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God used beautiful mathematics in creating
the world.

— P.A.M. Dirac
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1A1 Numbers

1.1 The set N of Natural Numbers
Peano Axioms
We denote by N the inductive set {1, 2, 3...} of all positive integers, so that each positive integer n
has a successor n+ 1 = succ(n). We can then state the following Peano axioms:

N1. 1 ∈ N

N2. n ∈ N =⇒ succ(n) ∈ N

N3. ∀n ∈ N, 1 6= succ(n)

N4. succ(n) = succ(m) ⇐⇒ n = m

N5. Let A ⊂ N which contains 1 and contains succ(n) whenever it contains n, then A = N

Remark. Assume N5 is false, then N contains a set A such that:

(i) 1 ∈ A

(ii) n ∈ A =⇒ (n+ 1) ∈ A

(iii) A 6= N

and consider n0 = minS, where S = {n ∈ N| n /∈ A}. Clearly, n0 6= 1, so n0 is the successor of some
number n0−1. Since n0 ∈ S, it follows that (n0−1) ∈ A. However, by (ii) (n0−1) ∈ A =⇒ n0 ∈ A
which is a contradiction.

Principle of Mathematical Induction
Let P1, P2... be a list of propositions, then the principle of mathematical induction asserts that they
are true provided:

I1 P1 is true (basis of induction)

I2 (Pn is true) =⇒ (Pn+1 is true) (inductive step)

Proposition 5.1 (Sum of natural numbers)

− 5 −



1.1. THE SET N OF NATURAL NUMBERS

The sum of the first n natural numbers is:
n∑

i=1
= n(n+ 1)

2
. (1.1.1)

Proof. We define the nth proposition to be:

Pn :
n∑

i=1
= n(n+ 1)

2
(1.1.2)

I1 For the basis for induction, P1 asserts that the sum of the first natural number is 1·2
2 = 1 which

is clearly true.

I2 For the inductive step, suppose Pn is true, so we assume:

n∑
i=1

= n(n+ 1)
2

(1.1.3)

is true. Now:
n+1∑
i=1

= n(n+ 1)
2

+ (n+ 1)

= n2 + n+ 2n+ 2
2

= (n+ 1)(n+ 2)
2

= (n+ 1)((n+ 1) + 1)
2

so Pn+1 is true as required.

■

Example. Let us prove that all numbers of the form 5n−4n−1 are divisible by 16, ∀n ∈ N.

Proof. So the nth proposition is:

Pn : 5n − 4n− 1 are divisible by 16.

I1 The basis for induction is true, since 51 − 4− 1 = 0 which is divisible by 16.
I2 For the inductive step, suppose Pn is true, we wish to verify Pn+1. To do so, we write:

5n+1 − 4(n+ 1)− 1 = 5(5n − 4n− 1) + 16n = 5 · 16m+ 16n = 16(5m+ n) (1.1.4)

where 5n − 4n− 1 = 16m, required.
■

◀
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1.1. THE SET N OF NATURAL NUMBERS

Example. Let us prove that |sinnx| ≤ n|sin x|,∀n ∈ N,∀x ∈ R.

Proof. Our nth proposition is:

Pn : |sinnx| ≤ n|sin x|,∀x ∈ R

I1 The basis for induction is clearly true, since |sin x| ≤ |sin x|.
I2 For the inductive step, assume that Pn is true, then:

|sin(n+ 1)x| = |sin(nx+ x)|
= |sinnx cosx+ sin x cosnx|
≤ |sinnx||cosx|+ |sin x||cosnx|
≤ |sinnx|+ |sin x|
≤ n|sin x|+ |sin x|
≤ (n+ 1)|sin x|

as required, Pn+1 holds.
■

◀

Theorem 5.2 (Bernoulli inequality)
Let x ∈ R and n ∈ N then:

(1 + x)n ≥ 1 + nx, when x ≥ −1 (1.1.5)

Proof. Let x <≥ −1 and define:
P (n) : (1 + x)n ≥ 1 + nx (1.1.6)

I1 P (1) is obviously true, since the LHS reads (1 + x)1 = (1 + x) which is equal to the RHS.

I2 Now let P (k) be true for some k ≥ 1, so that:

(1 + x)k ≥ 1 + kx (1.1.7)

It follows that:

(1 + x)k+1 ≥ (1 + kx)(1 + x) (1.1.8)
≥ 1 + (k + 1)x+ kx2 (1.1.9)
≥ 1 + (k + 1)x (1.1.10)

since kx2 ≥ 0. It follows that P (k + 1) is true, whenever P (k) is verified.

Hence, by the principle of mathematical induction, we have that

(1 + x)n ≥ 1 + nx, when x ≥ −1 (1.1.11)

as desired. ■
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1.2. THE SET Q OF RATIONAL NUMBERS

1.2 The Set Q of Rational Numbers
The setQ of Rational Numbers is the set of numbers that can be written as the ratio of two integers
in Z.

Definition 5.2 (Algebraic number)
A number x is called algebraic if it satisfies a polynomial equation:

cnx
n + cn−1x

n−1 + ...+ c1x+ c0 = 0 (1.2.1)

where ci ∈ Z and cn 6= 0.

Proposition 5.3 (Rational =⇒ algebraic)
All rational numbers are algebraic numbers.

Proof. Consider the rational number x = m
n ∈ Q, where m,n ∈ Z. Then, clearly it satisfies the

equation:
nx−m = 0. (1.2.2)

■

Theorem 5.4 (Rational Zeros Theorem)
Assume c0...cn ∈ Z and x ∈ Q satisfying the equation:

cnx
n + cn−1x

n−1 + ...+ c1x+ c0 = 0 (1.2.3)

where cn, c0 6= 0. Let x = c
d where c, d ∈ Z with no common factors and d 6= 0. Then c

divides c0 and d divides cn.

Proof. We are given that:

cn

(
c

d

)n

+ cn−1

(
c

d

)n−1

+ ...+ c1

(
c

d

)
+ c0 = 0

cnc
n + cn−1c

n−1d+ ...+ c1cd
n−1 + c0d

n = 0

Firstly, we solve for c0d
n to obtain:

c0d
n = −c[cnc

n−1 + cn−1c
n−1d+ ...+ c2cd

n−2 + c1d
n−1] (1.2.4)

so c divides c0d
n. However, since c and dn are coprime, we must have that c divides c0. Similarly,

we solve for cnc
n:

cnc
n = −d[cn−1c

n−1 + cn−2c
n−2d+ ...+ c1cd

n−2 + c0d
n−1] (1.2.5)

so d divides cnc
n. However, since c and d are coprime, we must have that d divides cn as required.

■
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1.3. THE SET R OF REAL NUMBERS

Corollary Consider the equation:

xn + cn−1x
n−1 + ...+ c1x+ c0 = 0. (1.2.6)

By applying the Rational Zeros Theorem, all rational solutions must divide c0.

Example. Let us prove that a =
√

2 + 3
√

5 is irrational.

Proof. We firstly note that a is algebraic, since:

a2 = 2 + 3
√

5
(a2 − 2)3 = 5
a6 − 6a4 + 12a2 − 13 = 0

which gives the polynomial equation:

x6 − 6x4 + 12a2 − 13 = 0 (1.2.7)

By corollary 1.1.1 , the only possible rational solutions are±1,±13which clearly don’t satisfy
(1.5). ■

◀

1.3 The Set R of Real Numbers
The following algebraic properties hold for a field:

A1. a+ (b+ c) = (a+ b) + c (addition associativity)

A2. a+ b = b+ a (addition commutativity)

A3. a+ 0 = a (addition identity)

A4. ∀a,∃(−a) s.t. a+ (−a) = 0 (addition inverse)

M1. a(bc) = (ab)c (multiplication associativity)

M2. ab = ba (multiplication commutativity)

M3. a · 1 = a (multiplication identity)

M4. ∀a 6= 0,∃a−1 s.t. a · a−1 = 1 (multiplication inverse)

DL. a(b+ c) = ab+ ac (distributivity)

The following ordering properties hold for an ordered field:

O1. ∀a, b, a ≤ b ∨ b ≤ a(multiplication inverse)

O2. (a ≤ b ∧ b ≤ a) =⇒ a = b

O3. (a ≤ b ∧ b ≤ C) =⇒ a ≤ c

O4. (a ≤ b) =⇒ a+ c ≤ b+ c

− 9 −



1.3. THE SET R OF REAL NUMBERS

O5. (a ≤ b ∧ 0 ≤ c) =⇒ ac ≤ bc

Theorem 5.6 (Properties of fields)
The following are consequences of the field properties:
(i) a+ c = b+ c =⇒ a = b

(ii) a · 0 = 0
(iii) (−a)b = −ab
(iv) (−a)(−b) = ab

(v) (ac = bc ∧ c 6= 0) =⇒ a = b

(vi) ab = 0 =⇒ (a = 0 ∨ b = 0)

Proof. (i) a+c = b+c =⇒ (a+c)+(−c) = (b+c)+(−c), using A1 we have that a+[c+(−c)] =
b+ [c+ (−c)] =⇒ a+ 0 = b+ 0 by A4, so we finally have a = b using A3.

