n ≡ N + l + 1 so that:

n = 1
2κ

= N + l + 1 (18.2.16)

Keeping n, l as independent quantum numbers (we could have chosenN, l as well, butN
is not quite as physical as we would want) then:

E = −2Z2e2

a0
κ2 = −2Z2e2

a0

a2
0

4
(18.2.17)

1indeed using mathematica one can see that for a series with ak+1
ak

then f(r) ∼ 2xe2x
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and thus we finally get:

E = −Z
2e2

2a0

1
n2 (18.2.18)

It is important to note that 0 ≤ l ≤ n− 1 since 0 ≤ N ≤ n− 1.

Finally, the eigenfunctions may be written as:

ψnlm(r, θ, ϕ) ∝
(
r

a0

)l
f

(
r

a0

)
e−Zr/na0Yln(θ, ϕ) (18.2.19)

where f is a polynomial of order N = n− l − 1, known as a Laguerre polynomial.

18.3 Degeneracy of energy levels
The energy spectrum of the hydrogen atom is highly degenerate. Let us construct the
following diagram:

Figure 18.1. Degeneracy diagram of hydrogen energy levels

Now for a given n, l can take n different values, and so can N . We may therefore say that:

n l number of states
n = 1 l = 0 1 state
n = 2 l = 1, 0 4 states
n = 3 l = 2, 1, 0 9 states

More generally we have that for some given principal quantum number n, l may take
n − 1 different values. For each given l, we have 2l + 1 different values of m so the total
degeneracy of the n-energy state is:

n−1∑
l=0

(2l + 1) = n(n− 1) + n = n2 (18.3.1)

But where does this degeneracy come from? It is quite startling how the energy levels
align perfectly, why should there be a degeneracy between solutionswith different angular
momenta?
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Interestingly, one can get physical intuition behind the hydrogen spectrum degeneracy by
tackling the problem of classical orbits.

Consider for example n = 100 so that l = 0, 1, 2, ..., 99. Now it turns out that l = 0 corre-
sponds to the most elliptical orbit, whereas l = 99 corresponds to the most circular orbit.

Indeed, consider the case where l = 0. Then the effective potential is then simply the
Coulomb potential, as shown below:

Figure 18.2. Dependence of effective potential Veff with l = 0 on r

We see that the particle can get very very close to the nucleus with extremely high ki-
netic energy, and then moves up along the potential by losing some kinetic energy, until it
reaches the largest allowed radius. This is clearly the case of an elliptic orbit.

Now let’s see what happens as we increase l, so that the centrifugal potential becomes
more and more significant. Then:

Figure 18.3. Dependence of effective potential Veff with increasing l on r

We see that increasing the value of l restricts the possibles values of the orbit’s radius,
until at some l tangency is achieved and the orbit is perfectly circular. Any larger l gives
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unphysical solutions.

So we see that for a given n, the degeneracy is related to how eccentric the orbits of the
electron may be.

18.4 Rydberg atoms

Rydberg atoms

Rydberg atoms are defined as atoms whose outermost electron has a very large
principal quantum number n.

Nowvalence electron, the outermost electron, will only observe an effective nuclear charge
+e. Indeed, even though the nucleus has charge Ze, it will experience a shielding effect
from the other Z − 1 electrons of total charge −(Z − 1)e whose clouds are closer to the
nucleus.

Now the virial theorem applied for a coulomb potential gives:

〈T 〉 = −1
2
〈V 〉 = e2

2

〈1
r

〉
(18.4.1)

Therefore in an energy E eigenstate:

〈H〉 = E = 〈T 〉+ 〈V 〉 = 1
2
〈V 〉 (18.4.2)

so that:
〈V 〉 = 2E = −2Ze

2

2a0

1
n2 (18.4.3)

and thus: 〈1
r

〉
= 1
a0n2 =⇒ 〈r〉 ≈ a0n

2 (18.4.4)

where we used the fact that
〈

1
r

〉
≈ 1

〈r〉 to the same order of magnitude.

Indeed, by using some properties of Laguerre polynomials one can show that in the state
|nlm〉:

〈r〉nlm = a0n
2
[
1 + 1

2

(
1− l(l + 1)

n2

)]
(18.4.5)

It turns out that this is also the modal radius, the radius at which the radial probability
density P(r) reaches a maximum value.

Inded, consider:

ψnlm = N rlfnl(r)e−r/na0Y m
l (θ, ϕ) ≡ Rnl(r)Y m

l (θ, ϕ) (18.4.6)
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Then, the probability that the particle is in some spherical shell of thickness dr is:

P(r)dr = r2dr

ˆ
|ψnlm|2 sin θdθdϕ = r2R2

nl(r)dr (18.4.7)

where we used the orthonormality of the spherical harmonics. Now we have:

Rnl(r) ∼ rl(a0 + ...+ aNr
N )e−r/na0 (18.4.8)

Now since we expect the radius to be quite large, we can only consider the rN dominant
term

Rnl(r) ∼ rn−1e−r/na0 =⇒ P(r) ∼ r2ne−r/na0 (18.4.9)

This reaches a maximum when:

2nr2n−1 − 2r2n

na0
= 0 =⇒ r ∼ a0n

2 (18.4.10)

as we found earlier.

18.5 Ladder operator formalism
Quite like the harmonic oscillator and the isotropic oscillator, we can use the ladder oper-
ator formalism to tackle the problem algebraically.

Let p̂r = iℏ
(
∂
∂r + 1

r

)
be the radial momentum operator, so that:

p̂2
r = −ℏ2

r2
∂

∂r

(
r2 ∂

∂r

)
(18.5.1)

One may ask why r̂ · p was not chosen instead. The answer is that this does not satisfy
hermiticity:

(r̂ · p)† = p · r̂ (18.5.2)

We can get around this problem by applying the symmetrization procedure:

p̂r = 1
2

(r̂ · p + p · r̂) (18.5.3)

We then get that in the position basis:

p̂r = − iℏ
2

(1
r
r · ∇+∇ · r̂

)
(18.5.4)

= − iℏ
2

(
∂

∂r
+ 3
r
− r

r2 + ∂

∂r

)
(18.5.5)

= iℏ
(
∂

∂r
+ 1
r

)
(18.5.6)

as desired.
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Note that r̂, p̂r are canonical conjugates:

[r̂, p̂r] = iℏ (18.5.7)

We may then define:

Âl = a0√
2

(
ip̂r
ℏ
− l + 1

r
+ Z

a0(l + 1)

)
(18.5.8)

where a0 is the Bohr radius as always.

We then get that:

Â†
l Âl = a2

0
2

(
− ip̂r

ℏ
− l + 1

r
+ Z

a0(l + 1)

)(
ip̂r
ℏ
− l + 1

r
+ Z

a0(l + 1)

)
(18.5.9)

= a2
0

2

(
p̂2
r

ℏ2 +
(

Z

(l + 1)a0
− (l + 1)

r

)
+ i(l + 1)

ℏ

[
p̂r,

1
r

])
− 2Z
a0r

(18.5.10)

We now use the important commutator property:

[Â, f(B̂)] = [Â, B̂] df
dB̂

(18.5.11)

which we have already used when deriving L̂z in the passive picture. Then we find that:

Âl = a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ (l + 1)2

r2 − 2Z
a0r
− i(l + 1)

ℏ
[p̂r, r̂]

1
r̂2

)
(18.5.12)

= a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ (l + 1)2

r2 − 2Z
a0r
− l + 1

r̂2

)
(18.5.13)

= a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ l(l + 1)
r2 − 2Z

a0r

)
(18.5.14)

= a2
0µ

ℏ2 Ĥl + Z2

2(l + 1)2 (18.5.15)

so that the Hamiltonian may be written as:

Ĥl = ℏ2

a2
0µ

(
Â†
l Âl −

Z2

2(l + 1)2

)
(18.5.16)

If instead we had evaluated ÂlÂ†
l , then the only difference would have been in the sign of
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the commutator
[
p̂r,

1
r

]
, so we would get that:

Âl = a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ (l + 1)2

r2 − 2Z
a0r

+ i(l + 1)
ℏ

[p̂r, r̂]
1
r̂2

)
(18.5.17)

= a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ (l + 1)2

r2 − 2Z
a0r

+ l + 1
r̂2

)
(18.5.18)

= a2
0

2

(
p̂2
r

ℏ2 + Z2

(l + 1)2a2
0

+ (l + 1)(l + 2)
r2 − 2Z

a0r

)
(18.5.19)

= a2
0µ

ℏ2 Ĥl+1 + Z2

2(l + 1)2 (18.5.20)

where Ĥl+1 is the hamiltonian with l′ = l + 1. Now let us see how Âl commutes with Ĥl:

[Âl, Ĥl] = ℏ2

µa2
0
[Âl, Â†

l Âl] = ℏ2

µa2
0
[Âl, Â†

l ]Âl (18.5.21)

so we need to find [Âl, Â†
l ]:

[Âl, Â†
l ] = a2

0µ

ℏ2 (Ĥl+1 − Ĥl) (18.5.22)

Consequently:
[Âl, Ĥl] = (Ĥl+1 − Ĥl)Âl =⇒ ÂlĤl = Ĥl+1Âl (18.5.23)

So clearly if we act Âl on some eigenstate |E, l〉, it will create another eigenstate with same
energy E, but associated to an effective potential with l′ = l + 1.

Indeed:
ÂlĤl |E, l〉 = EÂl |E, l〉 = Ĥl+1Âl |E, l〉 (18.5.24)

so Âl |E, l〉 is indeed an eigenvalue of Ĥl+1.

This explains the alignment of the energy levels in the hydrogen spectrum, and thus its de-
generacy. By applying Âl we can move from a state with quantum numbers n, l to another
state with quantum numbers n, l + 1.2.

However, we can’t expect to be able to increase the angular momentum indefinitely. There
comes a point at which the effective potential just barely touches the bound state energy.
This, aswe sawearlier, corresponds to themaximumangularmomentumorbit, the particle
is forbidden to be anywhere for larger values of l. Once we get to a circular orbit we cannot
increase the angular momentum anymore without also increasing the energy. Hence, one
might expect that in the quantummechanical framework too there must be an upper limit
to l, which we denote as L.

2the astute reader may have realized that Âl really only acts on the radial part of the wave-function. To
raise the angular momentum for the entire wave-function one needs to construct the ladder operators using
the Runge-Lenz operator
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Consequently we must set:

ÂL |E,L〉 = 0 =⇒
〈
E,L

∣∣∣ Â†
LÂL

∣∣∣E,L〉 = 0 (18.5.25)

and using (18.5.16) we find:〈
E,L

∣∣∣∣∣ a2
0µ

ℏ2 ĤL + Z2

2(L+ 1)2

∣∣∣∣∣E,L
〉

= 0 (18.5.26)

⇐⇒ EL = − ℏ2Z2

2µ(L+ 1)2a2
0

(18.5.27)

Defining n ≡ L+ 1 as the principal quantum number we then get:

En = −Z
2e2

2a0

1
n2 (18.5.28)

as found previously.

Defining the Rydberg constant to be:

Ry = e2

2a0
(18.5.29)

so that:
En = −Z

2Ry
n2 (18.5.30)

For hydrogen, we get that Ry = 13.6 eV, so that

En = −13.6 eV
n2 , (hydrogen) (18.5.31)

For single-electron systems with other Z we the find that:

En = −Z µ

µH

13.6 eV
n2 , (hydrogen-like) (18.5.32)

18.5.1 Muonic atoms

Muons (µ) are elementary particles similar to electrons (same charge −e, so that Z = 1),
but about 207 times more massive, so that mµ = 207me. When captured by an proton, a
muon may form a muonic atom. Recall that mp = 1840me so that the reduced mass of a
muonic atom becomes:

µ = 207 · 1840m2
e

2047me
≈ 186me (18.5.33)

which is significantly greater than that for hydrogen, which we may approximate to µH ≈
me. The energy levels of a muonic atom are then:

En = −18613.6 eV
n2 , (18.5.34)
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so about two orders of magnitude grater than the hydrogen atom energy levels.

Consequently when photons are emitted due to transitions in muonic atom states, their
energies will be in the keV range rather than the eV range, falling in the X-ray spectrum.
These may be detected using solid-state detectors rather than optical spectroscopes.

Also, the Bohr radius a0 = ℏ2

µe2 = 1
186

ℏ2

µHe2 is scaled by a factor of 1
186 . Consequently there

will be a much higher change that the electron is found within the radius of the proton.
This is problematic, because the electrostatic interaction between the proton and nucleus
is different when they are separated versus when the first is inside the other. Here we will
need to evaluate the electric potential energy of an electron inside the proton and use this
as a perturbation.

18.5.2 Emission spectra

Suppose we have an electron transition from n1 to n2. By energy conservation a photon
must be emitted with frequency given by Planck’s law:

ν = ∆E
h

= Z2Ry
h

( 1
n2

2
− 1
n2

1

)
(18.5.35)

For each n2 we will therefore have a series of lines. The most important are for the hydro-
gen atom:

(i) Lyman series (n2 = 1).

(ii) Balmer series (n2 = 2).

(iii) Paschen series (n2 = 3).

18.6 Eigenfunctions using ladder operators
Circular orbits

Suppose we wish to express |E, l,m〉 in the position representation. To do so, we may
firstly use the independence of radial and angular variables to write:

〈r |E, l,m〉 = REl(r)Y m
l (θ, ϕ) (18.6.1)

Now if we consider the maximum angular momentum state |E, n− 1〉 (note that this is
only the radial part, it does not include the spherical harmonics) then we expect:

Ân−1 |E, n− 1〉 = 0 =⇒
(
ip̂r
ℏ
− n

r
+ Z

na0

)
|E, n− 1〉 = 0 (18.6.2)

Remembering that in the position representation p̂r = −iℏ
(
∂
∂r + 1

r

)
we find that:(

∂

∂r
− n− 1

r
+ Z

na0

)
Rn,n−1 = 0 (18.6.3)
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Figure 18.4. Lyman series of emission lines

which is just a first order linear ODE, and has integrating factor:

Λ = exp
[ˆ

Z

na0
− n− 1

r
dr

]
= r1−neZr/na0 (18.6.4)

so that:
d

dx
(Rn,n−1(r)Λ = 0 (18.6.5)

and thus
Rn,n−1(r) = N rn−1e−Zr/na0 (18.6.6)

where N is a normalization constant.

For Hydrogen, the ground state corresponds to ψGS(r, θ, ϕ) = R1,0(r)Y0,0(θ, ϕ) and has
the simple expression:

ψGS(r, θ, ϕ) = N e−r/a0 (18.6.7)

The normalization constant is easily found by integration:

N 2
ˆ ∞

0
e−2r/a04πr2dr = N 2a

3
0

4
4π = 1 =⇒ N = 1√

πa3
0

(18.6.8)
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so
ψGS(r, θ, ϕ) = 2√

a3
0

e−r/a0 (18.6.9)

More generally, we find that for Rn,n−1:

N = 1√
2n!

( 2Z
na0

)3/2( 2Z
na0

)n−1
rn−1e−Zr/na0 (18.6.10)

Elliptic orbits

This all works for the most circular orbits, but what about the elliptic orbits? We suspect
that just like Âl−1 increases the angular momentum of the state while maintaining the
energy, Â†

l−1 must instead lower the angular momentum.

To show this, we must prove that:

[Ĥl, Â
†
l−1] = (Ĥl − Ĥl−1)Â†

l−1 =⇒ Â†
l−1Ĥl = Ĥl−1Â

†
l−1 (18.6.11)

so our goal will be to evaluate [Ĥl, Â
†
l−1].

Recall:
[Âl−1, Â

†
l−1] = a2

0µ

ℏ2 (Ĥl − Ĥl−1) (18.6.12)

We then find that:

[[Âl−1, Â
†
l−1], Â†

l−1] = a2
0µ

ℏ2 ([Ĥl, Â
†
l−1]− [Ĥl−1, Â

†
l−1]) (18.6.13)

[Ĥl, Â
†
l−1] = ℏ2

a2
0µ

[[Âl−1, Â
†
l−1], Â†

l−1] + [Ĥl−1, Â
†
l−1] (18.6.14)

Now we may expand the double commutator:

[[Âl−1, Â
†
l−1], Â†

l−1] = [Âl−1Â
†
l−1Â

†
l−1]− [Â†

l−1Âl−1Â
†
l−1] (18.6.15)

and we may also substitute (18.5.16) into [Ĥl−1, Â
†
l−1] to find:

[Ĥl−1, Â
†
l−1] = ℏ2

a2
0µ

[Â†
l−1Âl−1, Â

†
l−1] (18.6.16)
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Hence we find that:

[Ĥl, Â
†
l−1] = ℏ2

a2
0µ

(
[Âl−1Â

†
l−1Â

†
l−1]− [Â†

l−1Âl−1Â
†
l−1] + [Â†

l−1Âl−1, Â
†
l−1]

)
(18.6.17)

= ℏ2

a2
0µ

[Âl−1Â
†
l−1, Â

†
l−1] (18.6.18)

= ℏ2

a2
0µ

(Âl−1�������:0
[Â†

l−1, Â
†
l−1] + [Âl−1, Â

†
l−1]Â†

l−1) (18.6.19)

= ℏ2

a2
0µ

[Âl−1, Â
†
l−1]Â†

l−1) (18.6.20)

= (Ĥl − Ĥl−1)Â†
l−1 (18.6.21)

After this whole commutator party, we may conclude that:

EÂ†
l−1 |E, l〉 = Â†

l Ĥl |E, l〉 (18.6.22)
= (ĤlÂ

†
l−1 + [Â†

l−1, Ĥl]) |E, l〉 (18.6.23)
= (ĤlÂ

†
l−1 − (Ĥl − Ĥl−1)Â†

l−1) |E, l〉 (18.6.24)
= Ĥl−1Â

†
l−1 |E, l〉 (18.6.25)

so we see that Â†
l−1 produces a state with same energy eigenvalue, but lower angular mo-

mentum, as expected. We may therefore apply this operator on the most circular orbit
|E, n− 1〉 to produce elliptic orbits.