(ii) a · 0 = a · (0 + 0) = a · 0 + a · 0 where we used A3 and DL respectively. By (i) we conclude
that a · 0 = 0.

(iii) a+ (−a) = 0 =⇒ ab+ (−a)b = [a+ (−a)] · b = 0 · b = 0 = ab+ (−(ab)), so from (i) we have
that (−a)b = −(ab).

(iv) (−a)(−b) + (−ab) = (−a)(−b) + (−a)b = (−a)[(−b) + b] = 0 = ab+ (−ab), so by (i) we have
(−a)(−b) = ab.

(v) Suppose ac = bc ∧ c 6= 0, then a = a · 1 = a(cc−1) = (ac)c1 = b(cc−1) = b

(vi) If ab = 0 and b 6= 0, then 0 = 0 · b−1 = (ab)b−1 = a(bb−1) = a · 1 = a

■

Theorem 5.7 (Properties of ordered fields)
The following are consequences of the properties of an ordered field:
(i) a ≤ b =⇒ −b ≤ −a
(ii) (a ≤ b ∧ c ≤ 0) =⇒ bc ≤ ac
(iii) 0 ≤ a ∧ 0 ≤ b =⇒ 0 ≤ ab
(iv) 0 ≤ a2

(v) 0 < 1
(vi) 0 ≤ a =⇒ 0 ≤ a−1

(vii) 0 < a < b =⇒ 0 < b−1 < a−1

(viii) 0 ≤ a, b ∧ p ∈ N =⇒ (a < b ⇐⇒ ap < bp)

Proof. (i) Suppose a ≤ b, then applying O4 with c = (−a) + (−b), then a + [(−a) + (−b)] ≤
b+ [(−a) + (−b)] =⇒ −b ≤ −a

(ii) ifa ≤ b∧c ≤ 0, then 0 ≤ −c. So, applying O5 gives a(−c) ≤ −bc, and using (i) we get bc ≤ ac

(iii) This is a special case of O5 using a = 0.

(iv) For any a, a ≤ 0 ∨ 0 ≤ a. In the first case, a2 ≤ 0 by (iii). In the latter case, −a ≤ 0 =⇒
(−a)(−a) = a2 ≤ 0 using (i).
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(v) Clearly, 0 6= 1. Indeed, consider x 6= 0, then x·1 = x·0 = 0 which is a contradiction. Applying
(iii) with a = 1 gives the desired result.

(vi) Suppose 0 ≤ a but a−1 ≤ 0 =⇒ −a−1 ≥ 0. Applying (iii) gives 0 ≤ a(−a−1) = −1 =⇒
1 ≤ 0 which contradicts (v).

(vii) We multiply by (a−1)(b−1) > 0 and find 0 < a < b =⇒ 0 < b−1 < a−1.

(viii) For positive integers p, we use the factor theorem:

bp − ap = (b− a) (bp−1 + bp−2a+ ...+ bap−2 + ap−1)︸ ︷︷ ︸
>0

(1.3.1)

but the term in brackets is positive definite, so it follows immediately that:

b− a > 0 ⇐⇒ bp − ap > 0 (1.3.2)

■

1.4 Absolute Value

Definition 5.8 (Absolute value and distance)
We define the absolute value of a as:

|a| =

{
a if a ≥ 0
−a if a ≤ 0

(1.4.1)

For two numbers a, b we define dist(a, b) = |a− b| to be the distance between a and b.

We present some important properties of the absolute value:

Theorem 5.9 (Absolute value properties)
The following hold ∀a, b ∈ R:
(i) |a| ≥ 0
(ii) |ab| = |a| · |b|
(iii) |a+ b| ≤ |a|+ |b|
(iv) |a− b| ≥ ||a| − |b||

Proof. sdgd

(i) For a ∈ R, a ≥ 0 or a ≤ 0, and since |a| = ±a, it follows that |a| ≥ 0.

(ii) If a ≥ 0 ∧ b ≥ 0, then ab ≥ 0 =⇒ |a| · |b| = ab = |ab|. If a ≤ 0 ∧ b ≤ 0, then ab ≥ 0 =⇒
|a|·|b| = (−a)(−b) = ab = |ab|. If a ≥ 0∧b ≤ 0, then ab ≤ 0 =⇒ |a|·|b| = a(−b) = −ab = |ab|.
If a ≤ 0 ∧ b ≥ 0, then ab ≤ 0 =⇒ |a| · |b| = (−a)b = −ab = |ab|.

(iii) By definition, we have −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|, then O4 yields:

− |a| − |b| ≤ a+ b ≤ |a|+ |b| (1.4.2)
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so that
− (|a|+ |b|) ≤ a+ b ≤ |a|+ |b| (1.4.3)

which implies a+ b ≤ |a|+ |b| and−(a+ b) ≤ |a|+ |b|. Since |a+ b| = ±(a+ b), it follows that
|a+ b| ≤ |a|+ |b|.

(iv) We proceed as follows:

|a− b| ≥ ||a| − |b|| ⇐⇒ (a− b)2 ≥ (|a| − |b|)2 (1.4.4)
⇐⇒ a2 − 2ab+ b2 ≥ a2 − 2|a||b|+ b2 (1.4.5)
⇐⇒ −2ab ≥ −|2ab| (1.4.6)
⇐⇒ ab ≤ |ab| (1.4.7)

which is true since x ≤ |x| for any real number x.

■

1.5 The Completeness Axiom
This axiom assures us that unlike Q, R has no gaps.

Definition 5.10 (Maximum and minimum)
Let S be a nonempty subset of R.
(i) If S contains a largest element s0 s.t. s0 ∈ S ∧ s ≤ s0,∀s ∈ S, we write s = maxS.
(i) If S contains a smallest element we write it as minS.

Example.
(i) The set {r ∈ Q|0 ≤ r ≤

√
2} has a minimum, namely 0, but no maximum, since√

2 /∈ Q.
(ii) Consider the set {n(−1)n |n ∈ N}, which can be expanded into:

{1, 2, 1
3
, 4, 1

5
, 6, 1

7
...} (1.5.1)

which clearly has no maximum nor minimum.

◀

Definition 5.11 (Upper and lower bound)
Let S be a nonempty subset of R:
(i) If a real numberM satisfies s ≤M, ∀s ∈ S, thenM is called an upper bound of S.
(ii) If a real numberm satisfiesm ≤ s, ∀s ∈ S, thenm is called a lower bound of S.
(iii) A set S is bounded if it is bounded above and below i.e. ∃m,M s.t. S ⊆ [m,M ].

Remark. Clearly, if a set S has a maximum, it is bounded above. Similarly, if it has a minimum, it
is bounded below.
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Definition 5.12 (Supremum and infinimum)
Let S be a nonempty subset of R.
(i) If S is bounded above and has a least upper bound, then we call it the supremum of S,

denoted by supS.
(ii) If S is bounded above and has a least upper bound, then we call it the infinimum of S,

denoted by inf S.

Remark. Observe that if S is bounded above, thenM = supSiff :

(i) s ≤M, ∀s ∈ S

(ii) ∀M1 < M, ∃s1 ∈ S s.t. s1 > M1

Example.
(a) If a set S has a maximum, then maxS = supS. Similarly, if a set S has a minimum,

then minS = inf S.
(b) We have inf{n(−1)n : n ∈ N} = 0.
(c) The set A = { 1

n2 : n ∈ N ∧ n ≥ 3} is bounded. We have that supA = maxA = 1
9 and

the minimum does not exist, however inf A = 0.
(d) The set B = {r ∈ Q : r3 ≤ 7} is bounded above, but not below. It has no maximum,

since
√

7 /∈ Q. However, supB = 3
√

7 and inf B = −∞ since it has no minimum.
(e) The set C = {m + n

√
2 : m,n ∈ Z} is not bounded above or below, so it has no

maximum or minimum. However, supC =∞ and inf C = −∞.
(f) The set D = {x ∈ R : x2 < 10} is the open interval (−

√
10,
√

10). So, it is bounded
above and below despite not having maximum and minimum. We have supD =

√
10

and inf D = −
√

10.

◀

Theorem 5.13 (Completeness Axiom)
Every nonempty subset S of R that is bounded above has a least upper bound. In other
words, supS exists and is a real number.

Remark. Note that by this definition, the set of rationalsQ is incomplete, that is, it contains "gaps".
Indeed, consider the set A = {r ∈ Q : 0 ≤ r ≤

√
2}, which is bounded above by 3

2 ∈ Q for
example. If Q were complete, then A would have a least upper bound that is rational, but such
a number does not exist. Corollary Every nonempty subset S of R that is bounded below has a
greatest lower bound inf S.

Proof. Let −S be the set {−s : s ∈ S} consisting of the negatives of S. Since S is bounded below,
∃m ∈ R s.t. m ≤ s∀s ∈ S. This implies that−m ≥ −s,∀s ∈ S, so since−S is bounded above by−m,
by the Completeness Axiom it must have a supremum. Let us now prove that inf S = − sup(−S).
Let s0 = sup(−S), then by definition −s ≤ s0 =⇒ s ≥ −s0, and since s0 is the least upper bound
of S, then if t ≥ −s, ∀s ∈ S, then t ≥ s0. So, if−t ≤ s, ∀s ∈ S, then−t ≤ −s0. These two conditions
show that −s0 is the greatest lower bound of S, so inf S = − sup(−S), as required. ■
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Theorem 5.14 (Archimedean Property)
If a > 0 and b > 0, then for some positive integer n, we have na > b.

Proof. Assume that Archimedean property fails, so there exists a > 0 and b > 0 such that na ≤
b, ∀n ∈ N =⇒ b is an upper bound of S = {na : n ∈ N}. Let s0 = supS, and a > 0 =⇒ s0 − a <
s0. Since s0 is the supremum of S, s0 − a can’t be an upper bound since it is smaller than s0, it
follows that ∃n0 ∈ N s.t. s0 − a < n0a =⇒ s0 < (n0 + 1)a ∈ S so s0 is not an upper bound of S,
which is a contradiction. ■

Theorem 5.15 (Denseness of Q)
If a, b ∈ R and a < b, then ∃r ∈ Q s.t. a < r b.

Proof. We wish to prove that:

a < r = m

n
< b =⇒ an < m < bn (1.5.2)

for some integersm,n. Since b− a > 0, by the Archimedean property, ∃n ∈ N s.t. n(n− a) > 1 ■

so it is evident that there is an integer m between an and bn since their difference is greater than
1.

Proposition 5.16 (Linearity of sup and inf)
For non empty bounded subsets A and B of R, we have:

sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B (1.5.3)

Proof. Consider x ∈ A + B =⇒ x = a + b for some a ∈ A, b ∈ B. It follows that x ≤ supA +
supB =⇒ sup(A+B) ≤ supA+supB. It remains to prove that sup(A+B) ≥ supA+supB. If one
of the suprema is +∞ (without loss of generality assume it isB), then taking some a0 ∈ A, we have
sup(A+B) ≥ sup(a0 +B) = a0 + supB =∞ = supA+ supB. If the sum of the suprema is finite,
then we consider ϵ > 0. Then ∃a ∈ A, b ∈ B, s.t. a > supA− ϵ

2 and b > supB − ϵ
2 . It follows that

sup(A+B) ≥ a+ b > supA+ supB− ϵ fromwhich it follows that sup(A+B) ≥ supA+ supB. ■
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2A2 Sequences

2.1 Introduction to sequences
A sequence is a functionwhose domain a set of the form {n ∈ Z : n ≥ m}. The sequence is denoted
by (s)∞

n=m and the nth term in a sequence is denoted by sn.

Example. Consider the sequence (an)∞
n=0 where an = (−1)n, n ≥ 0. We can then write

the sequence as (1,−1, 1,−1...), and has a set of values {−1, 1}. Note that the sequence
contains infinite terms, but the set contains only two terms. ◀

Definition (Monotonic sequence)
A sequence (aN ) is said to be:
(i) constant if an+1 = an, for n = 1, 2, 3...
(ii) increasing (decreasing) if an+1 ≥ an (an+1 ≤ an) for n = 1, 2, 3...
(iii) strictly increasing if an+1 > an (an+1 < an) for n = 1, 2, 3...
If any of the above hold for (an), then it is said to be monotonic.

Given a general sequence (an), it is generally easier to show that:

(i) an+1 − an ≥ (≤)0 =⇒ (an) is increasing (decreasing)

(ii) an+1 − an > (<)0 =⇒ (an) is strictly increasing (strictly decreasing)

(iii) an+1 − an = 0 =⇒ (an) is constant

Example. Consider the sequence an = (n − 1)(n − 2), n = 1, 2..., which is monotonic
increasing. Indeed, note that:

an+1 − an = 2n− 2 ≥ 0 (2.1.1)

since n ≥ 1. Note moreover that if n ≥ 2, then (an) would be monotonic strictly increasing,
since 2n− 2 > 0.

◀

Alternatively, it is also convenient to examine the quotient an+1
an

.
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Example. Consider the sequence an = n+ 1
n . Then:

an+1

an
=
n+ 1 + 1

n+1

n+ 1
n

= (n+ 1)2

n2 · n

n+ 1
= n+ 1

n
> 1 (2.1.2)

since n is positive. It follows that an is monotonic strictly increasing. ◀

Definition (Eventual properties)
A sequence (an) eventually has a property if it satisfies the property for n ≥ n0 for some
n0 ≥ 1.

Example. The sequence defined by an = n4

4n is eventually decreasing. Indeed:

an+1

an
= (n+ 1)4

n4
4n

4n+1 = 1
4

(
n+ 1
n

)4

< 1 =⇒ 1 + 1
n
<
√

2 =⇒ 1√
2− 1

< n (2.1.3)

so the sequence eventually decreases, more specifically for n ≥ 3. ◀

2.2 Convergence of sequences

Definition 6.1 (Sequence convergence)
A sequence (sn) of real numbers converges to s (i.e. limn→∞ sn = s) provided that:

∀ϵ > 0, ∃N ∈ R s.t. n > N =⇒ |sn − s| < ϵ (2.2.1)

A sequence that does not converge to a real number is divergent.

Figure 2.1. Geometrical interpretation of the epsilon-delta definition

Example. Consider the sequence sn = 3n+1
7n−4 = 3+ 1

n

7− 4
n

then clearly for large values of n, the
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series should converge to 3
7 . Indeed, by definition 7.1, limn→∞ sn = 3

7 means that:

∀ϵ > 0,∃N s.t. n > N =⇒
∣∣∣∣3n+ 1
7n− 4

− 3
7

∣∣∣∣ < ϵ (2.2.2)

As ϵ varies, getting smaller and smaller, N gets bigger and bigger, so in the end for n > N ,
so a very large value of n, the difference between sn and s becomes very very small, which
intuitively makes sense.

n sn = 3n+1
7n−4 |sn − 3

7 |
2 0.7000 0.2714
3 0.5882 0.1597
5 0.5161 0.0876
40 0.4384 0.0098
400 0.4295 0.0010

◀

Remark. Finally, it must be noted that limits are unique, so:

lim
n→∞

sn = s ∧ lim
n→∞

sn = t =⇒ s = t (2.2.3)

Indeed, the first implies that:

∃N1 s.t. n > N1 =⇒ |sn − s| <
ϵ

2
(2.2.4)

and the second implies that:

∃N2 s.t. n > N2 =⇒ |sn − t| <
ϵ

2
(2.2.5)

for some ϵ > 0. For n > max{N1, N2} (this allows us to use both conditions of convergence) the
triangle inequality shows:

|s− t| = |(s− sn) + (sn − t)| ≤ |s− sn|+ |sn − t| ≤
ϵ

2
+ ϵ

2
= ϵ (2.2.6)

for all ϵ > 0 and thus |s−t| = 0 =⇒ s = t as required. Geometrically, this argument corresponds to
showing that for n > max{N1, N2}, the terms of the sequence can’t belong to both {y1 : |y1−s| < ϵ

2}
and {y2 : |y2 − t| < ϵ

2} since the two don’t intersect for sufficiently small ϵ. ■

2.3 Formal Proofs of Limit Theorems

Example. Let us prove that limn→∞
3n+1
7n−4 = 3

7 .