Now in the position representation we have that:

Rn,n−2 = Â†
n−2

(
− ∂

∂r
− n

r
+ Z

(n− 1)na0

)
Rn,n−1 (18.6.26)

= (arn−2 + brn−1)e−Zr/na0 (18.6.27)

To explain the last line, we note that the derivative operator will produce a term with rn−1

when acting on the exponential, and another term rn−2 when acting on the rn−1 term. The
n
r will also reduce the power of r to rn−2. Finally, the Z

(n−1)na0
term does nothing. Hence,

overall we will have rn−1 and rn−2 terms multiplied by the exponential which survives
differentiation. We may write this more neatly as:

Rn,n−2 = (a+ br)rn−2e−Zr/na0 (18.6.28)

which has one node where R(r) = 0 due to the linear term.

Clearly, if we apply Â†
n−3 then we get:

Rn,n−2 = (a+ br + cr2)rn−3e−Zr/na0 (18.6.29)
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which will have two nodes due to the quadratic polynomial. More generally we see that:

Rn,l =
(
polynomial of power

n− l

)
rl−1e−Zr/na0 (18.6.30)

which will have n− l nodes. These will be spherical surfaces of fixed radii.

18.7 Spin degrees of freedom
Throughout this study of the gross structure of the hydrogen atom we have not yet in-
cluded the spin degrees of freedom. Since the Hamiltonian is independent of spin, we
need only to append an extra spin ket to the eigenstates |n, l,m〉. The resulting kets are
|n, l,m,ms〉, wherems is the spin of the electron along z.

The degeneracy of the state with principal quantum number n is then doubled to 2n2. The
energy levels however are unaffected.

Let us now consider a hydrogen atom in a magnetic field B = Bk̂. There will now be
two additional terms due to the orbital angular momentum and spin angular momentum
interactions with the magnetic field, which are −µL · B and −µS · B, so that the total
Hamiltonian becomes:

Ĥ = ĤC −
(
− eB

2mec

)
L̂z −

(
− eB

mec

)
Ŝz (18.7.1)

We ignore the coupling due to the proton’s angular momenta, since mp � me
3. Since

these interaction terms commute with the coulomb hamiltonian, they are simultaneously
diagonalizable and hence:

Ĥ |nlmms〉 =
(
− Ry
n2 + eBℏ

2mec
(m+ 2ms)

)
|nlmms〉 (18.7.2)

For the example, the ground state splits into two levels:

E1 = −Ry± eℏB
2mc

(18.7.3)

Instead, the first excited state splits into five levels:

E2 = −Ry
4
± eBℏ

2mc
(2, 1 or 0) (18.7.4)

More generally En splits into 2n+ 1 states, instead of 2n2 without the magnetic field.
3the correction terms if we take into account the spin and orbital angular momenta of spin are of order m

M

and m2

M2 respectively.
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18.8 Expectation values of r−k

We have already found using the virial theorem that:〈1
r

〉
= Z

na2
0

(18.8.1)

Now from perturbation theory we know that adding a term αĤ1 then:

dE

dα

∣∣∣∣
α=0

=
〈
E
∣∣∣ Ĥ1

∣∣∣E〉 (18.8.2)

so if we let Ĥ1 = − ℏ2

2µr2 . The hamiltonian now takes the form:

Ĥnew = ℏ2

2µ

(
p̂2
r

ℏ2 + l(l + 1)− α
r2 − 2Z0

ra0

)
(18.8.3)

If we set l′(l′ + 1) = l(l + 1)− α then we have that the energy levels are identical to those
of the normal hydrogenic atom:

E = −Z
2e2

2a0

1
(l′ + k + 1)2 (18.8.4)

Hence:

− ℏ2

2µ

〈 1
r2

〉
= d

dα

(
− Z2e2

2a0

1
(l′ + k + 1)2

)
α=0

(18.8.5)

= Z2e2

a0

1
(l′ + k + 1)3

dl′

dα

∣∣∣∣
α=0

(18.8.6)

= −Z
2e2

a0

1
(l′ + k + 1)3

1
(2l′ + 1)

∣∣∣∣
α=0

(18.8.7)

= −Z
2e2

a0

1
n3

1
(2l + 1)

(18.8.8)

So that: 〈 1
r2

〉
= Z2

a2
0n

3(l + 1
2)

(18.8.9)

Finally, we may evaluate
〈 1
r3
〉
by considering [Ĥ, p̂r]. Its expectation value for a stationary

state is null by Ehrenfest’s theorem, hence:

〈
[Ĥ, p̂r]

〉
= − l(l + 1)ℏ2

2µ

〈
[r̂−2, p̂r]

〉
− Ze2

〈
[r̂−1, p̂r]

〉
(18.8.10)
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Now using the relation [f(Â), B̂] = [Â, B̂] ∂f
∂Â

then:

l(l + 1)ℏ2

2µ

〈
[r̂−2, p̂r]

〉
= −2l(l + 1)ℏ2

2µr̂3 iℏ (18.8.11)

− Ze2
〈
[r̂−1, p̂r]

〉
= iℏ

Ze2

r̂2 (18.8.12)

so that: 〈
[Ĥ, p̂r]

〉
= −iℏ2l(l + 1)ℏ2

2µ

〈 1
r3

〉
+ iℏZe2

〈 1
r2

〉
(18.8.13)

= −iℏ l(l + 1)ℏ2

µ

〈 1
r3

〉
+ iℏZe2 Z2

a2
0n

3(l + 1
2)

= 0 (18.8.14)

implying that: 〈 1
r3

〉
= Z3

a3
0n

3l(l + 1)(l + 1
2)

(18.8.15)
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19The Hydrogen atom: fine structure

19.1 Scales
We recall from the previous chapter that the Bohr radius is a fundamental length scale of
the hydrogen atom, found by setting the kinetic energy and coulomb potential energy to
equal orders of magnitude:

a0 = ℏ2

µe2 ≈ 53pm (19.1.1)

where µ = memp

me+mp
≈ me is the reduced mass of the system. For Z protons we will have to

substitute e2 → Ze2. The energy levels are:

En = − e2

2a0

1
n2 ≈ −

13.6 eV
n2 , n = 1, 2, ... (19.1.2)

We define the fine structure constant as:

α = e2

ℏc
≈ 1

137
(19.1.3)

so that
e2

a0
= me4

ℏ2 = α2mc2 =⇒ En = −α
2

2
mc2 1

n2 (19.1.4)

The momentum of the electron is approximately

p ≈ ℏ
a0

= αmc =⇒ v ≈ αc = c

137
(19.1.5)

19.2 Angular momentum bases

The electron spin may be specified by two quantum numbers (s,ms) =
(

1
2 ,±

1
2

)
. The

electron’s orbital angular momentum instead is specified by (l,m) where 0 ≤ l ≤ n − 1
and |m| ≤ l. Hence in the uncoupled basis we use the quantum numbers (n, l,m,ms) as
was explained in Chapter 13.

However, we may also directly express the total angular momentum J = L + S of the
electron. So we transform from the uncoupled basis (l,m, s,ms) to the coupled basis
(s, l, j,mj , l). We have traded knowledge of m,ms (state of individual components of an-
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gular momentum) for knowledge of j,mj (state of total angular momentum). Since s = 1
2

is assumed to be understood, we may omit it and simply write (l, j,mj).

Furthermore, recall that:
l ⊗ 1

2
=
(
l + 1

2

)
⊕
(
l − 1

2

)
(19.2.1)

which states that the uncoupled basis states may be expressed as linear combinations of
l+ 1

2 -spin states and l− 1
2 -spin states. The most important relations for the hydrogen atom

are:
0⊗ 1

2
= 1

2
, 1⊗ 1

2
= 3

2
⊕ 1

2
, 2⊗ 1

2
= 5

2
⊕ 3

2
(19.2.2)

We now introduce the spectroscopic notation for our uses:

(i) the orbital angular momentum number l is associated to a letter L as shown:

l L

0 S
1 P
2 D
3 F

(ii) Add a right subscript to indicate the total angular momentum number j: Lj .

(iii) Add a left superscript to indicate the principal quantum number n: nLj .

This gives the following structure of hydrogen energy levels:
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19.3 Constructing the fine structure hamiltonian
Relativistic correction

Recall from special relativity the relation:

E2 − p2c2 = m2c4 (19.3.1)

so promoting E to Ĥ we get that:

Ĥ =
√
p2c2 +m2c4 = mc2

√
1 + p2

m2c2 (19.3.2)

≈ mc2 + p2

2m
− (p2)3

8m3c2 (19.3.3)

where we expanded for non-relativistic momenta. We have recovered the typical term p2

2m ,
but (ignoring the rest mass term) we now have an additional perturbation

δHrel = − (p2)3

8m3c2 (19.3.4)

Spin-Orbit coupling

We have been ignoring an important problem, the electron does not only feel an electro-
static force due to the proton, because of its motion and intrinsic spin it will also experience
a magnetic force. The electron orbiting a nucleus will experience a magnetic field due to
the apparent motion of the proton in its frame of reference, thus forming a current. The
hamiltonian for this interaction is given by:

∆Ĥ = −µS · B = −eS · B
mc

(19.3.5)

where we took g = 2. Mathematically, the magnetic field experienced by the electron
moving at velocity v with respect to the lab frame which measures an electric field E is
given by:

B′ ≈ E× v
c

(19.3.6)

where we took the Lorentz factor be approximately unity γ ≈ 1. For the hydrogen atom:

U(r) = −e
2

r
=⇒ E(r) = 1

e

dU

dr
r̂ (19.3.7)

so that:
B′ = 1

ec

1
r

dU

dr
r× v = 1

ec

1
r

dU

dr
L (19.3.8)

Consequently the hamiltonian of the electron would then be:

δĤS−L = 1
m2
ec

2
1
r

dU

dr
(S · L) (19.3.9)
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sowe see that the spin and orbital angularmomenta are coupled. The real value is actually
half of this, due to relativistic corrections derived by Llewellyn Thomas. Hence we will
take:

δĤS−L = 1
2m2

ec
2

1
r

dU

dr
(S · L) (19.3.10)

Darwin correction

Solving theDirac equation for the hydrogen atomweget an additional perturbation, known
as the Darwin correction:

δHD = ℏ2

8m2c2∇
2V (19.3.11)

For the Coulomb potential V = e2

r then:

δHD = − πe
2ℏ2

2m2c2 δ(r) (19.3.12)

Hence the fine structure hamiltonian becomes:

Ĥ = Ĥ(0) − (p2)2

8m3c2 + e2

2m2c2
S · L
r3 + πe2ℏ2

2m2c2 δ(r) (19.3.13)

19.4 Evaluating the Darwin term
It is important to note that the Darwin term will only act on states that are non-zero at the
origin r = 0. Looking at the structure of the wave-functions w see that only l = 0 states
will be affected by the Darwin term. Hence:

E
(1),D
n00 = 〈n00 | δHD |n00〉 (19.4.1)

= π

2
e2ℏ2

m2c2

ˆ
|ψn00|2δ(r)d3r (19.4.2)

We now need to evaluate |ψn00(0)|2, we state the result

|ψn00(0)|2 = 1
πn3a3

0
(19.4.3)

so that

E
(1),D
n00 = e2ℏ2

2m2c2
1

a3
0n

3 = α4mc2 1
2n3 , l = 0 (19.4.4)

So where does the Darwin term come from? It is due to the fact that the electron is not a
point particle in reality, but may be regarded as a cloud, a continuous charge distribution
with density ρ(r′) = −eρ0(r′). The potential energy becomes:

U(r) =
ˆ
−eρ0(u)VC(r + U)d3u (19.4.5)
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where VC(r) is the electrostatic potential due to the proton. Expanding the potential about
:

V (r + u) ≈ V (r) +
∑
i

∂V

∂xi

∣∣∣∣
r
ui + 1

2
∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
r
uiuj (19.4.6)

Substituting this into (19.4.5) we find that:

U(r) ≈ V (r)
ˆ
ρ(u)d3u +

∑
i

∂V

∂xi

∣∣∣∣
r

ˆ
uiρ(u)d3r + 1

2
∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
r

ˆ
uiujρ(u)d3u (19.4.7)

The first integral becomes:
V (r)

ˆ
ρ(u)d3u = eV (r) (19.4.8)

as would be expected by a point charge. Let us now assume that the charge distribution is
spherically symmetric ρ(u) = ρ(u). Then we have that

ˆ
uiρ(u)d3r = 0 (19.4.9)

Similarly, if i 6= j then: ˆ
uiujρ(u)d3u = 0 (19.4.10)

If i = j then the integral does not vanish, and since
〈
u2
i

〉
= 1

3
〈
u2〉 and in this case:

1
2
∑
i,j

∂2V

∂xi∂xj

∣∣∣∣
r

ˆ
uiujρ(u)d3u = 1

6
∇2V

ˆ
u2ρ(u)d3u (19.4.11)

If the electron has radius r0 = ℏ
mc then we may set:

ρ(u) =


3e

4πr3
0
, u < r0

0, u > r0
(19.4.12)

giving:
1
6
∇2V

ˆ
u2ρ(u)d3u = ℏ2

10m2c2 (19.4.13)

and thus:
U(r) = eV (r) + ℏ2

10m2c2∇
2V (19.4.14)

which is surprisingly close to the Darwin corrected potential:

U(r) = eV (r) + ℏ2

8m2c2∇
2V︸ ︷︷ ︸

δHD

(19.4.15)
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19.5 Evaluating the relativistic correction
The first energy correction should be (in the uncoupled basis):

E
(1),rel
nlmlms

= − 1
8m3c2

〈
nlmlms

∣∣∣p4
∣∣∣nlmlms

〉
(19.5.1)

We can use the expression for non-degenerate perturbation theory because the relativis-
tic perturbation is already diagonal in the uncoupled basis. To see why, note that p2 is
rotationally invariant:

[p2,L2] = 0 (19.5.2)
[p2, L̂z] = 0 (19.5.3)
[p2, Ŝz] = 0 (19.5.4)

so p2 will be diagonal in the (l,ml,ms) eigenbasis. The uncoupled basis is therefore a
“good basis”. Another way to do so is to use the fact that good basis vectors are non-
degenerate eigenstates of some other hermitian operator Â (in our case L2, L̂z, Ŝz), and if
[Â, δĤ] = 0, as explained in section 14.4.

Now thatwe have justified (19.5.1)wemay evaluate the correction (we omit the redundant
ms label since the correction does not depend on it):

E
(1),rel
nlml

= − 1
8m3c2

〈
p2ψnlml

∣∣∣p2ψnlml

〉
(19.5.5)

= − 1
8m3c2 〈2m(En − V (r))ψnlml

| 2m(En − V (r))ψnlml
〉 (19.5.6)

= − 1
2mc2

(
E2
n 〈nlml |nlml〉 − 2En 〈V (r)〉nlml

+
〈
V 2(r)

〉
nlml

)
(19.5.7)

= − 1
2mc2

(
E2
n + 2Ene2

〈1
r

〉
nlml

+ e4
〈 1
r2

〉
nlml

)
(19.5.8)

We have found the expectation values of 1
r and

1
r2 in the previous chapter:〈1

r

〉
= 1
a0n2 ,

〈 1
r2

〉
= 1
a2

0n
3(l + 1

2)
(19.5.9)

giving:

E
(1),rel
nlml

= − 1
2mc2

(
E2
n + 2Ene2

a0n2 + e4

a2
0n

3(l + 1
2)

)
(19.5.10)

= − 1
2mc2

(
E2
n − 4E2

n + 4nEn
l + 1

2

)
(19.5.11)

= E2
n

2mc2

(
3− 4n

l + 1
2

)
(19.5.12)

= α4mc2

8n4

(
3− 4n

l + 1
2

)
(19.5.13)
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Notice that the energy correction is independent ofml,ms. Consequently hadwe used the
coupled basis we would have reached the same result.

19.6 Spin-Orbit coupling
We have that:

δHS−L = e2

2m2c2
1
r3S · L = e2

4m2c2
1
r3 (J2 − S2 − L2) (19.6.1)

so it is clear that we must work in the coupled basis. The first order energy correction is:

E
(1),S−L
n,l,j,mj

= e2

2m2c2
1
r3 〈nljmj |S · L |nljmj〉 (19.6.2)

The reason we can use the result from non-degenerate perturbation theory is because, as
in the relativistic correction, the perturbation is already diagonalized in the n, l, j,mj basis.
Indeed, we have that: [S · L

r3 ,L2
]

=
[S · L
r3 , J2

]
=
[S · L
r3 , Ĵz

]
= 0 (19.6.3)

Therefore we find that:

E
(1),S−L
n,l,j,mj

= e2ℏ2

4m2c2

(
j(j + 1)− l(l + 1)− 3

4

)〈 1
r3

〉
nljmj

(19.6.4)

and since 〈 1
r3

〉
nljmj

= 1
n3a3

0l(l + 1)(l + 1
2)

(19.6.5)

we find that:

E
(1),S−L
n,l,j,mj

= e2ℏ2

4m2c2

(
j(j + 1)− l(l + 1)− 3

4
)

n3a3
0l(l + 1)(l + 1

2)
(19.6.6)

= e4a0
4mc2

(
j(j + 1)− l(l + 1)− 3

4
)

n3a3
0l(l + 1)(l + 1

2)
(19.6.7)

= 4n
4mc2

e4

a2
0n

4

(
j(j + 1)− l(l + 1)− 3

4
)

l(l + 1)(l + 1
2)

(19.6.8)

= E2
n

mc2
n
(
j(j + 1)− l(l + 1)− 3

4
)

l(l + 1)(l + 1
2)

(19.6.9)
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19.7 Fine structure splitting
We see that as l → 0 the spin-orbit energy correction is quite ambiguous. For such states
we may take j = l + 1

2 , as j = l − 1
2 would yield a negative value of j, and write:

E2
n

mc2
n
(
(l + 1

2)(l + 3
2)− l(l + 1)− 3

4
)

l(l + 1)(l + 1
2)

(19.7.1)

= E2
n

mc2
nl

l(l + 1)(l + 1
2)

(19.7.2)

= E2
n

mc2
n

(l + 1)(l + 1
2)

(19.7.3)

= 2nE2
n

mc2 = E
(1),D
n00 (19.7.4)

So we see that although physically the spin-orbit coupling disappears for l = 0 states, it
gets replaced by the Darwin correction which is only relevant when l = 0. Consequently
we can just sum the relativistic sum and the spin orbit terms (which is the same as the
Darwin term):

E
(1)
nljmj

= (E(0)
n )2

2mc2

{
3− 4n

l + 1
2

+ 2n
[
j(j + 1)− 3l(l + 1)− 3

4
l(l + 1

2)(l + 1)

]}
(19.7.5)

= (E(0)
n )2

2mc2

{
3 + 2n

[
j(j + 1)− 3l(l + 1)− 3

4
l(l + 1

2)(l + 1)

]}
(19.7.6)

Recall that l⊗ 1
2 =

(
l+ 1

2
)
⊕
(
l− 1

2
)
so for a fixed value of j we will have only two possible

values of l, either l = j + 1
2 or l = j − 1

2 .