Discussion: we consider an arbitrary ϵ > 0 and show that ∃N such that n > N =⇒ | 3n+1
7n−4 −

3
7 | < ϵ. Thus, we want:

| 19
7(7n− 4)

| < ϵ (2.3.1)
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Figure 2.2. Uniqueness of Limits

and since 7n− 4 > 0 since n is positive, we drop the absolute value and write:

19
7(7n− 4)

< ϵ =⇒ 19
7ϵ

< 7n− 4 =⇒ 19
49ϵ

+ 4
7
< n (2.3.2)

so we put N = 19
49ϵ + 4

7 .

Proof: let ϵ > 0 and N = 19
49ϵ + 4

7 . Then

n > N =⇒ n >
19
49ϵ

+ 4
7

=⇒ 7n− 4 > 19
7ϵ

=⇒ ϵ >
19

7(7n− 4)
(2.3.3)

Thus n > N =⇒ | 3n+1
7n−4 −

3
7 | < ϵ which proves that limn→∞

3n+1
7n−4 = 3

7 as required. ◀

Example. Let us prove that limn→∞
4n3+3n

n3−6 = 4.

Discussion: For each ϵ > 0, we need the following inequality to hold:

|4n
3 + 3n
n3 − 6

− 4| < ϵ =⇒ |3n+ 24
n3 − 6

| < ϵ (2.3.4)

Note that it is very hard in this case to solve for n, so instead of finding the smallest N such
that n > N implies that | 3n+24

n3−6 | < ϵ, we will use estimates. Note that 3n+24 ≤ 27n for n > 1
and n3 − 6 ≥ n3

2 for n > 2. So:

|3n+ 24
n3 − 6

| ≤ 27n
1
2n

3 < ϵ =⇒ n >

√
54
ϵ

(2.3.5)

if n>2.
Proof: let ϵ > 0 and N = max{2,

√
54
ϵ }. Then:

n > N =⇒ n >

√
54
ϵ

=⇒ 27n
n3/2

< ϵ (2.3.6)
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Since for n > 2, 3n+ 24 ≤ 27n and n3 − 6 ≥ n3

2 , we find that:

|3n+ 24
n3 − 6

| ≤ 27n
n3/2

< ϵ (2.3.7)

and hence
|4n

3 + 3n
n3 − 6

− 4| < ϵ (2.3.8)

as required. ◀

Example. Let (sn) be a sequence of non-negative real numbers such that limn→∞ sn = s.
Then, limn→∞

√
sn =

√
s.

Proof.

Case I: let ϵ > 0 and s > 0, since limn→∞ sn = s,

∃N s.t. n > N =⇒ |sn − s| <
√
sϵ (2.3.9)

so:
∃N s.t. n > N =⇒ |

√
sn −

√
s| = |sn − s|√

sn +
√
s
≤ |sn − s|√

s
<

√
s√
s
ϵ = ϵ (2.3.10)

as desired. ◀

Case II: if s = 0, let ϵ > 0 so that:

∃N s.t. n > N =⇒ |sn| < ϵ2 (2.3.11)

Hence, √sn < ϵ for n > N and thus:

|
√
sn − 0| < ϵ =⇒ lim

n→∞

√
sn = s = 0 (2.3.12)

as desired. ◀

Example. Let (sn) be a convergent sequence of non-zero real numbers such that
limn→∞ sn = s 6= 0. Then inf{|sn| : n ∈ N} > 0.

Discussion: The result has the geometric interpretation that all terms of the sequence are
"close" to s and therefore not "close" to 0. The proof will involve three steps. First, we show
that there exists N such that all terms of the sequence after sN are all greater than |s|

2 by
using the triangle inequality. This result shows that the terms of the sequence after sN are
all "close" to s, with a maximum distance of |s|

2 . We then take the minimum of |s|
2 , and |s|n,

and show that it is positive so that inf{|sn| : n ∈ N} > 0 follows directly.

Proof.
Let ϵ = |s|

2 > 0, since limn→∞ sn = s:

∃N s.t. n > N =⇒ |sn − s| ≤
|s|
2

(2.3.13)
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We must have that:
∃N s.t. n > N =⇒ |sn| ≥

|s|
2

(2.3.14)

since:

|s| = |s− sn + sn| ≤ |s− sn|+ |sn| ≤
|s|
2

+ |sn| =⇒ |sn| ≥
|s|
2
. (2.3.15)

Setting:

m = min{ |s|
2
, |s1|, ..., |sn|} (2.3.16)

In view of this result, |sn| ≥ m, so inf{|sn| : n ∈ N} > 0 as required.

◀

2.4 Null sequences

Definition (Null sequence)
A sequence (an) is said to be null if it converges to zero, that is, if:

∀ϵ > 0, ∃N ∈ R s.t. n > N =⇒ |an| < ϵ (2.4.1)

Example. Consider the sequence

an = (−1)n

n4 + 1
, n = 1, 2, ... (2.4.2)

Suppose 0 < ϵ < 1, then:

|an| =
1

n4 + 1
< ϵ ⇐⇒ n4 >

1
ϵ
− 1 ⇐⇒ n >

(
1
ϵ
− 1) 1

4 = N (2.4.3)

so for a given 0 < ϵ < 1, |an| < ϵ provided that n > N where N =
(

1
ϵ − 1) 1

4 .

If instead ϵ ≥ 1, then:
|an| =

1
n4 + 1

< ϵ ⇐⇒ n4 >
1
ϵ
− 1 (2.4.4)

but since ϵ ≥ 1 =⇒ 1
ϵ ≤ 1, the LHS is non-positive, so the above inequality is true for all

n > N where N = 1. ◀

Theorem (Power rule of null sequences)
If (an) is a null, non-negative sequence for n = 1, 2..., then the sequence (ap

n) given by ap
n,

with p ∈ R for all n = 1, 2... is also null.

Proof. The sequence (an) is null, therefore for each positive ϵ1/p there exists N such that:

an < ϵ1/p, ∀n > N (2.4.5)
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so that for all positive ϵ:
ap

n < ϵ, ∀n > N (2.4.6)

so limn→∞ ap
n = 0 as desired. ■

Example. Consider the sequence an = 1
n for n = 1, 2, .... Then an is null, since for all

ϵ > 0:
|an| =

1
n
< ϵ ⇐⇒ ϵ < n, (2.4.7)

so that |an| ≤ ϵ for all n > N = ϵ. Hence limn→∞ an = 0. Applying the power rule to an we
then find that 1

np is also null. ◀

Proposition (Limit theorems for null sequences)
Let (an), (bn) and (cn) be null sequences, and let α ∈ R. Then:
(i) (αan) is null
(ii) (an + bn) is null
(iii) (anbn) is null
(iv)

(
an

bn

)
is null

Proof. Immediate application of the Limit theorems (which will be shown in the next section) will
give the desired results. ■

Proposition (Standard null sequences)
The following sequences are all null:
(i)

(
1

np

)
for p > 0

(ii) (cn) for |c| < 1
(iii) (npcn) for p > 0, |c| < 1
(iv)

(
cn

n!

)
for c ∈ R

(v)
(

np

n!

)
for p > 0.

Proof. (i) It has been proven in the example preceding the limit theorems.

(ii) Note that an is null ⇐⇒ |an| is also null, so it suffices to prove that |cn| = |c|n is null (see
the Theorem on the convergence of absolute values). In other words, we can limit ourselves
to c non-negative.

Suppose that c = 0, then the nullity is trivial. Suppose that 0 < c < 1, then:

c = 1
a+ 1

, a > 0 (2.4.8)

We may apply bernoulli’s inequality:

cn = 1
(a+ 1)n

≤ 1
na+ 1

≤ 1
na

(2.4.9)
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Since 1
n is null, it follows from the limit theorem (ii) that 1

na is also null. Applying the squeeze
theorem then, we finally find that cn is also null.