Setting l = j + 1
2 we find:

E
(1)
nljmj

= (E(0)
n )2

2mc2

{
3 + 2n

[(j(j + 1)− 3(j + 1
2)(j + 3

2)− 3
4

(j + 1
2)(j + 1)(j + 3

2)

]}
(19.7.7)

= (E(0)
n )2

2mc2

{
3 + 2n

[ −2j2 − 5j − 3
(j + 1

2)(j + 1)(j + 3
2)

]}
(19.7.8)

= (E(0)
n )2

2mc2

{
3 + 2n

[ −2(j + 1)(j + 3
2)

(j + 1
2)(j + 1)(j + 3

2)

]}
(19.7.9)

= (E(0)
n )2

2mc2

[
3− 4n

j + 1
2

]
(19.7.10)
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and similarly setting l = j − 1
2 we find:

E
(1)
nljmj

= (E(0)
n )2

2mc2

{
3 + 2n

[(j(j + 1)− 3(j − 1
2)(j + 1

2)− 3
4

j(j − 1
2)(j + 1

2)

]}
(19.7.11)

= (E(0)
n )2

2mc2

{
3 + 2n

[ −2j2 + j

j(j − 1
2)(j + 1

2)

]}
(19.7.12)

= (E(0)
n )2

2mc2

[
3− 4n

j + 1
2

]
(19.7.13)

Therefore the energy corrections to first order have no real dependence on l, since given j
the two possible values of l give the same result. Thus the total fine structure splitting of
energy levels reads:

E
(1)
nj = (E(0)

n )2

2mc2

[
3− 4n

j + 1
2

]
= α4mc2 1

2n4

[3
4
− n

j + 1
2

]
(19.7.14)

Note that this correction is always negative. Indeed the largest possible energy correction
occurs when n

j+ 1
2
is minimized:

min
n,j

n

j + 1
2
− 3

4
= min

n,j

n

l + 1
− 3

4
= 1− 3

4
= 1

4
(19.7.15)

since lmax = n − 1. Consequently the lowest the energy correction can get is −α4mc2

8n4 . All
energy levels are thus shifted down by some amount.

The hydrogen spectrum now looks like:

We have broken part of the degeneracy of |n, l, j,mj〉 states. The energy is no longer de-
pendent solely on n (gross structure), but is also dependent on j, splitting all states with
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j 6= 0 into two depending on the j subscript in the spectroscopic notation nLj . However
the multiplets are not split due to a lack ofmj dependence. Hence states with the same j
are degenerate, which is why 2S 1

2
and 2P 1

2
are degenerate.

19.8 The Zeeman effect
Recall that an electron has two components of magnetic moment, an orbital component:

µl = − e

2mc
L (19.8.1)

and an intrinsic spin component:
µl = − e

mc
S (19.8.2)

Hence when placed in a magnetic field the Hamiltonian of the electron will read:

δĤZ = e

2mc
(L + 2S) · B (19.8.3)

If we orient our coordinate system so that B = Bẑ then:

δĤZ = eB

2mc
(L̂z + 2Ŝz) (19.8.4)

The total hamiltonian is then:

Ĥ = Ĥ(0) + δĤFS + δĤZ (19.8.5)

For weak magnetic fields we may treat Ĥ(0) + δĤFS as our new Ĥ(0) and δĤZ as our
perturbation. But what do we mean by weak magnetic field? It means that the applied
fieldB must be smaller than the internal magnetic fieldBin which results in the spin-orbit
coupling, the magnetic field experienced by the electron due to its relative motion around
the proton.

19.9 Weak Zeeman effect
We will have to consider the full matrix〈

n, l, j,mj

∣∣∣ δĤZ

∣∣∣n, l′, j,m′
j

〉
(19.9.1)

owing to the fact that two degenerate states can have different l or differentm′
j since they

are not included in the fine structure energy splitting. Luckily, we have that:

[L2, δĤZ ] = eB

2mc
([L2, L̂z] + 2[L2, Ŝz]) = 0 (19.9.2)

so the perturbation is already diagonal in l, we only need to worry aboutmj :〈
n, l, j,mj

∣∣∣ δĤZ

∣∣∣n, l, j,m′
j

〉
(19.9.3)
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By a stroke of luck we also have that:

[Ĵz, δĤZ ] = eB

2mc
([Ĵz, L̂z] + 2[Ĵz, Ŝz]) = 0 (19.9.4)

so the perturbation is already diagonal in the coupled basis |n, l, j,mj〉! We can therefore
use the result from non-degenerate perturbation theory and simply compute the diagonal
elements of δĤZ .

We have:

E
(1)
nljmj

= eB

2mc

〈
nljmj

∣∣∣ L̂z + 2Ŝz
∣∣∣nljmj

〉
(19.9.5)

= eB

2mc

〈
nljmj

∣∣∣ Ĵz + Ŝz
∣∣∣nljmj

〉
(19.9.6)

= eB

2mc
(
ℏmj +

〈
nljmj

∣∣∣ Ŝz ∣∣∣nljmj

〉 )
(19.9.7)

Evaluating Ŝz is a bit tricky, the most immediate method is to use the Wigner-Eckart the-
orem. However here we present an alternative method.

Vector operators and the Projection lemma

Recall that:
[Ĵi, Ŝi] = iℏϵijkŜk (19.9.8)

by the standard angular momentum algebra. More generally, operators V whose compo-
nents satisfy the commutator algebra:

[Ĵi, V̂j ] = iℏϵijkŜk (19.9.9)

are called vector operators. It is easy to show that J,L,S are all vector operators. Perhaps
more surprisingly, we also have that x is a vector operator:

[Ĵi, x̂j ] = ϵilk[x̂lp̂k, x̂j ] = ϵilkx̂l(−iℏδkj) (19.9.10)
= −iℏϵilj x̂l = iℏϵijlx̂l (19.9.11)

as desired.

Furthermore, ifV andW are vector operators thenV×W is also a vector operator. Indeed:

[Ĵi, (V×W)j ] = ϵjkl[Ĵi, V̂kŴl] (19.9.12)
= ϵjkl([Ĵi, V̂k]Ŵl + V̂k[Ĵi, Ŵl]) (19.9.13)
= iℏϵjkl(ϵikmV̂mŴl + V̂kϵilnŴn) (19.9.14)

and since:

ϵjklϵikmV̂mŴl = ϵkjlϵkimV̂mŴl (19.9.15)
= (δijδlm − δjmδil)V̂mŴl (19.9.16)
= δij V̂lŴl − V̂jŴi (19.9.17)
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and similarly:

ϵjklϵilnV̂kŴn = ϵlkjϵlinV̂kŴn (19.9.18)
= (δikδjn − δijδkn)V̂kŴn (19.9.19)
= V̂iŴj − δij V̂kŴk (19.9.20)

implying that

[Ĵi, (V×W)j ] = iℏ(V̂iŴj − V̂jŴi) (19.9.21)
= iℏϵijk(V×W)k (19.9.22)

Indeed:

ϵijk(V×W)k = ϵijkϵklmV̂lŴm (19.9.23)
= −ϵkijϵklmV̂lŴm (19.9.24)
= −(δjlδim − δjmδil)V̂lŴm (19.9.25)
= V̂iŴj − V̂jŴi (19.9.26)

as desired. Hence we have found that V×W is a vector operator with:

[Ĵi, (V×W)j ] = iℏϵijk(V×W)k (19.9.27)

Another important property is that:

([J2,W])j = [ĴiĴi, Ŵj ] (19.9.28)
= Ĵi[Ĵi, Ŵj ] + [Ĵi, Ŵj ]Ĵi (19.9.29)
= iℏ(ϵijkĴiŴk + ϵijlŴlĴi) (19.9.30)
= iℏ(ϵjkiŴkĴi + ϵjkiŴkĴi) + iℏϵjki[Ĵi, Ŵk] (19.9.31)
= 2iℏ(W× J)j + iℏ(iℏϵiklŴl)ϵjki (19.9.32)
= 2iℏ(W× J)j − iℏ(iℏϵikjϵiklŴl) (19.9.33)
= 2iℏ(W× J)j − iℏ(2iℏδjlŴl) (19.9.34)
= 2iℏ((W× J)j − iℏŴj) (19.9.35)

(19.9.36)

implying that:
[J2,W] = 2iℏ(W× J− iℏW) (19.9.37)

If we set W = J then we get:

[J2, J] = 2iℏ(J× J− iℏJ) = 0 (19.9.38)

as expected.
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Finally, we reach the important result of this (rather long) subsection:

[J2, [J2,V]] = (2iℏ)2
[
(V · J)J− 1

2
(J2V + VJ2)

]
(19.9.39)

To prove this:

[J2, [J2,V]] = 2iℏ[J2,W× J− iℏW] (19.9.40)
= 2iℏ([J2,V× J]− iℏ[J2,V]) (19.9.41)

= (2iℏ)2{(V× J)× J− iℏ(V× J)− 1
2

[J2,V]
}

(19.9.42)

Now we also have that:

((V× J)× J)i = ϵijkϵjlmV̂lĴmĴk (19.9.43)
= ϵjkiϵjlmV̂lĴmĴk (19.9.44)

(19.9.45)
= (δklδim − δkmδil)V̂lĴmĴk (19.9.46)
= V̂kĴiĴk − V̂iĴkĴk (19.9.47)

and since

V̂kĴiĴk = ĴiV̂kĴk − [ĴiV̂k]Ĵk (19.9.48)
= ĴiV · J− iℏϵiklV̂lĴk (19.9.49)
= ĴiV · J + iℏϵilkV̂lĴk (19.9.50)
= ĴiV · J + iℏ(V× J)i (19.9.51)

(19.9.52)

we get that
((V× J)× J)i = ĴiV · J + iℏ(V× J)i − V̂iJ2 (19.9.53)

or more simply
(V× J)× J = JV · J + iℏ(V× J)−VJ2 (19.9.54)

Then
[J2, [J2,V]] = (2iℏ)2{JV · J−VJ2 − 1

2
[J2,V]

}
(19.9.55)

Note that:
1
2

(J2V + VJ2) = VJ2 + 1
2

[J2,V] (19.9.56)

giving:

[J2, [J2,V]] = (2iℏ)2
(
V · JJ− 1

2
(J2V + VJ2)

)
(19.9.57)

as desired (we used the fact that J commutes with V · J as can be easily verified).

Nowwemay take the expectation value of |nljmj〉 of the above identity anduse Ehrenfest’s
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theorem to get:

0 = 〈JV · J〉 − 1
2

(
〈
J2V

〉
+
〈
VJ2

〉
) (19.9.58)

= 〈JV · J〉 − ℏ2j(j + 1) 〈V〉 (19.9.59)

giving us the projection lemma:

〈k; jmj |V | k; jmj〉 = 〈k; jmj | (V · J)J | k; jmj〉
ℏ2j(j + 1)

(19.9.60)

The matrix elements of V in the total angular momentum basis is equal to the matrix el-
ements of the typical projection of V onto This is reminiscent of the typical projection
identity of normal vectors:

Projb(a) = (a · b)b
b2 (19.9.61)

Applying this projection lemma to S, and taking only the z-component we find the matrix
elements of Ŝz in the coupled basis:

〈
nljmj

∣∣∣ Ŝz ∣∣∣nljmj

〉
=

〈
k; jmj

∣∣∣ (S · J)Ĵz ∣∣∣ k; jmj

〉
ℏ2j(j + 1)

= 〈k; jmj | (S · J) | k; jmj〉mj

ℏj(j + 1)
(19.9.62)

Using the identity S · J = 1
2(J2 − L2 + S2) then:

〈
nljmj

∣∣∣ Ŝz ∣∣∣nljmj

〉
=

ℏmj

(
j(j + 1)− l(l + 1) + 3

4

)
2j(j + 1)

(19.9.63)

The first order energy corrections due to the Zeeman perturbation will then be:

E
(1)
nljmj

= eℏB
2mc

mj

(
1 +

j(j + 1)− l(l + 1) + 3
4

2j(j + 1)

)
(19.9.64)

The proportionality term in parenthesis is known as the Lande g-factor denoted g(j, l):

g(j, l) = 1 +
j(j + 1)− l(l + 1) + 3

4
2j(j + 1)

(19.9.65)

Unlike the fine structure splitting which was implicitly independent on l, in this case it can
be shown that g(l + 1

2 , l) 6= g(l − 1
2 , l), so that the l-dependence remains. Therefore, the

energy correction is now dependent onmj , j, l so all degeneracies have been removed!
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20Many electron atoms

20.1 The atomic hamiltonian
Until now we have only been considering systems with a single electron, and a nucleus
consisting of Z protons. In most cases however we have more than a single electron, con-
sider for example a nucleus of Z protons surrounded by Z electrons. Then:

Ĥ =
Z∑
j=1

(
− ℏ2

2m
∇2
j −

Ze2

rj

)
︸ ︷︷ ︸
hydrogen-like hamiltonian

+ 1
2

Z∑
j 6=k

e2

|rj − rk|︸ ︷︷ ︸
electron-electron interaction

(20.1.1)

where ri is the vector displacement from the proton (at the origin) to the ith electron. The
first term represents the typical hamiltonian which includes proton-electron interactions
only, the second term also includes the electron-electron interactions, with the 1

2 term to
account for double counting. Due to the indistinguishability of electrons we will need to
seek solutions of the form:

ψ(r1, r2, ..., rZ)χ (20.1.2)

which are totally antisymmetric under particle exchange. Although an exact solution to
this problem is not yet known, we can apply perturbation theory and our knowledge of
hydrogen-like systems to find approximate solutions.

20.2 Helium gross structure (perturbation)
For helium the hamiltonian reads:

Ĥ =
(
− ℏ2

2m
∇2

1 −
2e2

r1

)
+
(
− ℏ2

2m
∇2

2 −
2e2

r2

)
+ e2

|r1 − r2|
(20.2.1)

We will treat e2

|r1−r2| as a perturbation. Firstly we must find the solutions to

[(
− ℏ2

2m
∇2

1 −
2e2

r1

)
+
(
− ℏ2

2m
∇2

2 −
2e2

r2

)]
ψ = Eψ (20.2.2)

This is a separable Hamiltonian, corresponding to the case where the subsystems proton-
electron 1 and proton-electron 2 do not interact with each other. We know that the solu-
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20.2. HELIUM GROSS STRUCTURE (PERTURBATION)

tions will be of the form:

Ψ(0)(r1, r2) = ψnlm(r1)ψn′l′m′(r2) = Rnl(r1)Rn′l′(r2)Y m
l (θ1, ϕ1)Y m′

l′ (θ2, ϕ2) (20.2.3)

while the unperturbed energy levels are:

E
(0)
n,n′ = −

( 1
n2 + 1

n′2

)
Ry = −4

( 1
n2 + 1

n′2

)
13.6 eV = −4

( 1
n2 + 1

n′2

)
e2

2a0,H
(20.2.4)

where a0,H is the hydrogen bohr radius. For example, the ground state will have energy :

E
(0)
GS = 4e2

a0
= 108.8 eV (20.2.5)

and the corresponding spatial wave-function will be:

ψ100(r1)ψ100(r2) = 8
πa3

0
e−2(r1+r2)/a0 (20.2.6)

Note that the spatial wave-function is symmetric 1, so we require the spin component to
be anti-symmetric. Only the singlet state is anti-symmetric so:

Ψ(0)
GS = 8√

2πa3
0
e−2(r1+r2)/a0(|↑, ↓〉 − |↓, ↑〉) (20.2.7)

Now let us evaluate the first order energy correction to the ground state. We need to
calculate:

E
(1)
GS = e2 〈Ψ(0)

GS |
1

|r1 − r2|
|Ψ(0)

GS〉 (20.2.8)

=
( 8e√

2πa3
0

)2 ˆ e−4(r1+r2)/a0

|r1 − r2|
d3r2d

3r1 (20.2.9)

Now we may align our axes so that r1 lies on the z-axis, so that:

|r1 − r2| =
√
r2

1 + r2
2 − 2r1r2 cos θ2 (20.2.10)

and choose to integrate over d3r2 first:

I =
ˆ 2π

0

ˆ ∞

0

ˆ π

0

e−4r2/a0√
r2

1 + r2
2 − 2r1r2 cos θ2

r2
2 sin θ2dθ2dr2dϕ2 (20.2.11)

= 2π
ˆ ∞

0

[
r2
r1
e−4r2/a0

√
r2

1 + r2
2 − 2r1r2 cos θ2

]π
0
dr2 (20.2.12)

= 2π
ˆ ∞

0

r2
r1
e−4r2/a0(|r1 + r2| − |r1 − r2|)dr2 (20.2.13)

1technicallywe shouldwrite 1√
2 (ψ100(r1)ψ100(r2)+ψ100(r2)ψ100(r1)) since the antisymmetric choicewould

vanish. However normalization gives 8
πa3

0
e−2(r1+r2)/a0
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Now in the range where r1 > r2 we get that |r1 + r2| − |r1 − r2| = 2r2 and thus we get a
contribution:

2
ˆ r1

0

r2
r1
e−4r2/a0(|r1 + r2| − |r1 − r2|)dr2 (20.2.14)

= 4
r1

ˆ r1

0
r2

2e
−4r2/a0dr2 (20.2.15)

= 4
r1

[
2
(
a0
4

)3
− a0

4

(
2a

2
0

16
+ 2a0

4
r1 + r2

1

)
e−4r1/a0

]
(20.2.16)

= 4
r1

[
a2

0
32
− a0

4

(
a2

0
8

+ a0
2
r1 + r2

1

)
e−4r1/a0

]
(20.2.17)

In the range where r1 < r2 we get that |r1 + r2| − |r1 − r2| = 2r1 and thus we get a
contribution:

2
ˆ ∞

r1

r2
r1
e−4r2/a0(|r1 + r2| − |r1 − r2|)dr2 (20.2.18)

= 4
ˆ ∞

r1

r2e
−4r2/a0dr2 (20.2.19)

= 4a0
4

(
a0
4

+ r1

)
e−4r1/a0 (20.2.20)

= 4a0
4

(
a0
4

+ r1

)
e−4r1/a0 (20.2.21)

Taking their sum we get that:

I

2π
= 4
r1

[
a3

0
32
− a0

4

(
a2

0
8

+ a0
2
r1 + r2

1

)
e−4r1/a0

]
+ 4a0

4

(
a0
4

+ r1

)
e−4r1/a0 (20.2.22)

= 4
r1

[
a3

0
32
− a0

4

(
a2

0
8

+ a0
2
r1 + r2

1 −
a0
4
r1 − r2

1

)
e−4r1/a0

]
(20.2.23)

= 4
r1

[
a3

0
32
− a0

4

(
a2

0
8

+ a0
4
r1

)
e−4r1/a0

]
(20.2.24)

We now perform the d3r1 integral:
ˆ

8π
r1

[
a3

0
32
− a0

4

(
a2

0
8

+ a0
4
r1

)
e−4r1/a0

]
e−4r1/a0r2

1 sin θ1dr1dθ1dϕ1 (20.2.25)

= 32π2
ˆ ∞

0
r1e

−4r1/a0

[
a3

0
32
− a0

4

(
a2

0
8

+ a0
4
r1

)
e−4r1/a0

]
dr1 (20.2.26)

= π2
ˆ ∞

0
r1e

−4r1/a0

[
a3

0 − a0

(
a2

0 + 2a0r1

)
e−4r1/a0

]
dr1 (20.2.27)

= π2 5a5
0

128
(20.2.28)
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Consequently the first order energy correction is:

E
(1)
GS −

32e2

π2a6
0
π2 5a5

0
128

= 5e2

4a0
≈ − 5

16
E

(0)
GS (20.2.29)

The ground state of helium is approximately:

EGS ≈
11
16
E

(0)
GS = −74.9 eV (20.2.30)

20.3 Helium excited states
The excited states of helium consist of one excited electron and an electron in the ground
state. Indeed if both electrons are excited then one of them will transition to the ground
state, releasing enough energy to ionize the atom and release the other electron.

Ignoring electron-electron repulsion, wemay then construct a statewith symmetric spatial
wavefunction:

|Ψ〉para = 1√
2

(|100〉 ⊗ |nlm〉+ |nlm〉 ⊗ |100〉)⊗ |S = 0, Sz = 0〉 (20.3.1)

known as parahelium, and 3 states with anti-symmetric spatial wavefunction:

|Ψ〉para = 1√
2

(|100〉 ⊗ |nlm〉 − |nlm〉 ⊗ |100〉)⊗ |S = 1, Sz〉 (20.3.2)

known as orthohelium. We use upper-case S and Sz to denote the total spin and spin
projection along z quantum numbers. Let us evaluate the first order energy corrections for
these states. We expect that parahelium, having a symmetric wave-function, will bunch
up the electrons closer together than orthohelium. The electron repulsion will be stronger
for parahelium, resulting in a higher energy.

We get that:

E
(1)
nlm = e2

2
(〈100| ⊗ 〈nlm| ± 〈nlm| ⊗ 〈100|) 1

|r1 − r2|
(|100〉 ⊗ |nlm〉 ± |nlm〉 ⊗ |100〉)

(20.3.3)

= e2(
〈

100, nlm
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣100, nlm
〉
±
〈

100, nlm
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣nlm, 100
〉

) (20.3.4)

Now we have that:

Cnlm = e2
〈

100, nlm
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣100, nlm
〉

=
ˆ
e2|ψnlm(r1)|2|ψGS(r2)|2

|r1 − r2|
d3r1d

3r2 (20.3.5)

Jnlm = e2
〈

100, nlm
∣∣∣∣ 1
|r1 − r2|

∣∣∣∣100, nlm
〉

=
ˆ
e2ψnlm(r1)ψnlm(r2)ψGS(r1)ψGS(r2)

|r1 − r2|
d3r1d

3r2

(20.3.6)

The first integral is known as the Coulomb integral. Since |ψ(r)|2 is interpreted as the
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probability density of the electron cloud, it follows that e|ψ(r)|2 will be a charge density.
Consequently the coulomb integral is just the potential energy associated with the two
electron clouds.

The second integral is known as the exchange integral, and it is a consequence of the indis-
tinguishability of electrons. For helium this is always positive, so as expected parahelium
lies higher in energy than parahelium.

Thus the approximate energy to first order of an excited helium atom is:

Enlm ≈ E
(0)
nlm + Cnlm ± Jnlm (20.3.7)

where + is used for singlet spin states, while − is used for triplet spin states.

20.4 Variational principle
The perturbation theory calculations required to calculate the ground state of heliumwere
quite long and complicated. It turns out that there is a simpler method that, in some in-
stances, can be used to estimate ground state energies to a greater degree of accuracy.

Suppose we have a Hamiltonian Ĥ acting on a Hilbert space containing some arbitrary
normalized state |ψ〉. Then we will have that

EGS ≤
〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 (20.4.1)

Indeed:

Ĥ |ψ〉 = Ĥ

(∑
k

ck |Ek〉
)

(20.4.2)

=
∑
k

ckEk |Ek〉 (20.4.3)

≤
∑
k

ckEGS |Ek〉 (20.4.4)

= EGS |ψ〉 =⇒ EGS ≤
〈
ψ
∣∣∣ Ĥ ∣∣∣ψ〉 (20.4.5)

as desired.

Therefore, if we choose an arbitrary state the energy expectation value in this state will be
larger than or equal to the ground state. One may then get a good approximation to the
ground state energy by minimizing this expectation value. The easiest way to do so is to
choose a state |ψ(α)〉with a free variable α and then minimize

〈
ψ(α)

∣∣∣ Ĥ ∣∣∣ψ(α)
〉
.

For example, let’s consider the case of the harmonic oscillator:

Ĥ = − p̂2

2m
+ 1

2
mω2x̂2 (20.4.6)
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whose eigenfunctions satisfy:

− ℏ2

2m
d2ψ

dx2 + 1
2
mω2x2ψ = Eψ (20.4.7)

Since the potential is symmetric the wavefunctions must be either even or odd. Further-
more the ground state cannot have nodes so it must be even. It is easy to see that ψ(x, b) =
Ae−bx2 satisfies all these requirements. Let us firstly work out the normalization constant:

|A|2
ˆ ∞

−∞
e2bx2

dx = |A|2
√
π

2b
= 1 =⇒ A =

(2b
π

)1/4
(20.4.8)

Now we get that:

〈T 〉 = − ℏ2

2m
|A|2
ˆ ∞

−∞
e−2bx22b(2bx2 − 1)dx = ℏ2b

2m
(20.4.9)

while
〈V 〉 = 1

2
mω2|A|2

ˆ ∞

−∞
e−2bx2

x2dx = mω2

8b
(20.4.10)

Consequently we need to minimize:

〈H〉 = ℏ2b

2m
+ mω2

8b
(20.4.11)

d 〈H〉
db

= ℏ2

2m
− mω2

8b2 =⇒ b = mω

2ℏ
(20.4.12)

We therefore find that the minimum energy expectation value is ℏω
2 , which is unsurpris-

ingly the ground state energy of the oscillator. Indeed, the type of wavefunction we chose
(gaussian) matches the form of the true ground state wavefunction.

20.5 Helium gross structure (variational)
Let’s apply the variational method to the Helium atom. Again we need to choose a trial
wave-function. In perturbation theory we used the unperturbed ground state:

ψGS(r1, r2) = 8
πa3

0
e−2(r1+r2)/a0 (20.5.1)

Here the 8 and 2 factors appear due to the fact that Z = 2 in our system. However, what
if we let Z be a variable we minimize 〈H〉 with respect to? Physically, the electrons will
experience a shielding effect due to each other, so the overall charge they observe will not
be 2e but smaller, we define this new charge as "effective nuclear charge" Z. Then:

ψGS(r1, r2) = Z3

πa3
0
e−Z(r1+r2)/a0 (20.5.2)
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To be able to use the result from previous chapters, we express the Hamiltonian as:

Ĥ =
(
− ℏ2

2m
∇2

1−
Ze2

r1

)
+
(
− ℏ2

2m
∇2

2−
Ze2

r2

)
+ (Z − 2)e2

r1
+ (Z − 2)e2

r2
+ e2

|r1 − r2|
(20.5.3)

Notice that the terms in the first two parenthesis are just the Hamiltonians for hydrogen-
like atoms with atomic number Z. Their expectation values are known. So are the expec-
tation values of 1

r and
1

|r1−r2| . Hence:

〈H〉 = −2Z
2e2

2a0
+ 2e2(Z − 2)

〈1
r

〉
+
〈

e2

|r1 − r2|

〉
(20.5.4)

Now in the ground state: 〈1
r

〉
= Z

a0
(20.5.5)

instead: 〈
e2

|r1 − r2|

〉
= 5e2

4b0
= 5Ze2

8a0
(20.5.6)

Consequently the expectation value is:

〈H〉 = −2Z
2e2

2a0
+ 4e2(Z − 2) Z

a0
+ 5Ze2

8a0
(20.5.7)

which we minimize to:

d 〈H〉
dZ

= −2Ze2

a0
+ 2e2(Z − 1)

a0
+ 5e2

8a0
= 0 (20.5.8)

implying Z = 27
16 < 2 as expected. We then get that 〈H〉 = 1

2

(
3
2

)6
e2

2a0
≈ −77.5 eV which is

closer to −78.9 eV than the result from perturbation theory (−74.8 eV).

20.6 The central field approximation
It turns out that full shells (constant n) have a spherically symmetric geometry, since:

∑
m,l

|Y m
l (θ, ϕ)| = 4π

2l + 1
(20.6.1)

This suggests that an electron in the outer shell (called valence shell) of an atom will ex-
perience a spherically symmetric charge distribution. From the POV of a valence electron,
one would see the charge of the proton, Ze, screened by the other (Z−1)e electrons which
form a spherical charge distribution. Since the electric field outside such a configuration
is the same as that of a point charge e at the origin, it follows that we may approximate the
potential of a valence electron as:

V (r) ≈ −e
2

r
(20.6.2)
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Consider instead an electron in the innermost electron. Since all electrons are outside and
form an approximate spherical distribution, we have by Gauss’ law that it will experience
a potential solely due to the nucleus:

V (r) ≈ −Ze
2

r
(20.6.3)

This suggests that we model the hamiltonian of the ith electron in an atom as an effective
spherically symmetric hamiltonian

Ĥi = p̂2
i

2m
+ Vi(ri) (20.6.4)

where V → −e2

r for large i and V → −Ze2

r for small i.

If we choose a potential Vi(ri) that varies smoothly between these two limits, then we
may solve Schrödinger’s equation and find a set of solutions. If we anti-symmetrize these
solutions, we find a corresponding electron charge density, which wemay use to construct
a better potential Vi(ri). Rinse and repeat, until we reach sufficiently accurate results.

Clearly for states of small l, electrons will be more likely to be found closer to the nucleus
and hence the screening effect will be lower. This results in lower energy. As we increase l
we will get larger and larger screening, and thus higher energy levels. We must therefore
expect that for a given shell n the individual subshells l will be ordered following:

s(l = 0) < p(l = 1) < d(l = 2) < f(l = 3)... (20.6.5)

There are of course many exceptions due to the complex nature of the electron-electron
interaction.

20.7 Spectroscopic notation and the L-S coupling scheme
For multi-electron atoms we define the operators:

In the presence of spin-orbit coupling, recall that S,L, J,MJ are good quantum numbers.

We reintroduce the spectroscopic notationwhichdenotes the set of states |S,L, J,MJ = −J, ..., J〉
as a term symbol 2S+1LJ where L is an uppercase letter determined by L:

L Letter
0 S
1 P
2 D
3 F

We easily see that the term symbol 2S+1LJ has degeneracy 2J + 1.

Let’s consider for example the electron configuration for Helium: He : (1s)2. Clearly, since
s1 = s2 = 1

2 and l1 = l2 = 0 we have from the rules of addition of angular momenta that
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L = 0 and S = 1, 0. Now since S = 0 is anti-symmetric, it must go with an even L which
has a symmetric spatial wavefunction. Alternatively, we may also see that if S = 1 then
we may haveMS = 1, 0,−1. However,MS = ±1 would require both electrons to be in the
same state, violating the Pauli exclusion principle. Hence we may only have S = 0, L = 0
implying that J = 0. The spectroscopic notation is then 1S0, denoting the singlet state
|J = 0,MJ = 0, S = 0, L = 0〉.

It turns out that all closed subshells are singlets with J = S = L = 0.

We may also see this by noting that there is only one way to full a subshell. Consequently,
the term symbol representing a full subshell must not be degenerate (singlet), and since
the degeneracy of a term symbol is 2J+1 we get that J = 0. This can only occur ifL = S =
0, since for any other value ofL, Swewould havemultiplets J = L+S,L+S−1, ..., |L−S|.
Yet another waywould be to note that each orbital has 0 spin (singlet), implying that S = 0
by addition of angular momenta.

Let’s take for example (2p)6. Such a configuration has six electrons with l = 1 and s = 1
2

each, andml = ±1,ms = ±1
2 . It follows thatMS = 0 andML = 0. There is only one state

that has only these values ofMS andML, and that is L = S = 0 as desired.

When finding the possible term symbols of electron configurations, we may therefore ig-
nore filled shells as they do not contribute to any angular momenta.

Let us now consider a more complex example, such as (1s)1(2s)1 which is the first excited
state of helium. We have that l1 = l2 = 0 so thatL = 0. Also s1 = s2 = 1

2 implying S = 1, 0.
Now since Pauli’s exclusion principle has been automatically satisfied, we do not need to
worry about (anti)-symmetry. If S = 1, L = 0 then J = 1 whereas if S = L = 0 then
J = 0. Hence the possible term symbols are:

3S1,
1S0 (20.7.1)

Similarly for (1s)1(2p)1 we find that S = 1, 0 and L = 1 so that the possible term symbols
are

3P2,
3P1,

3P0,
1P1 (20.7.2)

Let’s now consider carbonwith electron configuration (1s)2(2s)2(2p)2, whose only unfilled
shell is (2p)2. We have that l1 = l2 = 1 and s1 = s2 = 1

2 so thatL = 2, 1, 0 andS = 1, 0. Now
if S = 0 (anti-symmetric) we need either L = 2 or L = 0 (symmetric) 2, and thus J = 2 or
J = 0. If instead S = 1 (symmetric) then we can only have L = 1 (anti-symmetric) and
thus J = 2, 1, 0. Consequently the possible terms are:

1S0,
1D2,

3P0,
3P1,

3P2 (20.7.3)

Nowwe consider nitrogen with electron configuration (1s)2(2s)3(2p)3. It follows from the
rules of addition of angular momenta that S = 3

2 ,
1
2 while L = 3, 2, 1, 0. These total spin

states have mixed symmetry, so we may not pair up S − L without studying the problem
2recall that |L,ML〉 has parity (−1)L
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further. The fastest method is to list all the possible electron arrangements consistent with
the configuration given.

In this case there are 15 such arrangements, giving the pairs of mS and mL with degen-
eracies in the table below.

mL mS Degeneracy
±2 ±1

2 4
±1 ±1

2 8
±0 ±3

2 2
±0 ±1

2 6

To see why, note that to get (mL = ±2,mS = ±1
2) we would need the following electron

arrangements (where by convention the first orbital has ml = 0, the second ml = −1 and
the thirdml = 1).

mL = 2 :
↿ ↿⇂

2p
⇂ ↿⇂

2p
mL = −2 :

↿ ↿⇂
2p

⇂ ↿⇂
2p

Instead to get (mL = ±1,mS = ±1
2):

mL = 1 :
↿⇂ ↿

2p
↿⇂ ⇂

2p
↿ ↿⇂

2p
⇂ ↿⇂

2p

mL = −1 :
↿⇂ ↿

2p
↿⇂ ⇂

2p
↿ ↿⇂

2p
⇂ ↿⇂

2p

To get (mL = 0,mS = ±3
2 we need:

mS = 3
2

:
↿ ↿ ↿

2p
mS = −3

2
:

⇂ ⇂ ⇂
2p

Finally to get (mL = 0,mS = ±1
2 we need:

mS = 1
2

:
⇂ ↿ ↿

2p
↿ ↿ ⇂

2p
↿ ⇂ ↿

2p

mS = −1
2

:
↿ ⇂ ⇂

2p
⇂ ⇂ ↿

2p
⇂ ↿ ⇂

2p

The sum of degeneracies is 20, which must be the case. Indeed, if there are t = 2(2l + 1)
possible electrons in a subshell, and we need to insert just n electrons in this subshell, then
there are precisely t!

l!(t−l)! ways to do so. In our case we find 6!
3!3! = 20 as desired. This is

often useful to make sure the degeneracy counting was done correctly.
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Now it is clear that if L = 2, then S = 3
2 is not possible since (2, 3

2) does not exist, hence we
must haveS = 1

2 . Thiswould give the (mL,mS)pairs (2,±1
2), (1,±1

2), (0,±1
2), (−1,±1

2), (−2,±1
2),

which are 10.

IfL = 1 thenwemayhaveS = 1
2 by the same logic. Weget the pairs (1,±1

2), (0,±1
2), (−1,±1

2)
which are 6.

Finally if L = 0 then we may have either S = 3
2 or S = 1

2 . If S = 3
2 we get the pairs

(0, 3
2), (0, 1

2), (0,−1
2), (0,−3

2)which are 4. Wehave exhausted all possible (mL,mS) couples,
meaning that S = 1

2 is impossible. Indeed had we started our reasoning with S = 1
2 we

would not have been able to fill allmL,mS combinations.

Hence the possible term symbols are:

2D 5
2 ,

3
2
, 2P 3

2 ,
1
2
, 4S 3

2
(20.7.4)

Finally let’s consider oxygen with configuration (1s)2(2s)2(2p)4 which has valence shell
(2p)4. NowmS = 1, 0,−1 andmL = 1, 0,−1. Consequently we can have S = 1, 0 and thus
L = 2, 1, 0. If S = 1 then we may only have L = 1 whereas if S = 0 then L = 2, 0. We
therefore have the same term symbols as carbon, that is:

1S0,
1D2,

3P0,
3P1,

3P2 (20.7.5)

It turns out due to symmetry that a subshell filled byn electrons has the same term symbols
as a subshell that is n electrons from being full. This explains why (2p)2 and (2p)4 have
equivalent term symbols. Similarly, (2p)5 will have the same term symbols as (2p)1, and
(2p)6, being a full subshell, will have term symbol 1S0 as we proved earlier. For a given
subshell we only need to work through half-filled states to solve the problem completely.