(iii) Once again assume that 0 < c < 1, then for some a > 0:

c = 1
a+ 1

(2.4.10)

We begin by proving that (ncn) is null. By the binomial theorem:

(1 + a)n ≥ 1 + na+ 1
2
n(n− 1)a2 ≥ 1

2
n(n− 1)a2, n = 2, 3, ... (2.4.11)

it follows that

ncn = n

(a+ 1)n
≤ n

1
2n(n− 1)a2 = 2

a2(n− 1)
, n = 2, 3, ... (2.4.12)

The sequence defined by:
bn = 2

a2(n− 1)
, n = 2, 3... (2.4.13)

is equivalent to:
bn = 2

a2n
, n = 1, 2... (2.4.14)

which is null by the limit theorems. By the squeeze rule, it follows that (ncn) is also null.

For (npcn), where p > 0 and 0 < c < 1 we write:

npcn = (ndn)p, n = 1, 2... (2.4.15)

where 0 < d = c1/p < 1. We have shown that (ndn) is null, so that by the power rule (npcn)
is also null.

(iv) Again, as in the case of (ii) wemay consider only positive values of c. Let us choose an integer
m such thatm+ 1 > c, so that for n > m+ 1:

cn

n!
=

n∏
k=1

c

k
≤ c

n

m∏
k=1

c

k
= cm

m!
· c
n

(2.4.16)

Since 1
n is null, we have that cm

m! ·
c
n too is null, since cm+1

m! is just a constant. By the squeeze
rule, it follows that cn

n! is null, as desired.

(v) We can write:
np

n!
= np

2n
· 2n

n!
(2.4.17)

so that
(

np

n!

)
is null by the limit theorem (iii).

■

Example. Consider the sequence described by

an = 1
3n4(2n− 1)1/3 , n = 1, 2, ... (2.4.18)
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We can rewrite the terms of this sequence as:

an = 1
3
· 1
n4 ·

(
(−1)n

n4 + 1

)1/3

(2.4.19)

We know that 1
n4 is null, since it is the first standard null sequence with p = 1. Moreover,

we have determined previously that (−1)n

n4+1 is null, so that by the power rule,
(

(−1)n

n4+1

)1/3

is

also null. Finally, we exploit the product rule to conclude that an is indeed null. ◀

Theorem (Squeeze rule for null sequences)
If (bn) is a null sequence of non-negative terms and:

|an| ≤ bn, ∀n = 1, 2, ... (2.4.20)

then (an) is null.

Proof. We apply the squeeze rule (which will be proven in the next section) with:

− bn ≤ an ≤ bn, ∀n = 1, 2, ... (2.4.21)

then since (−bn) and (bn) both converge to 0, then limn→∞ an = 0 as well. ■

Example. Consider the sequence:

an =
sin
(
n2)

n2 + 2n
, n = 1, 2, ... (2.4.22)

Then: ∣∣∣∣ sin
(
n2)

n2 + 2n

∣∣∣∣ ≤ ∣∣∣∣ 1
n2 + 2n

∣∣∣∣ (2.4.23)

Since both n2 and 2n are positive:
1

n2 + 2n
<

1
n2 (2.4.24)

so: ∣∣∣∣ sin
(
n2)

n2 + 2n

∣∣∣∣ ≤ 1
n2 (2.4.25)

However, 1
n2 is one of the standard null sequences, so we find by the Squeeze rule that an is

also null.

◀
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2.5 Limit theorems for Convergent sequences

Definition (Bounded and unbounded sequence)
A sequence (an) is bounded if ∃M such that:

|an| ≤M, n = 1, 2, ... (2.5.1)

and is unbounded otherwise

Example. The sequence an = 2n+1
n for n = 1, 2, ... is bounded. Indeed, for all natural

numbers nwe find that:
an = 2n+ 1

n
= 2 + 1

n
≤ 2 + 1 = 3 (2.5.2)

since 1
n ≤ 1.

◀

Example. Consider the sequence bn = (−1)nn, for n = 1, 2, ..., then suppose there exists
someM such that:

|bn| = |n| = n < M (2.5.3)

for all n = 1, 2, ..., which is clearly a contradiction since N has no maximum. Consequently,
bn is unbounded.

◀

Proposition (Boundedness of convergent sequences)
Convergent sequences are bounded, and unbounded sequences are divergent.

Proof. Suppose (sn) is a convergent sequence with limn→∞ sn = s. Then we can apply the Defini-
tion 6.1 with ϵ = 1 to find:

n > N =⇒ |sn − s| < 1 =⇒ |sn| < 1 + |s| (2.5.4)

where we use the triangle inequality. Let us now define M = max{|s| + 1, |s1|, ..., |sN |} so that
|sn| ≤M for all n, proving the boundedness of convergent sequences.

The converse follows immediately. ■

Remark. Note that it does not suffice to show that |sn| < 1 + |s|, because this only proves that the
terms of the sequence after sN are bounded. We must introduceM in order to prove boundedness
for the initial N terms.

Also note that the choice ϵ = 1 was completely arbitrary.

− 24 −



2.5. LIMIT THEOREMS FOR CONVERGENT SEQUENCES

Example. Consider the sequence an = n(−1)n for n = 1, 2, .... Then, for n even:

|an| = n(−1)n

= n (2.5.5)

which is unbounded, since N is also unbounded. Instead for n odd:

|an| =
1
n
< 1 (2.5.6)

which is bounded. Consequently, an overall is unbounded, and thus divergent.

◀

Example. Consider the sequence an = n2+n
n2+1 for n = 1, 2, .... Then

n2 + n

n2 + 1
≤ n2 + n2

n2 = 2 (2.5.7)

so the sequence is bounded. Moreover,

lim
n→∞

n2 + n

n2 + 1
= lim

n→∞

1 + 1
n

1 + 1
n2

= 1 (2.5.8)

so it also converges.

◀

Theorem 6.3 (Limit theorems)
Let (sn), (tn) sequences converging to s, t respectively, and let α ∈ R. Then:
(i) limn→∞(ksn) = k limn→∞ sn

(ii) limn→∞(sn + tn) = limn→∞ sn + limn→∞ tn
(iii) limn→∞(sntn) = (limn→∞ sn)(limn→∞ tn)
(iv) limn→∞

(
tn

sn

)
= limn→∞ tn

limn→∞ sn
if limn→∞ sn 6= 0 and sn 6= 0 for all n

Proof. sddg

(i) If k = 0 then the result is trivial. If we assume that k 6= 0, and we let ϵ > 0, then since
limn→∞ sn = s for some s ∈ R there exists N such that:

n > N =⇒ |sn − s| <
ϵ

|k|
(2.5.9)

Then:
n > N =⇒ |ksn − ks| < ϵ (2.5.10)

showing that limn→∞(ksn) = k limn→∞ sn as desired.

(ii) Let ϵ > 0, we need to show that for appropriately large n:

|sn + tn − (s+ t)| < ϵ (2.5.11)
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Note however that since limn→∞ sn = s, there exists N1 such that:

n > N1 =⇒ |sn − s| <
ϵ

2
(2.5.12)

and similarly for tn:
n > N2 =⇒ |tn − t| <

ϵ

2
(2.5.13)

so that, letting N = max{N1, N2}

n > N =⇒ |sn − s|+ |tn − t| < ϵ (2.5.14)

Finally, we make use of the triangle inequality:

n > N =⇒ |sn + tn − (s+ t)| ≤ |sn − s|+ |tn − t| < ϵ (2.5.15)

as desired.

(iii) Firstly note that:

|sntn − st| = |sntn − snt+ snt− st| ≤ |sn| · |tn − t|+ |t| · |sn − s| (2.5.16)

Let ϵ > 0, by theorem 6.2 sn must be bounded, so we can findM > 0 such that |sn| ≤ M for
all n. Since tn converges:

n > N1 =⇒ |tn − t| <
ϵ

2M
(2.5.17)

and similarly for sn:
n > N2 =⇒ |sn − s| <

ϵ

2(|t|+ 1)
(2.5.18)

where we used |t|+ 1 since it could be the case that |t| = 0. SupposeN = max{N1, N2} then:

n > N =⇒ |sntn − st| ≤M
ϵ

2M
+ |t| ϵ

2(|t|+ 1)
< ϵ (2.5.19)

as desired, limn→∞(sntn) = (limn→∞ sn)(limn→∞ tn).

(iv) We begin by proving the following lemma:

Lemma. If sn converges to s 6= 0 and sn 6= 0 for all n, then 1
sn

converges to 1
s .