Intuitively this makes sense, as we may regard a subshell that is n electrons from being
full as a full subshell plus n electron "holes". Since a full subshell has no angular momen-
tum the problem is reduced to finding the angular momenta of n electron holes, which is
mathematically equivalent to finding the angular momenta of n electrons in the subshell.

20.8 Hund’s rules
We have seen that most electron configurations can have several values of L, S, J corre-
sponding to different ways to add the spin and orbital angular momenta of the electrons
while satisfying the Pauli exclusion principle. Suppose we were interested in the ground
state of carbon (which has 5 term symbols), how would we go around finding the correct
state?

Hund’s rules are a set of (mostly) empirical principles used to determine the energy or-
dering of different electron arrangements:

(i) The ground state has highest total spin number S.

(ii) The ground state has highest total orbital angular momentum number L.
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(iii) If a subshell is half filled or less, the ground state will have total angular momentum
number J = |L− S|. Otherwise, the ground state will have largest J .

Togetherwith typical addition of angularmomenta ruleswe cannowdetermine the ground
states of most elements. Let’s do so for the first two rows of the periodic table.

Their physical justification is as follows:

(i) The ground state has highest total spin number S.

(ii) The ground state has highest total orbital angular momentum number L.

(iii) If a subshell is half filled or less, the ground state will have total angular momentum
number J = |L− S|. Otherwise, the ground state will have largest J .

For carbon, it is easy to see that the term symbols with largest S = 1 are 3P0,1,2, which
have the same L = 1. Since the subshell is less than half-full we choose the state with
J = |L− S| = 0, hence (1s)2(2s)2(2p)2 2P 3

2

3P0.

For oxygenwewill have to choose J = L+S = 2 rather than J = 0 (as in the carbon case),
hence (1s)2(2s)2(2p)2 3P2. For nitrogen instead we immediately have (1s)2(2s)2(2p)3 4S 3

2
.

Suppose we have not found all the possible term symbols, for example for fluorine which
configuration (1s)2(2s)2(2p)5. Wewill clearly have twopaired electrons, and one unpaired.
Webegin by applyingHund’s first rule, wemustmaximizeS, and hence the allowedvalues
ofmS , the following electron arrangements do the job:

↿⇂ ↿ ↿⇂
2p

↿⇂ ↿⇂ ↿
2p

↿ ↿⇂ ↿⇂
2p

(20.8.1)

with mS = 1
2 and hence S = 1

2 (electrons fully aligned along z). These give L = 1 and
hence J = 3

2 ,
1
2 , from which we choose J = 3

2 by Hund’s third rule so the ground state of
fluorine will be:

(1s)2(2s)2(2p)5 2P 3
2

(20.8.2)

We have actually killed two birds with a stone, since we may also argue that Boron with
configuration (1s)2(2s)2(2p)1 will similarly have a ground state:

(1s)2(2s)2(2p)5 2P 1
2

(20.8.3)

where we chose the smallest J rather than the largest, by Hund’s third rule.

Consider a more complex example. Dysprosium has ground state electron configuration
[Xe](4f)10(6s)2, where [Xe] denotes the ground state electron configuration of xenon, the
closest noble gas. We find that Hund’s first two rules imply:

↿⇂ ↿⇂ ↿⇂ ↿ ↿ ↿ ↿⇂
4f

(20.8.4)

with mL = 6 =⇒ L = 6 and mS = 2 =⇒ S = 2. Consequently J = 8 by Hund’s third
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rule, specifying the ground state (where I corresponds to L = 6):

[Xe](4f)10(6s)2 5I8 (20.8.5)
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21Diatomic molecules

21.1 The Born-Oppenheimer approximation
Molecules aremuch harder to solve exactly, and only a few cases can be solved analytically.
This is because the potential due to more than one proton breaks the spherical symmetry
we had, so all our tools from angular momenta have been rendered useless. The Hamilto-
nian operator for a two electron diatomic molecule, consisting of nuclei A,B with atomic
numbers ZA, ZB and electrons 1, 2, may be expressed as:

Ĥ = p̂2
A

2MA
+ p̂2

B

2MB
+

2∑
i=1

( p̂2
i

2me
− ZAe

2

|ri − RA|
− ZBe

2

|ri − RB|

)
+ e2

|r1 − r2|
+ ZAZBe

2

|RA − RB|
(21.1.1)

Transforming to the center ofmass frame,withµ ≈ MAMB
MA+MB

neglecting the electronmasses,
then we may write:

Ĥ = p̂2
AB

2µ
+

2∑
i=1

( p̂2
i

2me
− ZAe

2

|ri − RA|
− ZBe

2

|ri − RB|

)
+ e2

|r1 − r2|
+ ZAZBe

2

RAB
(21.1.2)

where p̂AB = −iℏ∇AB is the momentum in the CM frame neglecting the overall transla-
tional motion, with RAB = RA − RB as the relative distance.

Clearly this hamiltonian is not even remotely separable, due to the presence of all the
electrostatic interactions. However, there is an approximation resulting from the smallness
of me

mp
, known as the born-Oppenheimer approximation, which can be used to consider the

electron and nuclei’s behaviour separately.

The Born-Oppenheimer approximation

When studying the electrons in a molecule, we may model the nuclei as fixed (with
no momenta), whereas to study the nuclei in a molecule, we may assume that a
change in their position will lead to an immediate change in the electron’s positions.

Hencewe recover the electronic Schrödinger equation by removing the first term in (21.1.2),
which is the kinetic energy of the nuclei, and the last term, which is just an additive con-
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stant:
2∑
i=1

( p̂2
i

2me
− ZAe

2

|ri − RA|
− ZBe

2

|ri − RB|

)
ψel(r1, r2) + e2

|r1 − r2|
= Eelψel(r1, r2) (21.1.3)

and the nuclear Schrödinger equation[ p̂2
AB

2µ
+ Eel + ZAZBe

2

RAB

]
ψnuc(RAB) = Eψnuc(RAB) (21.1.4)

21.2 The hydrogen molecule ion
The hydrogen molecule ionH+

2 is composed by two protons with position Ra and Rb and
one electron at r. The potential energy of this set up may be expressed as:

V = e2
( 1
|Ra − Rb|

+ 1
|r− Ra|

+ 1
|r− Rb|

)
(21.2.1)

Hence the electronic Schrödinger equation reads:

[
− ℏ2

2me
∇2 − e2

rA
− e2

rB

]
ψel(r) = EelψEl(r) (21.2.2)

To find the approximate solutions to (21.2.2) we will use the variational method, and
choose trial wavefunctions that are linear combinations of atomic orbitals. This method
is known as the LCAO method.

Let us consider the case where R = |Ra − Rb| is very large. Then, the electronic ground
state must consist of the electron being bound to one of the protons in the 1s orbital. It can
be bound to either proton A or proton B hence:

ϕA100 = 1√
πa3

0

e−|r−RA|/a0 (21.2.3)

ϕB100 = 1√
πa3

0

e−|r−RB |/a0 (21.2.4)

(21.2.5)

We should therefore take a superposition of these two 1s hydrogenic orbitals:

ψel = αϕA100 + βϕB100 (21.2.6)
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The corresponding energy expectation value is:

〈H〉 =

〈
αϕA100 + βϕB100

∣∣∣ Ĥ ∣∣∣αϕA100 + βϕB100

〉
〈
αϕA100 + βϕB100

∣∣αϕA100 + βϕB100
〉 (21.2.7)

=
|α|2 〈E〉A + |β|2 〈E〉B + α∗β

〈
ϕA100

∣∣∣ Ĥ ∣∣∣ϕB100

〉
+ αβ∗

〈
ϕB100

∣∣∣ Ĥ ∣∣∣ϕA100

〉
|α|2 + |β|2 + α∗β

〈
ϕA100

∣∣ϕB100
〉

+ αβ∗ 〈ϕB100
∣∣ϕA100

〉 (21.2.8)

= |α|
2HAA + |β|2HBB + α∗βHAB + αβ∗HAB

|α|2 + |β|2 + S(α∗β + αβ∗)
(21.2.9)

(21.2.10)

where we defined:

HAA ≡
〈
ϕA100

∣∣∣ Ĥ ∣∣∣ϕA100

〉
=
〈
ϕB100

∣∣∣ Ĥ ∣∣∣ϕB100

〉
(21.2.11)

HAB ≡
〈
ϕA100

∣∣∣ Ĥ ∣∣∣ϕB100

〉
=
〈
ϕB100

∣∣∣ Ĥ ∣∣∣ϕA100

〉
(21.2.12)

and the interatomic overlap integral for obvious reasons as:

S ≡
〈
ϕA100

∣∣∣ϕB100

〉
=
〈
ϕB100

∣∣∣ϕA100

〉
(21.2.13)

We further simplify our expressions by setting α, β to be real numbers:

〈H〉 = α2HAA + β2HAA + 2αβHAB

α2 + β2 + 2αβS
(21.2.14)

We minimize 〈H〉with respect to α and β by simultaneously solving :{
∂〈H〉
∂α = 0
∂〈H〉
∂β = 0

(21.2.15)

Now since 〈H〉 = N(α,β)
D(α,β) we have that:

∂ 〈H〉
∂α

=
∂N
∂αD −N

∂D
∂α

D2 = 0 =⇒ ∂N

∂α
− 〈H〉 ∂D

∂α
= 0 (21.2.16)

and similarly for β. Applying this to (21.2.14) we find that:

2αHAA+2βHAB−(2α+2βS) 〈H〉 = 0 =⇒ α(HAA−〈H〉)+β(HAB−S 〈H〉) = 0 (21.2.17)

and

2βHBB+2αHAB−(2β+2αS) 〈H〉 = 0 =⇒ α(HAB−S 〈H〉)+β(HAA−〈H〉) = 0 (21.2.18)
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For a non-trivial solution to exist, we need the secular equation to be satisfied:∣∣∣∣∣ HAA − 〈H〉 HAB − S 〈H〉
HAB − S 〈H〉 HAA − 〈H〉

∣∣∣∣∣ = 0 (21.2.19)

We therefore find that:

(HAA − 〈H〉)2 − (HAB − S 〈H〉)2 = 0 (21.2.20)
=⇒ HAA − 〈H〉 = ±(HAB − S 〈H〉) (21.2.21)

which has two solutions:
〈H〉 = HAA ±HAB

1± S
(21.2.22)

If we substitute HAA − 〈H〉 = ±(HAB − S 〈H〉) into (21.2.17) we find that α = ±β, so the
corresponding eigenfunctions will be:

ψ = α(ϕA100(r)± ϕB100(r)) (21.2.23)

We can normalize this using the interatomic overlap integral:

〈ψ |ψ〉 = |α|22(1± S) = 1 =⇒ α = 1√
2(1± S)

(21.2.24)

so that:
ψ(r) = 1√

2(1± S)
(ϕA100(r)± ϕB100(r)) (21.2.25)

The lowest of these energy levels gives an approximate ground state energy andwavefunc-
tion:

EelGS ≈
HAA +HAB

1 + S
, ψGS(r) = 1√

2(1 + S)
(ϕA100(r) + ϕB100(r)) (21.2.26)

whereas the highest of these energy levels gives the approximate first excited state energy:

Eelexc ≈
HAA −HAB

1− S
, ψexc(r) = 1√

2(1− S)
(ϕA100(r)− ϕB100(r)) (21.2.27)

We used el subscript to remind ourselves that this only gives the electronic ground state
energy.

Now the probability density for the ground state is:

|ψGS(r)|2 = 1
2(1 + S)

((ϕA100(r))2 + (ϕB100(r))2 + 2ϕA100(r)ϕB100(r)) (21.2.28)

The first two terms are just the probability density due to a hydrogen atom centered at dif-
ferent protons. The third term however represents an interaction between the two atomic
orbitals, and is only of interest when both give a non-negligible contribution (so in the
region between the protons). Since ϕA100(r), ϕB100(r) are both positive this interference will
be constructive. There will be an enhanced probability of the electron being found be-
tween the two protons. It will help screen the two protons and reduce their electrostatic
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repulsion, giving the ground state (lowest) energy. Furthermore, the increased probabil-
ity between the two nuclei leads to a lower kinetic energy1. This is at the basis of chemical
bonding, where the minimum energy is lower than the energies of either atomic orbitals.

Figure 21.1. Probability density of the ground state for the hydrogen molecule ion

Instead, the probability density for the first excited state is:

|ψexc(r)|2 = 1
2(1 + S)

((ϕA100(r))2 + (ϕB100(r))2 − 2ϕA100(r)ϕB100(r)) (21.2.29)

The first two terms are again just the probability density due to a hydrogen atom centered
at different protons. The third term however represents a destructive interference between
the two atomic orbitals. There will be a negligible probability of the electron being found
between the twoprotons. Because the electron no longer screens the twoprotons, therewill
be a larger electrostatic repulsion between the two, leading to a higher energy in general.
This is at the basis of chemical anti-bonding, where the energy is always higher than the
energies of the contributing atomic orbitals.

Figure 21.2. Probability density of the first excited state for the hydrogen molecule ion

We have forgotten to include the nuclear interaction term Epp = e2

R to our energy, as well
as their kinetic energy. If we only consider the static scenario then we get the total ground
state static energy:

Estat = e2

R
+ EelGS (21.2.30)

1classically, we see this as the fact that the electron is more likely to be found in regions of low momentum
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Figure 21.3. Energy curve of the static ground state energy

We set the zero energy point at −Ry, giving the following energy curves: Clearly at large
R the energy asymptotically tends to −Ry. Hence for large interatomic distances the hy-
drogen molecule ion is equivalent to a hydrogen atom in the 1s state plus a disassociated
proton.

Furthermore, there is a radius Req ≈ 1.32 × 10−10 m, known as the equilibrium separa-
tion, at which the static ground state energy is minimized to Eeq ≈ 1.76 eV. The hydrogen
molecule ion is therefore most stable in this configuration, the electron has managed to
bond the two protons in a stable configuration statically, something that classical electro-
statics cannot explain.

Our results coincide at least qualitatively with the exact solution as may be seen in the
plots below.

Figure 21.4. Comparison between variational method approximation (dotted line) and exact solu-
tion (solid line)

As expected the variational method gives an upper estimate to the exact energy. The exact
equilibrium separation isReq = 1.06×10−10 mwith energy Eeq = 2.79 eV. To make better

− IV.318 −



21.3. MOLECULAR ORBITALS

approximations one could for example set an effective nuclear charge parameter.

21.3 Molecular orbitals
To label amolecular orbital we use spectroscopic notationwith slight adjustments. Since Ĥ
no longer commutes with L, we must choose a new set of quantum numbers. If we align
the nuclei of the two protons along the z-axis, then the Hamiltonian will be symmetric
under rotations about the z-axis, so it will commute with L̂z . We may therefore write the
eigenfunctions as:

ψel(r) = u(r, θ)eimϕ (21.3.1)

Furthermore, note that the choice of the direction of the z-axis is completely arbitrary, the
energy should not change if it points from proton A to proton B or viceversa. Flipping
the z-axis corresponds to ϕ → −ϕ so it follows that ψel(r) = u(r, θ)eimlϕ and psiel(r) =
u(r, θ)e−imlϕ must have the same energy. In other words, states withml and −ml must be
degenerate.

Hence |ml| will be a good quantum number, and we will denote each value of it with a
greek letter: σ : |ml| = 0, π : |ml| = 1, δ : |ml| = 2 and so forth. Furthermore we
may include g (gerade) or u (ungerade) subscripts to denote the even or odd parity of the
orbitals with respect to nuclear inversion. Finally, we add a number in front of the greek
letters to denote the energy ordering (e.g. 1σu, 2σu, ...).

The hydrogen molecule ion’s ground state is therefore labelled by 1σg, whereas the first
excited state is 1σu.

Figure 21.5. Labelling molecular orbitals and bonding/anti-bonding orbitals.

Note that a σ molecular orbital only means that it is formed from the superposition of
ml = 0 orbitals. This imposes no restrictions on possible l values.

The energy ordering of the molecular orbitals for the first two rows of the periodic table is
given below.

Let’s try for example to enumerate the bonding and anti-bonding orbitals formed by su-
perposing atomic orbitals with n = 3.

If l = 2 then |ml| = 2, 1, 0. For ml = 0 we have a combination of ϕA3d0
and ϕB3d0

in (anti)-
symmetric combination. Hence we have two σ orbitals. These are σ orbitals. For |ml| = 1
we have combinations of ϕA3d1

with ϕB3d1
or ϕB3d−1

, and similarly ϕA3d−1
with ϕB3d1

or ϕB3d−1
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Figure 21.6. Energy ordering of molecular orbital energies, with bonding orbitals in red and anti-
bonding orbitals in black.

giving four π orbitals (two bonding and two anti-bonding)which are two-fold degenerate.
Exactly the same reasoning for |ml| = 2 which gives four δ orbitals.

If l = 1 then |ml| = 1, 0. For ml = 0 we have a combination of ϕA3p0 and ϕB3p0 in (anti)-
symmetric combination. Hence we have two non-degenerate σ orbitals, one bonding and
one anti-bonding. For |ml| = 1 we have combinations of ϕA3p1 with ϕB3p1 or ϕB3p−1 , and sim-
ilarly ϕA3p−1 with ϕB3p1 or ϕB3p−1 giving four π orbitals (two bonding and two anti-bonding)
which are two-fold degenerate.

Finally, if l = 0 then |ml| = 0 sowe have a combination of ϕA3s0 and ϕ
B
3s0 in (anti)-symmetric

combination. Hence we have two σ orbitals, each non-degenerate.

So in total we have 1 + 3 + 5 = 9 bonding orbitals, and 9 anti-bonding orbitals.

We nowdefine the formal bond order as ameasure of how strong the bonding inmolecules
may be:

B.O. = Nb −Na

2
(21.3.2)

where Nb is the number of electrons in bonding orbitals, and where Na is the number of
electrons in anti-bonding orbitals. Note that generally within a row of the periodic table,
the larger the bond order, the higher the disassociation energy Eeq of the molecule. This
is because as we increase the number of electrons in bonding orbitals (or decrease the
number of electrons in anti-bonding orbitals) the screening between the protons increases,
so we will need more energy to disassociate the two atoms.

This will help us see which diatomic molecules are stable. A B.O. of 1 corresponds to a
single bond, a B.O. of 2 corresponds to a double bond etc...

Let’s consider the hydrogenmoleculeH2, which consists of two protons and two electrons.
Since eachmolecular orbital can contain at most 2 electrons (except for degenerate orbitals
where we may include more electrons) the ground state will be 1σ2

g . The heliummolecule
He2 by similar reasoning should have ground state electronic configuration 1σ2

g1σ2
u. Note

that the formal bond order for He2 is 0, so this molecule should be very unstable. Indeed
looking at the energy curve there is a shallowminimum atEeq = 9×10−3 eVwhich is close
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in order of magnitude to the lowest vibrational energy state of He2. Detection therefore
requires very low temperatures and low frequency light.

Next we have Li2, which has configuration 1σ2
g1σ2

u2σ2
g . The bond order is 1 so we have a

single bond.

For the carbon molecule we will have the configuration 1σ2
g1σ2

u2σ2
g2σ2

u1π4
u. Since we have

8 electrons in bonding orbitals and 4 electrons in anti-bonding orbitals, the formal bond
order will be 2, hence there will be a double bond.

Finally, for the nitrogen molecule, note that 1πu is two-fold degenerate so it can hold 4
electrons in total. Hence the electronic configuration is 1σ2

g1σ2
u2σ2

g2σ2
u1π4

u3σ2
g . We have 10

electrons in bonding orbitals and 4 electrons in anti-bonding orbitals giving a formal bond
order of 3. We therefore have a triple bond in the nitrogen molecule.
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22.1 The geometry of crystals
We define a crystal as an solid structure where a group of atoms is arranged in a periodic
(hence infinite) pattern over a three-dimensional grid known as a lattice.

Lattice points are points on a lattice for which the surrounding environments look com-
pletely identical. In other words, translationwhich bring one lattice vector to another leave
the crystal structure identical. With this in mind we define a lattice vector R as a vector
joining any two lattice points, translations by such vectors are symmetries of the crystal.

We can investigate the structure of wave-functions on crystal lattices using the LCAO ap-
proach. Consider a line of six lithium atoms, where each valence electron is in the 2s atomic
orbital. Then we may use the trial wave-function:

ψ(r) =
6∑

k=1
ckϕ

k
2s(r) (22.1.1)

where ϕk2s(r)(r) is the wavefunction of a 2s orbital centered on the kth atom.

Applying the variational method, we will end up with a secular equation which involves
the determinant of a 6 × 6 matrix. This will give six energy levels estimating the lowest
energy levels of the system, the ground state having no nodes, and the nth excited level
having n nodes. They are shown below:

Each of these curves is a possible probability density for one electron.

There will be three orbitals (ψ1, ψ2, ψ3) which will have an energy lower than six non-
interacting 2s orbitals. This is due to the screening of the Coulomb repulsion by the in-
ternuclear electron densities. Instead, the other three orbitals will have an energy higher
than the six non-interacting 2s orbitals.

Each molecular orbital can hold two electrons, so the valence electrons in the six lithium
atoms will occupy the three lowest energy bonding orbitals in the ground state, causing a
chemical bond.

Increasing the number of atoms (say to 1023) we expect the number of molecular orbitals
to increase dramatically. We can regard the resulting energy spectrum as a continuum
forming an energy band.
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Typically, energy bands for low lying states where the electrons are closely bound to their
nuclei have narrow energy bands. Electrons that are farther from the nucleus (larger l)
are less tightly bound, so there may be overlap between separate atomic orbitals.

The main issue with the LCAO approximation is that it does not accomodate for the trans-
lational symmetry crystals. Indeed, looking at the probability densities we see that the red
dots corresponding to lattice points are not equivalent. There is a high density between
some lattice points, and low density between others.

22.2 Bloch’s theorem
A crystal has a discrete symmetry of translations by lattice vectors Rn. Consequently the
potential acting on an electron in the crystal must obey:

V (r + Rn) = V (r) (22.2.1)

Let’s define T̂ (n) as translation operator by −Rn, so that:

T̂ (n)ψ(r) = ψ(r + Rn) (22.2.2)

Now because the Hamiltonian Ĥ of a crystal must be translationally invariant, we will
look at the basis that diagonalizes both Ĥ and T̂ (n).

The eigenfunctions of the translation operator must satisfy:

T̂(n)ψ(r) = λ(n)ψ(r) (22.2.3)

Now note that:

T̂ (n1)T̂ (n1)ψ(r) = ψ(r + Rn1 + Rn2) = T̂ (n1 + n2)ψ(r) (22.2.4)
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implying that the translation operator is additive:

T̂ (n1)T̂ (n1) = T̂ (n1 + n2)ψ(r) (22.2.5)

Thus:
λ(n1)λ(n2) = λ(n1 + n2) (22.2.6)

which is only satisfied by exponential eigenvalues ek·Rn . This solution is only normalizable
if k is complex, that is:

λ(n) = eik·Rn (22.2.7)

Consequently the eigenvalue equation becomes:

T̂(n)ψ(r) = ψ(r + Rn) = eik·Rnψ(r) (22.2.8)

We can now write our eigenfunctions in the form:

ψ(r) = eik·ruk(r) (22.2.9)

which we can always do if we don’t make any further assumptions about uk(r). Then:

uk(r + Rn) = eik·Rnuk(r) (22.2.10)

This is knownas Bloch’s theorem, it states that for electrons in an infinite crystal, the energy
eigenfunctions can be expressed in the form of plane waves regulated by some periodic
function uk(r):

ψ(r = eik·ruk(r) (22.2.11)

such that uk(r + Rn) = uk(r) for any lattice vector Rn.

Because of the translational symmetry we may impose periodic boundary conditions on
our wavefunction:

ψk(r + L(ex + ey + ez) = ψk(r) (22.2.12)

This gives the following wave vector quantization:

kx, ky, kz = 2mπ
L

, m ∈ Z (22.2.13)

22.3 The Tight-Binding model
In the tight bindingmodel, we take linear combinations of atomic orbitals centered at each
atom in the crystal:

ψ(r) =
∑
i

ciϕ(r− Ri) (22.3.1)

whereRi is the lattice vector to the lattice point i. Instead of using the variational principle,
we instead use Bloch’s theorem and force our solution to be consistent with it:

ψk(r) = N
∑
i

eik·Riϕ(r− Ri) (22.3.2)
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This ansatz is consistent with Bloch’s theorem because for some lattice vector Rj :

ψk(r + Rj) = N
∑
i

eik·Riϕ(r− (Ri − Rj)) (22.3.3)

N eik·Rj
∑
i

eik·(Ri+Rj)ϕ(r− (Ri − Rj)) (22.3.4)

Let R′
i = Ri − Rj , then this becomes:

ψk(r + Rj) = N eik·Rj
∑
i

eik·R′
iϕ(r− R′

i) (22.3.5)

This is another sum over all lattice sites i in the crystal, but with a different starting lattice
vector. When summing over all the sites however the sums will be equal, and hence:

ψk(r + Rj) = eik·Rjψk(r) (22.3.6)

as desired. To simplify notation, let 〈r |ϕi〉 = ϕ(r− Ri), then:

|ψk〉 = N
∑
i

eik·Ri |ϕi〉 (22.3.7)

Now suppose we treat each electron as subject to a single-particle Hamiltonian:

Ĥ = − ℏ2

2m
∇2 +

∑
j

Vj(r) (22.3.8)

Then the energy levels will be given by:

E(k) =

〈
ψk
∣∣∣ Ĥ ∣∣∣ψk

〉
〈ψk |ψk〉

=
|N |2

∑
ij e

−ik·(Ri−Rj)
〈
ϕi
∣∣∣ Ĥ ∣∣∣ϕj〉

〈ψk |ψk〉
(22.3.9)

Let’s now asume that only terms due to nearest neighbor sites contribute to the energy,
and ignore all matrix elements due to atomic intervals that are separated further.

We then find that:

〈
ψk
∣∣∣ Ĥ ∣∣∣ψk

〉
= |N |2

∑
i

[ 〈
ϕi
∣∣∣ Ĥ ∣∣∣ϕi〉+

∑
j∈nn of i

e−ik·(Ri−Rj)
〈
ϕi
∣∣∣ Ĥ ∣∣∣ϕj〉

]
(22.3.10)

and similarly:

〈ψk |ψk〉 = |N |2
∑
i

[
1 +

∑
j∈nn of i

e−ik·(Ri−Rj) 〈ϕi |ϕj〉
]

(22.3.11)

Let us define tij =
〈
ϕi
∣∣∣ Ĥ ∣∣∣ϕj〉 to be the ij hopping matrix element, S = 〈ϕi |ϕj〉 to be the

overlap integral, and let E0 =
〈
ϕi
∣∣∣ Ĥ ∣∣∣ϕi〉 be the energy of the atomic orbital. Note that

due to the equivalence of lattice points, we should have that tij takes the same value t for

− IV.325 −



22.3. THE TIGHT-BINDING MODEL

all neighbor sites 〈ij〉. Then:

E(k) = E0 + tf(k)
1 + Sf(k)

(22.3.12)

where
f(k) =

∑
j=nn of i

e−ik·(Ri−Rj) (22.3.13)

We further simplify our expression by noting that even for overlapping sites |S| � 1, so
using a binomial expansion about S: (1 + Sf(k))−1 = 1− Sf(k) and hence

E(k) ≈ E0 − βf(k), β = E0S −B (22.3.14)

For a cubic lattice of length a, we find that:

f(k) =
∑

j=nn of i
e−ik·(Ri−Rj) (22.3.15)

= e−ikxa + eikxa + e−ikya + eikya + e−ikza + eikza (22.3.16)
= 2(cos kxa+ cos kya+ cos kza) (22.3.17)

giving the dispersion relation:

E(k) = E0 − 2β(cos kxa+ cos kya+ cos kza) (22.3.18)

Note that the minimum and maximum energy levels are Emin = E0 − 6β and Emax =
E0 + 6β respectively, giving a band width of 12β. Hence, orbitals with high overlap, and
hence higher energy, will give wider bands than orbitals that barely overlap.

For atoms that are well separated, the energy bands will be very narrow, since the only
possible energy levels will be approximated by those of isolated atoms. As we decrease
the separation, the overlap increases, and hence the energy levels broaden to form bands.

Near the bottom of the energy bands, where kx, ky, kz are small, we can use the small angle
approximation cos kxa ≈ 1− 1

2a
2k2
x and find that:

E(k) = E0 − 2β
(

3− 1
2
a2|k|2

)
= E′

0 + βa2|k|2 (22.3.19)

These energy levels resemble very much those of an electron in an infinite well of width a,
where E(k) = ℏ2|k|2

2m . Hence we may identify an effective massmeff in (22.3.19):

meff = ℏ2

2βa2 (22.3.20)

We see that in narrow bands, where the electron is tightly bound to the atom, the effec-
tive mass will be higher than in wider bands. We see this mathematically in the inverse
proportionalitymeff ∝ 1

β .
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22.4 Conductor and insulator bands
The theory of energy bands is closely related to the conductivity of materials.

We firstly note that electrons in a full band will not allow for a flow of current at absolute
zero.

In the absence of an electric field, this result follows immediately from the fact that a full
band will have equal numbers of electrons with momentum k and −k, giving a net mo-
mentum of zero.

If we were to apply an electric field, then the electrons still would not be able to carry a
current due to Pauli’s exclusion principle. The flow of current implies a net momentum in
some direction, implying that the full energy bandwill havemore electrons in one range of
momenta. But a full band by definition already has full momentum states, so one cannot
do this without placing two or more electrons with the same spin and momentum.

Electrons in a partly full band can instead conduct electricity.

It follows that materials known as conductors will have a partially filled highest energy
band, while materials known as insulators have completely full energy bands.

Suppose we now move away from absolute zero by increasing the temperature to room
temperature, where the thermal excitations are now in the order of a couple eV.

Conductors will still conduct electricity in the same way. In insulators were the band gap
is smaller than the energy of thermal excitations, electrons may be able to hop from the
fully occupied lower band, known as valence band, to the nearest empty band, known
as conduction band. Electrical current then flows from electrons in both the valence and
conduction bands. Such materials are known as semi-conductors, and have band gaps of
less than 2 eV usually.

Instead, electrons in insulators with larger band gaps will not be able to jump between
bands, and hence no current will flow.

The Fermi energy, EF , is the energy required to add an electron to a material. It therefore
lies somewhere between the valence band and the conduction band for insulators.

22.5 Semiconductors
Suppose we have a semi-conductor in which electron j from the valence band jumps from
the valence band to the conduction band. The current density in the valence band is there-
fore:

J = − e
V

∑
i 6=j

vi = − e
V

∑
i

vi + e

V
vj = e

V
vj (22.5.1)

which we may view as the current due to a particle of charge +e, rather than −e. This
virtual particle is known as an electron hole.

The energy of an electron hole increases with the depth of the hole in the energy band.
This is because removing an electron from a lower energy band requires more energy.

We can increase the conductivity of semiconductors through a process known as doping.
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Let’s consider silicon, which is in group 14 of the periodic table and therefore has 4 elec-
trons fully occupying the valence band.

Arsenic, on the other hand, has 5 electrons occupying its valence band. Suppose we sub-
stitute one silicon atom in a silicon crystal lattice with an arsenic atom. The latter will
provide an extra atomwhich must occupy the conduction band, increasing the conductiv-
ity. Atoms which donate an electron to the conduction band are known as donor atoms,
and create n-type semiconductors.

Boron, instead, has 3 electrons occupying its valence band. When we substitute a silicon
atom with a boron atom, the latter will draw an electron from the valence band of the
silicon crystal, creating an electron hole. Atoms which accept an electron from the valence
band are known as acceptor atoms, and create p-type semiconductors.
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23Particles in EM fields and
the Adiabatic theorem

23.1 Gauge transformations
Recall that the electric and magnetic fields may be defined via the scalar and vector poten-
tials as:

E = −∇ϕ− ∂A
∂t
, B = ∇×A (23.1.1)

Note that these definitions are invariant under transformations of the type:

ϕ 7→ ϕ− 1
c

∂χ

∂t
(23.1.2)

A 7→ A +∇χ (23.1.3)

known as Gauge transformations.

The TDSE for a particle of charge q and massm in a 4-potential Aµ = (ψ/c,A) looks like:

iℏ
∂ψ

∂t
=
[ 1

2m

(
p− q

c
A
)2

+ qϕ

]
ψ (23.1.4)

where the TISE can be written explicitly as:

Ĥψ = − ℏ2

2m
∇2ψ + q2

2mc2A
2ψ + iℏq

2mc
(2A · ∇ψ + ψ∇ ·A) + ϕψ (23.1.5)

Luckily, the TDSE is gauge invariant. This implies that when a gauge transformation
Aµ 7→ Aµ + □χ ≡ A′µ is applied to the Hamiltonian Ĥ 7→ Ĥ ′, the corresponding solu-
tion transforms as ψ 7→ αψ ≡ ψ′ where α is some phase factor that may depend on r, t.
Consequently it may not be treated as some simple scalar factor, and most importantly it
does not commute with the Hamiltonian in general. Then we find that:

iℏ
∂ψ′

∂t
= iℏ

∂α

∂t
+ αĤψ = Ĥ ′(αψ) =⇒ ∂α

∂t
= − i

ℏ
[Ĥ ′(αψ)− αĤψ] (23.1.6)

Our goal is to find α, and this can be done by solving the above differential equations. Now
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suppose that by some lucky coincidence:(
p− q

c
A′
)
(αψ) = α

(
p− q

c
A
)
ψ (23.1.7)

Then it is quite easy to see that:

Ĥ ′(αψ) = α
1

2m

(
p− q

c
A
)2
ψ + qαϕ′ψ (23.1.8)

⇐⇒ Ĥ ′(αψ)− αĤψ = −q
c
α
∂χ

∂t
ψ (23.1.9)

and thus:
∂α

∂t
= iq

ℏc
∂χ

∂t
α =⇒ α = exp

(
iqχ

ℏc

)
(23.1.10)

We must however check that this choice of α satisfies (23.1.7):(
p− q

c
A′
)
(αψ) = −iℏ(α∇ψ + ψ∇α)− q

c
(A +∇χ)αψ (23.1.11)

= α
(
p− q

c
A
)
ψ − iℏψ∇α− q

c
αψ∇χ (23.1.12)

=
(
p− q

c
A
)
ψ (23.1.13)

where we used the fact that:
∇α = iq

ℏc
α∇χ (23.1.14)

The gauge invariance of Schrödinger’s equation will allows us tomarry quantummechan-
ics with electromagnetism in a beautiful way.

We can also define gauge invariance for operators, an operator O is said to be gauge in-
variant if for any |ψ〉 ∈ H: 〈

ψ′
∣∣∣ Ô′

∣∣∣ψ′
〉

=
〈
ψ
∣∣∣ Ô ∣∣∣ψ〉 (23.1.15)

where |ψ′〉 = eiqΛ/ℏc |ψ〉 and Ô′ = GÔG are the gauge transformed state and operator
respectively.

For example, p̂ 7→ p̂ under a gauge transformation. Consequently:〈
ψ′ ∣∣ p̂ ∣∣ψ′〉 =

〈
ψ
∣∣∣ e−iqΛ/ℏcp̂eiqΛ/ℏc

∣∣∣ψ〉 6= 〈ψ | p̂ |ψ〉 (23.1.16)

in general since [e−iqΛ/ℏc, p̂] 6= 0. It follows that p is no longer gauge invariant, it is not a
physical quantity when electromagnetic fields are inserted. On the other hand, the gener-
alizedmomentum p− q

cA is gauge invariant since [e−iqΛ/ℏc, p̂−qA], so it will yield physical
values for observables.

23.2 Quantization of magnetic fields on a torus
A torus can be formed by imposing periodic boundary conditions along x and y on a rect-
angle R = [0, Lx]× [0, Ly]. Let’s embed a constant magnetic field B0 in the z-direction on
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this torus.