To prove this lemma, let ϵ > 0. In the last example of the previous section, we showed that
there existsm > 0 such that |sn| ≥ m for all n. The convergence of sn means that there exists
N so that:

n > N =⇒ |s− sn| < ϵm|s| (2.5.20)

Then n > N implies: ∣∣∣∣ 1
sn
− 1
s

∣∣∣∣ = |s− sn|
|sns|

≤ |s− sn|
m|s|

≤ ϵ (2.5.21)

as desired.

We may finally use this lemma to prove the main result:

lim
n→∞

tn
sn

= lim
n→∞

1
sn
tn = t

s
(2.5.22)
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as desired.

■

Remark. Note that we also impose the condition sn 6= 0 in order for the reciprocal sequence 1
sn

to
be well-defined.

Example. Consider the sequence:

an = n2 + 2n

3n + n3 (2.5.23)

We can factorize out 2n on the numerator and 3n on the denominator to find that:

an = 2n

3n
·

n2

2n + 1
n3

3n + 1
=
(

2
3

)n

·
n2

2n + 1
n3

3n + 1
(2.5.24)

Hence:

lim
n→∞

an = lim
n→∞

[(
2
3

)n

·
]

n2

2n + 1
n3

3n + 1
(2.5.25)

= lim
n→∞

(
2
3

)n

·
limn→∞

n2

2n + 1
limn→∞

n3

3n + 1
(2.5.26)

= lim
n→∞

(
2
3

)n

(2.5.27)

= 0 (2.5.28)

so an is a null sequence.

◀

Theorem (Squeeze rule)
Let (an), (bn) and (cn) be convergent sequences such that:
(i) bn ≤ an ≤ cn for n = 1, 2, ...
(ii) limn→∞ bn = limn→∞ cn = l

Then limn→∞ an = l.

Proof. From condition (ii) we have that for all ϵ > 0 then there exists N1 and N2 such that

l − ϵ < bn < l + ϵ, ∀n > N1 (2.5.29)
l − ϵ < cn < l + ϵ, ∀n > N2 (2.5.30)

Then, it follows from condition (i) that:

l − ϵ < bn ≤ an ≤ cn < l + ϵ, ∀n > N (2.5.31)

where N = max{N1, N2}, so that limn→∞ an = l as desired. ■

− 27 −



2.5. LIMIT THEOREMS FOR CONVERGENT SEQUENCES

Example. Consider the sequence an = n1/n. Using the binomial theorem for n ≥ 2 and
x ≥ 0:

(1 + x)n ≥ n(n− 1)
2

x2 (2.5.32)

since all the other terms in the binomial expansion are positive. Substituting x =
√

2
n−1 we

find that: (
1 +

√
2

n− 1

)n

≥ n(n+ 1)
2

2
n− 1

= n (2.5.33)

implying that

n1/n ≤ 1 +
√

2
n− 1

, n = 2, 3, ... (2.5.34)

If we define bn to be:

b1 = 1 (2.5.35)

bn = 1 +
√

2
n− 1

, n = 2, 3, ... (2.5.36)

then we see that an ≤ bn for n = 1, 2, 3...Moreover, limn→∞ bn = 1. Indeed for all ϵ > 0:

|bn − 1| < ϵ ⇐⇒ n >
2
ϵ2

+ 1 = N > 1 (2.5.37)

so there exists some N such that |bn − 1| < ϵ. It is important that N > 1, since otherwise it
can be the case for some n > N that bn − 1 = 0.
It follows from the squeeze rule that:

lim
n→∞

n1/n = 1 (2.5.38)

◀

Proposition (Limit inequality)
If limn→∞ an = l, limn→∞ bn = m and:

an ≤ bn, ∀n = 1, 2, ... (2.5.39)

then l ≤ m.

Proof. Suppose that limn→∞ an = l, limn→∞ bn = m and an ≤ bn for n = 1, 2, .... If l > m then:

lim
n→∞

(an − bn) = l −m > 0 (2.5.40)

so that:
an − bn >

1
2

(l −m) (2.5.41)
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Indeed, if we take ϵ = l
2 then it follows that:

|(an − bn)− (l −m)| < l

2
=⇒ − l −m

2
< (an − bn)− (l −m) < l −m

2
(2.5.42)

=⇒ l −m
2

< an, ∀n > N (2.5.43)

for some N . However, we also have that an − bn ≤ 0 so that:

l −m ≤ 0 =⇒ l ≤ m (2.5.44)

a contradiction.

Proposition (Limit uniqueness)
The limit of a sequence is unique.

Suppose limn→∞ an = l and limn→∞ an = m, then using the Limit inequality rule we get that l ≤ m
andm ≤ l, giving l = m as desired. ■

Theorem (Convergence of absolute value)
If limn→∞ an = l then limn→∞ |an| = |l|.

Proof. Using the triangle inequality:

||an| − |l|| ≤ |an − l| (2.5.45)

Therefore, for all ϵ > 0, there exists N such that:

|an − l| ≤ ϵ, ∀n > N (2.5.46)

implying that:
||an| − |l|| ≤ ϵ, ∀n > N (2.5.47)

It follows that limn→∞ |an| = |l| as expected. ■

2.6 Divergent sequences

Definition (Infinite limit)
A sequence (an) tends to infinity if:

∀M > 0, ∃Ns.t.an > M, ∀n > N (2.6.1)

We write that an →∞.
The sequence (an) tends to minus infinity if:

− an →∞ (2.6.2)
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Theorem (Reciprocal rule)
If (an) is eventually positive, and

(
1

an

)
is a null sequence then an →∞.

Proof. LetM > 0, then since an is eventually positive:

an > 0, ∀n > N1 (2.6.3)

Moreover, 1
an

is null so that taking ϵ = 1
M :∣∣∣∣ 1
an

∣∣∣∣ < 1
M∗

, ∀n > N2 (2.6.4)

Taking N = max{N1, N2} then:
0 < 1

an
<

1
M
, ∀n > N (2.6.5)

implying:
an > M, ∀n > N (2.6.6)

as desired. ■

Example. Consider the sequence an = n! − 10n for n = 1, 2, ... The dominant term is n!,
so let us write:

an = n!
(

1− 10n

n!

)
, n = 1, 2, ... (2.6.7)

Therefore, an is indeed eventually positive, since 10n < n! is true for n ≥ 25. Then:

lim
n→∞

1
an

= lim
n→∞

1
n!

1
1− 10n

n!
= 0 · 0

1− 0
= 0 (2.6.8)

By the reciprocal rule we see that an →∞.

◀

Proposition (Properties of diverging sequences)
If (an) and (bn) both tend to infinity, then:
(i) (an + bn) tends to infinity
(ii) (αan) tends to infinity
(iii) (anbn) tends to infinity

Theorem (Squeeze theorem for sequences tending to ∞)
If (bn) tends to infinity and an ≥ bn for n = 1, 2, ... then (an) tends to infinity.

Example. Consider the sequence an = 2n

n + 5n9, n = 1, 2, .... Then let us define bn = 2n

n

and cn = n9 so that:
an = bn + 5cn (2.6.9)
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Now bn →∞, since it is eventually positive for n ≥ 1 and:

lim
n→∞

1
bn

= lim
n→∞

n
(1

2

)n

= 0 (2.6.10)

where we used the standard null sequence (iii) with p = 1.
Similarly, cn →∞ since:

lim
n→∞

1
cn

= lim
n→∞

1
n9 = 0 (2.6.11)

wherewe used the standard null sequence (i)with p = 9. It then follows from the properties
of sequences tending to infinity that an →∞.
Alternatively, we could also note that:

an ≥
2n

n
(2.6.12)

but 2n

n →∞ so an →∞ by the squeeze rule.

◀

Definition (Subsequence) The sequence (ank
) is a subsequence of the sequence (an) if

(nk) is a strictly increasing sequence of positive integers.

Example. Consider the sequence an = n(−1)n then the odd subsequence is given by the
terms:

a2n+1 = 1
2n+ 1

(2.6.13)

whereas the even subsequence is given by:

a2n = 2n (2.6.14)

◀

Theorem (Subsequence divergence)
For any subsequence (ank

) of a sequence (an):
(i) if limn→∞ an = l then limn→∞ ank

= l.
(ii) if an →∞ then ank

→∞

Proof. sdfd

(i) Let ϵ > 0, then there exists N such that:

|an − l| < ϵ, ∀n > N (2.6.15)

TakingK such that nK ≥ N then:

nk ≥ nK ≥ N, ∀k > K (2.6.16)

− 31 −



2.6. DIVERGENT SEQUENCES

so that:
|ank

− l| < ϵ, ∀nk > N (2.6.17)

implying that limn→∞ ank
= limn→∞ an = l as desired.