We must choose a corresponding gauge A. We see that:

Bz = ∂xAy − ∂yAx = B0 =⇒ Ay = B0x, Ax = 0 (23.2.1)

is a possible gauge, but we must check that it is consistent with the boundary conditions
on the torus. Clearly we have that Ay(x, y + Ly) = Ax(x, y), but Ay(x+ Lx, y) 6= Ay(x, y).
This is fine, since all we need is for Ay(x + Lx, y) to be related by a gauge transformation
to Ay(x, y). We need to find this gauge transformation G:

GAy(x, y) = Ay(x, y) + ∂yΛ = Ay(x+ Lx, y) =⇒ ∂yΛ = B0Lx =⇒ Λ = B0Lxy (23.2.2)

This gauge parameter seems to be ill-defined at y = 0 = Ly, it should take two different
values. We can solve this issue by noting that Λ can be ill-defined as long as eiqΛ/ℏc is
well-defined. We require that:

eiqB0Lxy/ℏc = eiqB0Lx(y+Ly)/ℏc =⇒ qB0LxLy
ℏc

= 2πn (23.2.3)

so the magnetic field flux should be quantixzed:

Φ = 2πℏc
q

n, n ∈ Z (23.2.4)

The flux quantum is Φ0 = 2πℏc
q so

Φ = Φ0n, n ∈ Z (23.2.5)

23.3 Landau levels
Consider a particle of mass m and charge q in a region of space with magnetic field B.
In classical mechanics this particle can trace circular trajectories with cyclotron frequency
ωc = qB

mc .

This time we choose the Landau gauge A = −Byx. The Hamiltonian then reads:

Ĥ = 1
2m

[(
p̂x + qB

c
ŷ
)2

+ p2
y

]
(23.3.1)

where we neglected motion along z which is completely decoupled from the x−ymotion.
Firstly note that [H, px] = 0 so we have translational invariance along x. This also means
that we should seek Bloch state solutions:

ψ(x, y) = ψ(y)eikxx (23.3.2)
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Note that we are only allow to do this because of our clever gauge choice. Therefore:

Ĥψ(x, y) = 1
2m

[(
p̂x + qB

c
ℏkx

)2
+ p2

y

]
ψ(x, y) (23.3.3)

=
[
p2
y

2m
+ 1

2
m

(
qB

mc

)2(
y + ℏkxc

qB

)]
ψ(x, y) (23.3.4)

=
[
p2
y

2m
+ 1

2
mω2

c

(
y − y0

)]
ψ(x, y) (23.3.5)

where y0 = −ℏkxc
qB . This is the equation for a simple harmonic oscillator! The eigenstates

are harmonic oscillator solutions travelling as plane waves along x:

〈x, y | kx, n〉 = Hn(x)eikxx (23.3.6)

where Hn(x) are the Harmonic oscillator solutions. The corresponding energy levels are
known as Landau levels:

Ekx,n = ℏωc
(
n+ 1

2

)
(23.3.7)

Surprisingly the plane waves eikxx do not contribute to the total energy, each of these
energy levels are infinitely degenerate in kx. The characteristic length of an oscillator is
d =

√
ℏ
mω which for (23.3.5) reads:

d =
√

ℏmc
qmB

=
√

ℏc
qB
≡ lB (23.3.8)

which we define as the magnetic length. This redefines y0 = −kxl2B , which is the height
about which the solutions will oscillate.

Suppose that the region with the magnetic field is now boundedR = [0, Lx]× [0, Ly]. We
take periodic boundary conditions along x so that:

kx = 2πnx
Lx

(23.3.9)

We need y0 = −kxl2B > 0 for our solutions to lie within R. Consequently kx < 0 so we
should only take negative nx. However, nx cannot be too negative or else y0 will get too
large, larger than Ly. Thus the allowed nx values satisfy:

− ñx < nx ≤ 0 (23.3.10)

where ñx is the degeneracy for each |n〉 landau level inR. It is easy to see that it satisfies

y0 = 2πñx
Lx

l2B = Ly =⇒ ñx = LxLy

2π ℏc
qB

= Φ
Φ0

(23.3.11)

Consequently we will have Φ
Φ0

allowed nx values. This quantization is the starting point to
understand theQuantumHall effects, and it turns out thatmuch of thematerial in the next
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sections (the Berry connection in particular) will also be fundamental in understanding it.
See my essay on this topic for a list of good references.

23.4 Classical Adiabatic invariants
Consider a classical pendulum whose pivot is periodically raised and lowered changing
the oscillator length, and thus inducing a time-dependent oscillation frequency ω(t) in the
pendulum. The hamiltonian reads:

H = p2

2m
+ 1

2
mω(t)2x2 (23.4.1)

The time-dependence of the Hamiltonian is expressed as:

dH

dt
= ∂H

∂x

dx

dt
+ ∂H

∂p

dp

dt
+ ∂H

∂t
(23.4.2)

The Hamiltonian equations of motion are:

∂H

∂p
= ẋ,

∂H

∂x
= −ṗ (23.4.3)

and can be substituted into (23.4.2) to cancel out the first two terms, yielding:

dH

dt
= ∂H

∂t
= mω

dω

dt
x2 (23.4.4)

In an adiabatic change, the time scale τ of the change in the parameter must be larger than
the time scale T of an oscillation (period). More precisely the change in ω(t) over T is
much smaller than ω(t):

2π
ω2

∣∣∣∣dωdt
∣∣∣∣� 1 ⇐⇒

∣∣∣∣dTdt
∣∣∣∣� 1 (23.4.5)

where T = 2π
ω(t) . Note that this is completely analogous to the condition we require in

the WKB approximation that the wavelength vary slowly over position: |dλdx | � 1. In the
adiabatic approximation we instead impose that the period vary slowly over time.

We claim that the following quantity:

I(t) = H(t)
ω(t)

(23.4.6)

known as the Adiabatic invariant, changes very slowly. Indeed, computing its time deriva-
tive:

dI

dt
= ωḢ − ω̇H

ω2 = mω2ω̇x2 − p2ω̇/2m+ 1/2mω2ω̇x2

ω2 (23.4.7)

= ω̇

ω2

(1
2
mω2x2 − p2

2m

)
(23.4.8)
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we can identify the Lagrangian in the above expression:

dI

dt
= − ω̇

ω
L (23.4.9)

Note that if we time average L over a period we will get roughly 0 (exactly 0 if ω was time
independent), while ω̇

ω changes very slowly over a period. So, if average over a period:

I(t+ T )− I(t) = −
ˆ t+T

t

ω̇

ω
Ldt ≈≈ ω̇

ω

ˆ t+T

t
Ldt = 0 (23.4.10)

Geometrically, in the phase space the energy surfaces are ellipses with axes x0 =
√

2E
mω2

and y0 =
√

2mE. The area of the ellipse is:

A =
˛
pdx = πx0y0 = 2πE

ω
= 2πI(t) (23.4.11)

Consequently the adiabatic invariant tells us that the area of the ellipse in phase space
varies very slowly. In classical mechanics we generally identify contour integrals of the
type:

I(t) =
˛
pdq (23.4.12)

as adiabatic invariants, where p and q are generalized momenta. In quantum mechanics
these adoanatic invariants give the Bohr-Sommerfield quantization:

˛
pdx = 2πℏ(n+ 1/2) (23.4.13)

In quantum mechanics the adiabatic invariant can then be written as:

E

ω
= ℏ(n+ 1/2) (23.4.14)

Since this quantity is slowly varying, and n can only be integer, then transitions, which
give a fairly large change in E/ω will be heavily discouraged. States will therefore try not
to undergo transitions in an oscillator.

23.5 Instantaneous eigenstates
Consider the TISE:

H(t) |ψ(t)〉 = E(t) |ψ(t)〉 (23.5.1)

This equations doesn’t look time independent as the name suggests, but our goal will be
to find its solutions |ψ(t)〉 at every time t (we are fixing time), known as instantaneous
eigenstates. Also consider the TDSE:

iℏ
∂

∂t
|Ψ(t)〉 = Ĥ(t) |Ψ(t)〉 (23.5.2)
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where |Ψ(t)〉 are the real solutions, not the instantaneous ones. We introduce ansatz

|Ψ(t)〉 = c(t) exp
(
− i

ℏ

ˆ t

0
E(t′)dt′

)
|ψ(t)〉 (23.5.3)

which is analogous to the ansatz e−iEt/ℏ |E〉 used for a time-independent hamiltonian.
(23.5.3) can be substituted into the TDSE, the LHS giving

iℏ
∂

∂t
|Ψ(t)〉 = iℏċ(t) exp

(
− i

ℏ

ˆ t

E(t′)dt′
)
|ψ(t)〉+ E(t) |Ψ(t)〉 (23.5.4)

+ iℏc(t) exp
(
− i

ℏ

ˆ t

E(t′)dt′
)
|ψ̇(t)〉 (23.5.5)

and the RHS giving:
Ĥ(t) |Ψ(t)〉 = E(t) |Ψ(t)〉 (23.5.6)

as a consequence of |ψ(t)〉 being an instantaneous eigenstate. After some simplification we
find that:

ċ(t) |ψ(t)〉+ c(t) |ψ̇(t)〉 = 0 (23.5.7)

Dotting to the left with 〈ψ(t)|we find that:

ċ(t) = −c(t)
〈
ψ(t)

∣∣∣ ψ̇(t)
〉

(23.5.8)

thus the coefficients c(t) are:

c(t) = exp
(
−
ˆ t

0

〈
ψ(t)

∣∣∣ ψ̇(t)
〉
dt′
)

(23.5.9)

This is a bitworrying, since the coefficient looks decaying. However, the integrand
〈
ψ(t)

∣∣∣ ψ̇(t)
〉

is actually purely imaginary. Indeed:
〈
ψ(t)

∣∣∣ ψ̇(t)
〉

=
ˆ
ψ∗∂ψ

∂t
d3r (23.5.10)

=
ˆ (

∂|ψ|2

∂t
− ψ∂ψ

∗

∂t

)
d3r (23.5.11)

= ∂

∂t

( ˆ
|ψ|2d3r

)
−
( ˆ

ψ∗∂ψ

∂t
dr
)∗

(23.5.12)

The first term clearly vanishes due to normalization, so we find that:

〈
ψ(t)

∣∣∣ ψ̇(t)
〉

= −
( ˆ

ψ∗∂ψ

∂t
d3r
)∗

= −
〈
ψ(t)

∣∣∣ ψ̇(t)
〉∗

(23.5.13)

implying that
〈
ψ(t)

∣∣∣ ψ̇(t)
〉
is purely imaginary, as required. We can finally write that:

|Ψ(t)〉 = e− i
ℏ
´ t

0 E(t′)dt′ei
´
i〈ψ | ψ̇〉dt′ |ψ(t)〉 (23.5.14)
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There is one major mistake that we have glossed over. This result cannot be right because
it would imply that a state always remains in its instantaneous eigenstate at all times. We
have made no further assumptions about the system, and got an extremely strong (and
dubious) result. This is because dotting to the left with just one state |ψ(t)〉 is not enough
to specify c(t) as it only gives one component of a vector equation. Wee should instead dot
with all states in the Hilbert space. Luckily, we can still claim that in the adiabatic limit
(23.5.14) is still approximately correct. This is known as theAdiabatic theoremwhich we
will now prove.

23.6 Adiabatic theorem
Consider a set of instantaneous eigenstates {|ψn(t)〉}. Let’s impose the initial condition
that the system start out in one of these eigenstates |Ψ(0)〉 = |ψk(0)〉. Let us also assume
that the energy levels near k are non-degenerate and can thus be ordered in the following
way:

... ≤ Ek−1(t) < Ek(t) < Ek+1(t) ≤ ... (23.6.1)

The Adiabatic theorem states that:

|Ψ(t)〉 ≈ eiΘk(t)eiγk(t) |ψk(t)〉 (23.6.2)

where the phases are defined as

Θk(t) = − i
ℏ

ˆ t

0
Ek(t′)dt′ (23.6.3)

γk(t) =
ˆ t

0
i
〈
ψk(t′)

∣∣∣ ψ̇k(t′)〉 dt′ (23.6.4)

provided the Hamiltonian varies slowly.

How slowly? Let us expand |Ψ(t)〉 in the instantaneous eigenstate basis:

|Ψ(t)〉 =
∑
n

cn(t) |ψn(t)〉 (23.6.5)

The TDSE reads:

iℏ
∑
n

(ċn(t) |ψn(t)〉+ cn(t) |ψ̇n(t)〉) =
∑
n

cn(t)En(t) |ψn(t)〉 (23.6.6)

Dotting to the left with |ψk(t)〉, and using the orthonormality of {|ψn(t)〉} then:

iℏċk(t) = ck(t)Ek(t)− iℏ
∑
n

〈
ψk(t)

∣∣∣ ψ̇n(t)
〉
cn(t) (23.6.7)

=⇒ iℏċk(t) = (Ek(t)− iℏ
〈
ψk(t)

∣∣∣ ψ̇k(t)〉)ck(t) +
∑
n6=k

〈
ψk(t)

∣∣∣ ψ̇n(t)
〉
cn(t) (23.6.8)

(this result also applies to other states). When the last term is negligible then we recover

− IV.336 −



23.7. LANDAU-ZENER TRANSITIONS

(23.6.2). Note that the initial conditions are:

cm(0) = δkm (23.6.9)

so if the state is slowly varying then the last term should indeed be negligible. To verify
this, consider:

iℏċm(0) = iℏ
∑
n6=m

〈
ψm

∣∣∣ ψ̇n〉 cn(0) = iℏ
〈
ψm

∣∣∣ ψ̇k〉 6= 0, m 6= k (23.6.10)

which is worrying, the other instantaneous eigenstates already start getting occupied at
t = 0. To see how big

〈
ψm

∣∣∣ ψ̇k〉 is consider:

H(t) |ψn(t)〉 = En(t) |ψn(t)〉 (23.6.11)

Differentiating with respect to time we get:

Ḣ |ψn〉+H |ψ̇n〉 = Ėn |ψn〉+ En |ψ̇n〉 (23.6.12)

Therefore:

〈
ψk
∣∣∣ Ḣ ∣∣∣ψn〉+ Ek

〈
ψk
∣∣∣ ψ̇n〉 = En

〈
ψk
∣∣∣ ψ̇n〉 =⇒

〈
ψk
∣∣∣ ψ̇n〉 =

〈
ψk
∣∣∣ Ḣ ∣∣∣ψn〉

En − Ek
(23.6.13)

For adiabatic changes this term will be small so the coupling between the instantaneous
eigenstates will be very slow.

Consider for example:

H(t) =
{
H0 + t

T V, 0 < t < T

H0 + V, t > T
(23.6.14)

Then we see that Ḣ = V
T so that:

〈
ψk
∣∣∣ Ḣ ∣∣∣ψn〉 = 1

T

Vkn
En − Ek

(23.6.15)

In the adiabatic limit T is very large, so the corrections in (23.6.13) will be very small.

23.7 Landau-Zener transitions
We consider a molecule modelled as two fixed nuclei with separation R with an two-
level electronic configuration specified by the wavefunctions ψ1(x,R) (ground state) and
ψ2(x,R) (excited state) with energies E1(R) and E2(R):

Ĥ(R)ψ1,2(x,R) = E1,2ψ1,2(x,R) (23.7.1)

We are interested in finding a special separation R = R0 where E1(R0) ≈ E2(R0) be-
low which the molecule is non-polar and above which it is polar. We can investigate this
behaviour by making R time-dependent, that is we vary the separation between the nu-
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23.8. GEOMETRIC PHASE

clei. The eigenstates of (23.7.1) for each value of R = R(t′) then give the instantaneous
eigenstates at time t′.

Suppose for example that R(t) = αt, then we see that at low times we have a non-polar
molecule, while at large times we should have a polar molecule. However, could it be that
the time-dependence of the system allows for a transition between E1(R0) and E2(R0)?

Toy example

We consider a two level system {|1〉 , |2〉}modelled by the hamiltonianH(t) = αt
2 (|1〉 〈1| −

|2〉 〈2|) with instantaneous energy levels E1 = αt
2 and E2 = −αt

2 .

We see that:

|ψ1(t)〉 = exp
(
− i

ℏ

ˆ t

0
E1(t′)dt′

)
|1〉 = e−iαt2/4ℏ |1〉 (23.7.2)

|ψ2(t)〉 = exp
(
− i

ℏ

ˆ t

0
E2(t′)dt′

)
|2〉 = eiαt2/4ℏ |2〉 (23.7.3)

are both exact solutions of the TDSE. There is no coupling between the states |1〉 and |2〉
despite them crossing at t = 0.

We now complicate our model a bit by introducing off-diagonal elements:

Ĥ =
(
αt/2 H12
H∗

12 −αt/2

)
(23.7.4)

where H12 is small. The energy levels are now:

E± = ±

√
|H12|2 + α2t2

4
(23.7.5)

We are interested in t = 0where the energy levelsE± = ±H12 are quite close for smallH12.
Here the system oscillates between |1〉 and |2〉with Rabi frequency ω12 = |H12|

ℏ . We define
τd = |H12|

α as the characteristic time scale in which the initial energy levels coinciding with
H12 = 0 get deflected. For an adiabatic approximation we require:

ω12τd � 1 =⇒ |H12|2

αℏ
(23.7.6)

23.8 Geometric phase
Consider a hamiltonian H(R) where R ∈ RN is some vector in the configuration space
containing the parameters of the system. Suppose these parameters change with time
tracing a path Γ(t) in RN at time t. We study the phase in the adiabatic approximation:

γn(t) = i

ˆ t

0

〈
ψn(R(t′))

∣∣∣∣ ddt′
∣∣∣∣ψn(R(t′))

〉
(23.8.1)
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known as the geometric phase. Using the chain rule the integrand of the phase simplifies
to

i

〈
ψn(R(t′))

∣∣∣∣ ddt′
∣∣∣∣ψn(R(t′))

〉
= i

〈
ψn(R(t′))

∣∣∇R
∣∣ψn(R(t′))

〉
· dR
dt′

(23.8.2)

which leads to the integral in time
´ t

0 dt transforming into a path integral in configuration
space

´
Γ dR:

γn(t) = i

ˆ
Γ(t)
〈ψn(R) |∇R |ψn(R)〉 · dR (23.8.3)

We see that unlike θ(t) which acts like a clock keeping track of t, the geometric phase does
not really care about time but just the path Γ(t) taken by the system in the configuration
space. In this sense γ is a geometric quantity.

We define the Berry connection as the integrand of (23.8.3)

An(R) = i 〈ψn(R) |∇R |ψn(R)〉 =
ˆ

Γ(t)
An(R) · dR (23.8.4)

Note that the Berry connection is not invariant under gauge transformations, but it does
transform in a rather special way. Let us define a new instantaneous eigenstate |ψ′

n(R)〉 =
e−iα(R) |ψn(R)〉. Then the Berry connection transforms as a vector potential:

A′
n(R) = i

〈
ψn(R)

∣∣∣ eiα(R)∇Re
−iα(R)

∣∣∣ψn(R)
〉
, γn(t) (23.8.5)

= An(R) +∇α(R) (23.8.6)

The geometric phase now becomes:

γ′
n(t) = γn(t) +

ˆ
Γ(t)
∇Rα(R) · dR = γn(t) + α(R(t))− α(R(0)) (23.8.7)

We see that unless α(R(t)) = α(R(0)) the geometric phase is not gauge-invariant, and
thus cannot be observed experimentally. However if the motion completes a loop then the
geometric phase may become observable since it will be gauge invariant. A well known
example of this is the Ahranov-Bohm effect.

It is important to note that if the instantaneous eigenstates can be chosen to be real then
the geometric phase vanishes. Similarly, in 1D configuration space (only one parameter
changes) then the Berry phase vanishes, since a closed loop in 1D just goes in one direction
and back, cancelling out.

Finally, in 3D we can use Stoke’s theorem to write:
˛

Γ
A · dR =

‹
SΓ

(∇×A) · da (23.8.8)

where ∇×A is the Berry curvature. It is often useful in calculating the geometric phase.

23.9 Ahranov-Bohm effect
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24Scattering in 3D

24.1 Initial assumptions
Wewill be interested in elastic scattering processes where there is no change in the identity
of the particles involved in the process, their internal states are left unchanged.

To simplify calculations we will not consider spin degrees of freedom and work non-
relativistically. In the next part on Relativistic QM we will consider the relativistic correc-
tions, although a complete theory of scattering processes can only be given in the context
of Quantum Field Theory. The interaction potentials between the colliding particles will
also be assumed to be central and finite ranged up to some radius a.

24.2 Guessing the solution
Consider the TISE in the center of mass coordinates, and wherem is the reduced mass of
the colliding particles: [

− ℏ2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r) (24.2.1)

Recall that when discussing scattering in 1D, we inserted plane wave ansatz for the re-
flected and transmitted waves, and used boundary conditions and the conservation of
probability current to determine unknown coefficients. In a similar fashion we now insert
as an ansatz the free particle energy E = ℏ2k2

2m to get:[
− ℏ2

2m
(∇2 + k2) + V (r)

]
ψ(r) = 0 (24.2.2)

In the case where V (r) = 0 we get plane wave solutions of momentum k = |k|. So far
away from the potential, where it is zero (i.e. r � a) we may assume an incident plane
wave solution ϕ(r) = eikz . We now ask ourselves what the ougoing waves could be? In 1D
this was easy to answer, there were only a reflected and transmitted plane waves. In 3D
we should now get spherical waves due to the spherical symmetry of the potential. Also,
since the ingoing plane wave was travelling along z we should also insert a dependence
on the angular variables θ, ϕ. We thus take a scattered spherical wave solution:

ψS(r) = f(θ, ϕ)e
ikr

r
(24.2.3)
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where f(θ, ϕ) is known as the scattering amplitude.Thus the full wave will be given by:

ψ(r) = eikz + f(θ, ϕ)e
ikr

r
, r � a (24.2.4)

24.3 Differential Cross section
In a real scattering experimentwemeasure the so-called differential cross section. Suppose
we place a detector which covers a solid angle dΩ with the impact position. We define the
differential cross-section dσ as:

dσ = no. particles scattered per unit time into dΩ
no. particles incident per unit time per unit area = 1

Jinc

dn

dt
(24.3.1)

where Jinc is the probability current of the incoming wave, and dn is the number of par-
ticles scattered into dΩ. This interpretation applies well when we consider a scattering
process occuring several times giving several particle detections. If we instead only have
one particle getting scattered then we replace “number of particles” with “probability of”.
The differential cross section can be calculated using (24.2.4). Firstly, recall that the inci-
dent flux of particles is given by the probability current:

Jinc = ℏ
m

Im(ϕ(r)∇ϕ(r)) = ℏk
m

ẑ (24.3.2)

Nowwithin a solid angle dΩ = sin θdθdϕ there are dn scattered particles by definition. We
then have that:

dn = |ΨS(r)|2r2dΩdr = |f(θ, ϕ)|2dΩdr (24.3.3)

Therefore, since dt = drmℏk the number of scattered particles into dΩ per unit time is:

dn

dt
= ℏk
m
|f(θ, ϕ)|2dΩ (24.3.4)

This finally gives us the differential cross section:

dσ = |f(θ, ϕ)|2dΩ =⇒ dσ

dΩ
= |f(θ, ϕ)|2 (24.3.5)

24.4 Partial wave expansion
We now want to get to (24.2.4) more rigorously, and find an expression for the scattering
amplitude. Since the potential is central we expect that f(θ, ϕ) = f(θ). We can then expand
the full wave ansatz into the well-known solutions:

ψE,l,m(r) = RE,l(r)Ylm(θ, ϕ)uE,l(r)
r

Ylm(θ, ϕ) (24.4.1)
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satisfying the radial TISE:[
− ℏ2

2m

(
d2

dr2 −
l(l + 1)
r2

)
+ V (r)

]
uE,l(r) = ℏ2k2

2m
uE,l (24.4.2)

=⇒
(
− d2

dr2 + l(l + 1)
r2 + 2mV (r)

ℏ22

)
uE,l(r) = k2uE,l (24.4.3)

Let’s go to the limit where r � a so that V (r) = 0. We assume that in this limit the
centrifugal potential is still dominating (this does not hold for the Coulomb potential for
example). Introducing the variable ρ = kr reveals the Bessel equation:(

− d2

dρ2 + l(l + 1)
ρ2

)
uE,l = uE,l (24.4.4)

The solutions to (24.4.4) are given by the spherical Bessel functions Jl(ρ), Bl(ρ) (first and
second type respectively):

uE,l = AlρJl(ρ) +NlρNl(ρ) (24.4.5)

where Jl(ρ) ≈ 1
ρ sin

(
ρ− lπ

2
)

Nl(ρ) ≈ −1
ρ cos

(
ρ− lπ

2
)
,

, ρ→∞ (24.4.6)

Consequently we should find that:

ψ(r) =
∑
lm

(Al,mJl(kr) +Bl,mNl(kr))Ylm(θ, ϕ) (24.4.7)

Note however that due to the symmetry of the problem our solution should have az-
imuthal symmetry, forcing us to require m = 0 for which the spherical harmonics have
no ϕ-dependence. Our solution now reads:

ψ(r) =
∑
l

(AlJl(kr) +BlNl(kr))Yl,0(θ) (24.4.8)

The eikz plane wave does not diverge at r = 0 while Nl(kr) does. This allows us to set
Bl, = 0 for the part of the solution giving us the incident wave:

eikz = eikr cos θ =
∑
l

alJl(kr)Yl,0(θ) (24.4.9)

The al can be determined as follows. Using the orthonormality of Yl,m we get:

ˆ
eikr cos θYl,0(θ)dΩ = alJl(kr) ⇐⇒ 2π

√
2l + 1

4π

ˆ 1

−1
eikrxPl(x)dx = alJl(kr) (24.4.10)

Luckily, the spherical Bessel functions of first type have a nice integral representation:

Jl(ρ) = 1
2

1
(i)l

ˆ 1

−1
eiρxPl(x)dx (24.4.11)
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allowing us to write
al =

√
4π
√

2l + 1(−1)l/2 (24.4.12)

and giving us the following expansion

eikz =
√

4π
∑
l

√
2l + 1(−1)l/2Jl(kr)Yl,0(θ) (24.4.13)

≈
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i

(
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

)
, r � a (24.4.14)

We have managed to express the plane wave as a superposition of ingoing and outgoing
sphericalwaves, known as partial waves. Note also that this expansion includes an ingoing
wave (incident on the potential) and an outgoing wave (reflected by the potential). Each
one of these partial waves will scatter with the potential V (r) and also produce ψsc.

Taking the r � a limit of our ansatz in (24.4.8) we find:

ψ(r) =
∑
l

(AlρJl(kr) +BlρNl(kr))Yl,0(θ) (24.4.15)

=
∑
l

Al

(sin(kr − lπ/2)
kr

− Bl
Al

cos(kr − lπ/2)
kr

)
Yl,0(θ) (24.4.16)

We let Al = Cl cos δl and Bl = Cl sin δl which yields

ψ(r) =
∑
l

Cl
sin(kr − lπ/2 + δl)

kr
Yl,0(θ) (24.4.17)

=
∑
l

e−iδl

2i
Cl

(
ei(kr−lπ/2)e2iδl

kr
− ei(kr−lπ/2)

kr

)
Yl,0(θ) (24.4.18)

Equating this to (24.2.4) we find that:

f(θ)e
ikr

r
=
∑
l

e−δlCl

(
ekr−lπ/2e2δl

kr
− ekr−lπ/2

kr

)
Yl,0(θ) (24.4.19)

−
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i

(
ei(kr−lπ/2)

r
− e−i(kr−lπ/2)

r

)
Yl,0(θ) (24.4.20)

The LHS is an outgoing spherical wave, so we must have that the ingoing waves on the
RHS cancel out. Thus:

Cl =
√

4π
√

2l + 1(−1)l/2eδl (24.4.21)

The scattering amplitude can now be written as:

f(θ)e
ikr

r
=
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i
ei(kr−lπ/2)(e2δl − 1) (24.4.22)
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We recognise e2δl − 1 = 2ieδl sin δl and e−lπ/2 = (−1)l/2 which finally gives:

f(θ) =
√

4π
k

∑
l

√
2l + 1eδl sin δl (24.4.23)

Note that by definition, we can find the phase shift from

tan δl = −Bl
Al

(24.4.24)

Alternatively, we could have also argued that it would be nice to be able to express fk(θ) e
ikr

r
as an outgoing wave, and insert it into the above. Then we would get:

ψ(r) =
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i

(
??− e−i(kr+lπ/2)

r

)
, r � a (24.4.25)

Due to the superposition principle each l term will get scattered separately. Thus, the out-
goingwave for each l termmust have the same amplitude as the ingoingwave, or else there
would be an accumulation of probability density between these waves. Consequently, we
can insert ?? = e−i(kr+lπ/2)

r e2iδl where δl is a phase shift. We get that:

ψ(r) =
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i

(
e−i(kr+lπ/2)+2iδl

r
− e−i(kr+lπ/2)

r

)
, r � a (24.4.26)

just like as in 1D scattering. We can equate this to

ψ(r) =
√

4π
k

∑
l

√
2l + 1(−1)l/2 1

2i

(
ei(kr−lπ/2)

r
−e

−i(kr+lπ/2)

r

)
+fk(θ)

eikr

r
, r � a (24.4.27)

This then gives:

fk(θ)
eikr

r
=
√

4π
k

∑
l

√
2l + 1(−1)l/2 e

i(kr−lπ/2)

r
(e2iδl − 1) (24.4.28)

so we find that:
fk(θ) =

√
4π
k

∑
l

√
2l + 1 1

2i
eiδl sin δl (24.4.29)

as found earlier. This together with the orthonormality of spherical harmonics can be used
to find the total cross-section:

σ = 4π
k2

∑
l

(2l + 1) sin2 δl (24.4.30)

There is a remarkable result known as the Optical theorem that we can extract out of this
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relation. Recall that Yl,0θ =
√

2l+1
4π Pl(cos θ) so setting θ = 0 we get:

fk(0) =
√

4π
k

∑
l

2l + 1√
4π

eiδl sin δl (24.4.31)

Taking the imaginary part of the above:

Im(fk(0)) = 1
k

∑
l

(2l + 1) sin2 δl = k

4π
σ (24.4.32)

In other words, the scattering amplitude can be found from the forward scattering ampli-
tude.

24.5 Calculating phase shifts
Suppose we have been given the solution Rk,l(r) to the radial equation for r < a, inside
the potential sphere. This solution must be matched with the general radial solution in
(24.4.8) at r = a. Hence:

Rk,l(a) = AlJl(ka) +BlNl(ka) (24.5.1)
aR′

k,l(a) = ka(AlJ ′
l (ka) +BlN

′
l (ka)) (24.5.2)

Taking their ratio gives:

R′
k,l(a)

Rk,l(a)
= k

AlJ
′
l (ka) +BlN

′
l (ka)

AlJl(ka) +BlNl(ka)
(24.5.3)

= k
J ′
l (ka)− tan δlN ′

l (ka)
Jl(ka)− tan δlNl(ka)

(24.5.4)

Inverting the above gives:

tan δl =
J ′
l (ka)− R′

l(a)
kRl(a)Jl(ka)

N ′
l (ka)− R′

l
(a)

kRl(a)Nl(ka)
(24.5.5)

Hard-sphere example

Consider a hard-sphere potential:

V =
{
∞, r < a

0, r > a
(24.5.6)

The general solution for our wave-function is given by:

ψ(r, θ) =
∑
l

[AlJl(kr) +BlNl(kr)]Pl(cos θ) (24.5.7)
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However, since the potential is infinite inside the sphere we must have that the wave-
function vanish on its surface. In other words:

ψ(a, θ) =
∑
l

(AlJl(ka) +BlNl(ka))Pl(cos θ) = 0 (24.5.8)

Luckily, the Legendre polynomials are orthonormal so we must have that:

AlJl(ka) +BlNl(ka) = 0 =⇒ Bl
Al

= − Jl(ka)
Nl(ka)

(24.5.9)

This allows us to calculate the phase shift:

tan δl = Jl(ka)
Nl(ka)

=⇒ sin2 δl = J2
l (ka)

J2
l (ka) +N2

l (ka)
(24.5.10)

giving us the total cross section:

σ = 4π
k2

∑
l

(2l + 1) J2
l (ka)

J2
l (ka) +N2

l (ka)
(24.5.11)

24.6 Green’s functions
Let’s go back to the TISE: [

− ℏ2

2m
∇2 + V (r)

]
ψ(r) = ℏ2k2

2m
ψ(r) (24.6.1)

Let V (r) = ℏ2

2mU(r) giving us:

(∇2 + k2)ψ(r) = U(r)ψ(r) (24.6.2)

This equation is just begging for Green’s functions if we view the potential U(r) as some
sort of source. We thus try to solve:

(∇2 + k2)G(r, r′) = δ(r− r′) (24.6.3)

Suppose we have found a solution ψ0(r) to the homogeneous problem:

(∇2 + k2)ψ0(r) = 0 (24.6.4)

Then, just like one would solve an inhomogeneous ODE, we would have that:

ψ(r) = ψ0(r) +
ˆ
G(r, r′)U(r′)ψ(r′)dr′ψ(r′) (24.6.5)

Indeed:
(∇2 + k2)ψ(r) =

ˆ
dr′δ(r− r′)U(r′)ψ(r′) = U(r)ψ(r) (24.6.6)
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as desired. The Green’s function is known to be:

G±(r, r′) = − 1
4π

e±ik|r−r′|

|r− r′|
(24.6.7)

so the total wave-function is given by:

ψ(r) = eikz +
ˆ
G(r, r′)U(r′)dr′ (24.6.8)

Now for r � a we have that |r − r′| ≈ r in (24.6). The same cannot be done for the
exponential in since the wave-vector could be large. Taking n to be the unit vector along r
then we can still write:

e±ik|r−r′| ≈ e±ik·re∓kn·r′
, r � a (24.6.9)

For large r the Green function can thus be approximated as:

G±(r, r′) = − 1
4πr

e±ikre∓ikn·r′ (24.6.10)

Inserting this into (24.6.8) and keeping only the + Green function:

ψ(r) = eikz − eikr

r

ˆ
1

4πr
e−ikn·r′

U(r′)ψ(r′)dr′ (24.6.11)

This allows us to identify the scattering amplitude:

f(θ) = −
ˆ

1
4π
e−ikn·r′

U(r′)ψ(r′)dr′ (24.6.12)

24.7 Born approximation
The integral equation equation in (24.6.8) can be solved iteratively using the Born aproxi-
mation. Indeed substituting r→ r′ and r′ → r′′ we find that:

ψ(r′) = eikz
′ +
ˆ
G(r′, r′′)U(r′′)dr′′ (24.7.1)

which can be substituted into (24.6.8) to get:

ψ(r) = eikz+
ˆ
G(r, r′)U(r′)eikz′

dr′ (24.7.2)

+
ˆ
G(r, r′)U(r′)

ˆ
G(r′, r′′)U(r′′)ψ(r′′)dr′′dr′ (24.7.3)

We can iterate this process, and schematically get the Born series:

ψ(r) = eikz +
ˆ
GUeikz +

ˆ
GU

ˆ
GUeikz +

ˆ
GU

ˆ
GU

ˆ
GUeikz + ... (24.7.4)
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This approximation works well when the free particle solution dominates over the inter-
actions i.e. the incident wave has high energy relative to the scattering potential.

The first Born approximation only keeps the terms in (24.7.2) giving:

ψ(r) = eikz +
ˆ
G(r, r′)U(r′)eikz′

dr′ (24.7.5)

Inserting (24.6.10) yields

ψ(r) = eikz − eikr

r

ˆ
1

4π
e−ikn·r′

U(r′)eikz′
dr′ (24.7.6)

Letting K = ks − ki = k(n− kni) be the difference in the wave-vector of the scattered and
incident waves, then:

ψ(r) = eikz − eikr

r

ˆ
1

4π
e−iK·r′

U(r′)dr′ (24.7.7)

and hence the scattering amplitude takes the form:

f(θ) = − 1
4π

ˆ
e−iK·r′

U(r′)dr′ (24.7.8)

The scattering amplitude is just the fourier transform of the scattering potential at momen-
tum K. For a spherical potential we can perform some further simplifications:

f(θ) = −1
2

ˆ
e−iK·r′

U(r′)r2dr′ sin θdθ (24.7.9)

We can fix K and let θ′ be its angle with r′.Then:

f(θ) = −1
2

ˆ
e−iKr′ cos θ′

U(r′)r2dr′ sin θ′dθ′ (24.7.10)

= 1
2

ˆ
1

iKr′

(
e−iKr′ cos θ′

)π
0
U(r′)r2dr′ (24.7.11)

= − 1
K

ˆ
r sin

(
Kr′)U(r′)dr′ (24.7.12)

finally giving:

f(θ) = − 2m
ℏ2K

ˆ
r sin

(
Kr′)V (r′)dr′ (24.7.13)

Also note that
K = 2k sin(θ/2) (24.7.14)

where θ is the angle between n and ni.
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