(ii) LetM > 0, then there exists N such that:

an > M, ∀n > N (2.6.18)

TakingK such that nK ≥ N then:

nk ≥ nK ≥ N, ∀k > K (2.6.19)

so that:
ank

> M, ∀nk > N (2.6.20)

implying that ank
→∞ as desired.

■

Proposition (Subsequence rules)
The sequence (an) is divergent if (an) has two convergent subsequenceswith different limits.
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3.1 Introduction to Series

Definition (Series)
Let (an) be a sequence. Then the expression:

∞∑
i=m

ai (3.1.1)

an infinite series, and define by nth partial sum:

sn =
n∑

i=m

ai (3.1.2)

The series is said to be convergent to s if its sequence converges to s, that is if:

lim
n→∞

( n∑
i=m

ai

)
= s (3.1.3)

Otherwise it is said to be divergent.

Proposition (Geometric series)
The series of the form:

∞∑
k=0

arn (3.1.4)

for some constants a, r ∈ R are called geometric series, and converge to:

∞∑
k=0

arn = a

1− r
if |r| < 1 (3.1.5)

If a 6= 0 and |r| ≥ 1, then the geometric series diverges.

Proof. Lemma. For r 6= 1, the partial sums are given by:

sn =
n∑

k=0

ark = a
1− rn+1

1− r
(3.1.6)
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Indeed, note that if r 6= 1 then:

(1− r)
n∑

k=0

ark =
n∑

k=0

ark −
n∑

k=0

ark+1 (3.1.7)

= (a+ ar + ar2 + ...+ arn)− (ar + ar2 + ...+ arn + arn+1) (3.1.8)
= a+ arn+1 (3.1.9)

=⇒
n∑

k=0

ark = a
1− rn+1

1− r
(3.1.10)

as desired.

Hence, for |r| < 1, limn→∞ rn+1 = 0 so that limn→∞ sn = a
1−r . ■

Definition (Cauchy criterion)
A series

∑
an satisfies the Cauchy criterion if its partial sums form a Cauchy sequence:

∀ϵ > 0, ∃N such that m,n > N =⇒ |sn − sm| < ϵ (3.1.11)

3.2 Telescoping series
Telescoping series are series with terms of the form:

an = bn − bn+i (3.2.1)

for some natural number i. The partial sums of an are:

sn =
n∑

k=1

(bk − bn±i) (3.2.2)

= (b1 + ...+ bi+1 + bi+2 + ...+ bn)− (bi+1 + bi+2 + ...+ bi+n) (3.2.3)
= (b1 + b2 + ...+ bi + bn + bn+1 + ...+ bn+i) (3.2.4)

Telescoping series most naturally occur with rational series. We provide an example below.

Example. Consider the series:
∞∑

n=1

1
2n(2n+ 2)

(3.2.5)

We can expand the partial fraction as:

1
2n(2n+ 2)

= 1
2

(
1

2n
− 1

2n+ 2

)
(3.2.6)
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so that the partial sums turn into:

sn = 1
2

n∑
k=1

(
1
2k
− 1

2k + 2

)
(3.2.7)

= 1
2

[(1
2
− 1

4

)
+
(1

4
− 1

6

)
+ ...+

( 1
2n− 2

− 1
2n

)
+
( 1

2n
− 1

2n+ 2

))]
(3.2.8)

= 1
2

(
1
2
− 1

2n+ 2

)
= n

4(n+ 1)
(3.2.9)

We quickly see that the series does indeed converge:

lim
n→∞

sn = 1
4

(3.2.10)

◀

3.3 Manipulating series

Proposition (Linearity of convergent series)
Suppose that

∑∞
n=1 an = s and

∑∞
n=1 bn = t then:

∞∑
n=1

(λan + bn) = λs+ t ∀λ ∈ R (3.3.1)

Proof. The partial sums associated to the two series are:

sn =
n∑

k=1

ak and tn =
n∑

k=1

bk (3.3.2)

Then:
∞∑

k=1

(λan + bn) = (λa1 + b1) + (λa2 + b2) + ...+ (λan + bn) (3.3.3)

= λ(a1 + a2 + ...+ an) + (b1 + b2 + ...+ bn) (3.3.4)
= λsn + tn (3.3.5)

By theorem 6.3:
lim

n→∞
(λsn + tn) = λ lim

n→∞
sn + lim

n→∞
tn = λs+ t (3.3.6)

as desired, the series is convergent to:

∞∑
n=1

(λan + bn) = λs+ t (3.3.7)

■
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Example. Consider the series:

∞∑
n=1

((
− 3

4

)n

− 2
n(n+ 1)

)
=

∞∑
n=1

(
− 3

4

)n)
− 2

∞∑
n=1

1
n(n+ 1)

(3.3.8)

The first is a convergent geometric series since |r| = 3
4 < 1. It converges to:

∞∑
n=1

(
− 3

4

)n

=
− 3

4
1 + 3

4
= −3

7
(3.3.9)

Instead, the second series is a telescoping series whose partial sums can be expanded as:

sn =
n∑

n=1

1
n(n+ 1)

=
n∑

n=1

(
1
n
− 1
n+ 1

)
(3.3.10)

=
(

1− 1
2

)
+
(

1
2
− 1

3

)
+ ...+

(
1

n− 1
− 1
n

)
+
(

1
n
− 1
n+ 1

)
(3.3.11)

= 1− 1
n+ 1

= n

n+ 1
(3.3.12)

so that:
∞∑

n=1

1
n(n+ 1)

= lim
n→∞

sn = 1 (3.3.13)

Hence the original series converges to:

∞∑
n=1

((
− 3

4
)n − 2

n(n+ 1)

)
= −3

7
− 2 = −17

7
(3.3.14)

◀

Theorem (Non-null test)
If

∞∑
n=1

an is convergent, then (an) is a null sequence.

If (an) is not a null sequence, then
∞∑

n=1
an is divergent.

Proof. Note that the second line is true provided the first line is true.

Let sn be the nth partial sum of an. Since
∑
an converges, sn must also converge to some limit s.

Note that:
an = sn − sn−1 =⇒ lim

n→∞
an = lim

n→∞
sn − lim

n→∞
sn−1 = s− s = 0 (3.3.15)

so that an is indeed a null sequence. ■

Example. Consider the series:
∞∑

n=1

(−1)n+1n2

2n2 + 1
(3.3.16)
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and let us examine the sequence (an) given by:

an = (−1)n+1n2

2n2 + 1
(3.3.17)

Clearly, we can define a subsequence a2n as consisting of all even terms:

a2n = − n2

2n2 + 1
(3.3.18)

which is convergent to:

lim
n→∞

a2n = − lim
n→∞

1
2 + 1

n2

= 1
2 + limn→∞

1
n2

= 1
2

(3.3.19)

Therefore an is not a null sequence since it has a non-null subsequence, and thus the sum∑∞
n=1

(−1)n+1n2

2n2+1 diverges.

◀

3.4 Non-negative series
We ocntinue our study of series by examining those containing only positive terms.

Example. Consider the series
∞∑

n=1

1
n

(3.4.1)

known as the harmonic series. Let us write the first few terms as:
∞∑

n=1

1
n

= 1 + 1
2

+ 1
3

+ 1
4

+ 1
5

+ 1
6

+ 1
7

+ 1
8

+ ... (3.4.2)

= 1 + 1
2

+
(

1
3

+ 1
4

)
+
(

1
5

+ 1
6

+ 1
7

+ 1
8

)
+ ... (3.4.3)

Let (sn) be the sequence of partial sums of the harmonic series, and consider the subse-
quence (s2n)

s2 = 1 + 1
2

(3.4.4)

s4 = 1 + 1
2

+
(

1
3

+ 1
4

)
≥ 1 + 1

2
(3.4.5)

s8 = 1 + 1
2

+
(

1
3

+ 1
4

)
+
(

1
5

+ 1
6

+ 1
7

+ 1
8

)
(3.4.6)

s2k =
2k∑

n=1

1
n
≥ 1 + 1

2
+ 1

2
+ ...+ 1

2
= 1 + 1

2
k (3.4.7)

Since 1+ 1
2k →∞ as k →∞ it follows from the Squeeze rule that s2k is a divergent sequence,

and therefore non-null. The harmonic series therefore diverges.
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◀

Example. Consider instead the series:

∞∑
n=1

1
n2 (3.4.8)

Consider the term: 1
k2 <

1
k(k − 1)

= 1
k − 1

− 1
k
k > 1 (3.4.9)

Therefore the kth partial sum of the series is:

sn =
n∑

k=1

1
k2 < 1 +

n∑
k=2

(
1

k − 1
− 1
k

)
= 2− 1

n
< 2 (3.4.10)

Therefore, (sn) is an increasing monotonic series that is bounded above. By the monotone
convergence theorem it converges, so that:

∞∑
n=1

1
n2 = lim

n→∞
sn converges (3.4.11)

◀

Theorem (Comparison test)
If 0 ≤ an ≤ bn for n ∈ N and

∑
bn converges, then

∑
an converges too.

If instead
∑
an diverges then

∑
bn diverges too.

Example. Consider the series:
∞∑

n=1

1
n3 (3.4.12)

Then, we may write that:
0 ≤ n2 ≤ n3 (3.4.13)

so that
0 ≤ 1

n3 ≤
1
n2 (3.4.14)

Since
∑∞

n=1
1

n2 is convergent, it follows from the Comparison test that
∑∞

n=1
1

n3 also con-
verges.

◀

Example. Consider the series:
∞∑

n=1

cos2 2n
n3 (3.4.15)
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Since 0 ≤ cos2(2n) ≤ 1 we find that:

0 ≤ cos2 2n
n3 ≤ 1

n3 (3.4.16)

Since
∑∞

n=1
1

n3 converges, it follows from the Comparison test that
∑∞

n=1
cos2 2n

n3 also con-
verges.

◀

Theorem (Limit comparison test)
Suppose

∑∞
n=1 bn converges. Suppose that

∑∞
n=1 an and

∑∞
n=1 an are positive term series,

such that
lim

n→∞

an

bn
= L 6= 0 (3.4.17)

If
∑∞

n=1 bn is convergent, then
∑∞

n=1 an is convergent.
If
∑∞

n=1 bn is divergent, then
∑∞

n=1 an is divergent.

Proof. Since an

bn
is convergent, it must be bounded:

an

bn
≤ K =⇒ an ≤ Kbn, n = 1, 2, ... (3.4.18)

Since
∑∞

n=1 bn converges, it follows that
∑∞

n=1 Kbn also converges, by the linearity of series. Hence,
by the comparison test,

∑∞
n=1 an converges.

If instead
∑∞

n=1 bn diverges, then note that:

lim
n→∞

bn

an
= 1
L
6= 0 (3.4.19)

since L 6= 0. Then:
bn

an
≤ K =⇒ bn ≤ Kan, n = 1, 2, ... (3.4.20)

If
∑∞

n=1 an converges, it follows that
∑∞

n=1 Kan also converges, by the linearity of series. Hence:

∞∑
n=1

an converges =⇒
∞∑

n=1
bn converges (3.4.21)

which is equivalent to its converse:

∞∑
n=1

bn diverges =⇒
∞∑

n=1
an diverges (3.4.22)

as desired. ■
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Example. Consider the series:

∞∑
n=1

1
n3 + n

=
∞∑

n=1
an (3.4.23)

Then, define:
bn = 1

n3 (3.4.24)

so that:
lim

n→∞

an

bn
= lim

n→∞

n3

n3 + n
= lim

n→∞

1
1 + 1

n2

= 1 6= 0 (3.4.25)

Therefore, by the Limit comparison test, it follows that since
∑∞

n=1 bn converges as was
shown earlier,

∑∞
n=1

1
n3+n must also converge.

◀

Example. Consider the series:

∞∑
n=1

n+ 4
2n3 − n+ 1

=
∞∑

n=1
an (3.4.26)

Then we may define
bn = 1

n2 (3.4.27)

so that:
lim

n→∞

an

bn
= lim

n→∞

n3 + 4n2

2n3 − n+ 1
= lim

n→∞

1 + 4
n

2− 1
n3 + 1

n2

= 1
2
6= 0 (3.4.28)

However, it was shown that
∑∞

n=1
1

n2 is convergent, so that
∑∞

n=1
n+4

2n3−n+1 also converges.
◀

Theorem (Ratio test) Suppose∑∞
n=1 an is a series with positive terms. Then:

(i) if limn→∞
an+1

an
= l with 0 ≤ l < 1 then

∑∞
n=1 an converges

(ii) if limn→∞
an+1

an
= l with l > 1 then

∑∞
n=1 an diverges

(iii) if limn→∞
an+1

an
=∞ then

∑∞
n=1 an diverges.

Proof. sdgdg

(i) Since 0 ≤ l < 1 we can choose ϵ > 0 such that

l + ϵ < 1 (3.4.29)

If we let r = l + ϵ, then since r > l there exists N such that:
an+1

an
≤ r, ∀n ≥ N (3.4.30)
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Then:
an

aN
=

N∏
k=n−1

ak+1

ak
≤

N∏
k=n−1

r = rn−N (3.4.31)

Hence:
an ≤ aNr

n−N (3.4.32)

Note however that:
∞∑

n=1
aNr

n−N (3.4.33)

is a geometric series, and therefore converges. From the comparison test, it follows that
∑∞

n=1
also converges.

(ii) and (iii) Suppose that:
an+1

an
→∞ or an+1

an
→ l (3.4.34)

with l > 1 then there exists N such that:
an+1

an
≥ 1, ∀n ≥ N (3.4.35)

Therefore:
an

aN
=

N∏
k=n−1

ak+1

ak
≤ 1 (3.4.36)

implying that:
an ≥ aN > 0, ∀n ≥ N (3.4.37)

(an) therefore cannot be a null sequence, and hence
∑∞

n=1 an must diverge.

■

Example. Consider the series:

∞∑
n=1

(2n)!
nn

=
∞∑

n=1
an (3.4.38)

Then:

an+1

an
= (2n+ 2)!

(n+ 1)n+1 ·
nn

(2n)!
(3.4.39)

= (2n+ 2)(2n+ 1) nn

(n+ 1)n+1 (3.4.40)

= (2n+ 2)(2n+ 1)
n+ 1

1
(1 + 1

n )n
(3.4.41)

Therefore:
lim

n→∞

an+1

an
= 2
e

lim
n→∞

(2n+ 1) =∞ (3.4.42)

so
∑∞

n=1
(2n)!
nn diverges. ◀
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Proposition (Standard series)
The following series converge:
(i)

∞∑
n=1

1
np for p ≥ 2

(ii)
∞∑

n=1
cn for 0 ≤ c < 1

(iii)
∞∑

n=1
npcn for p > 0 and 0 ≤ c < 1

(iv)
∞∑

n=1

cn

n! for c ≥ 0

The following series is divergent:
(v)

∞∑
n=1

1
np for 0 < p ≤ 1

Proof. sdgd

(i) Note that if p ≥ 2 then:
1
np
≤ 1
n2 , n = 1, 2, ... (3.4.43)

and since
∑∞

n=1
1

n2 converges, by the Comparison test the series
∑∞

n=1
1

np must also converge.

(ii) This is the standard geometric series with common ratio r = c, which converges provided
0 ≤ c < 1.

(iii) Let
√
c = b, then:

an = (npbn)bn, n = 1, 2, ... (3.4.44)

Since 0 ≤ b < 1, npbn is a standard null sequence. Setting ϵ = 1, there exists N such that we
have:

npbn < 1, ∀n > N (3.4.45)

and thus:
ab < bn,∀n > N (3.4.46)

However,
∑∞

n=1 bn is a convergent geometric series, so by the Comparison test
∑∞

n=1 an con-
verges.

(iv) If c = 0, then convergence is trivial. Suppose c 6= 0, then:

an+1

an
= cn+1

(n+ 1)!
· c

n

n!
= c

n+ 1
(3.4.47)

which as n→ 0 converges to 0. We then deduce from the ratio test that
∞∑

n=1

cn

n! converges.

(v) Note that if p ≤ 1 then:
1
np
≥ 1
n2 , n = 1, 2, ... (3.4.48)

and since
∑∞

n=1
1
n diverges, by the Comparison test the series

∑∞
n=1

1
np must also diverge.

■
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3.5 Series with positive and negative terms

Definition (Absolute convergence)
The series

∑∞
n=1 an is absolutely convergent if

∑∞
n=1 |an| is convergent.

Theorem (Absolute convergence test)
If
∑∞

n=1 an is absolutely convergent, then
∑∞

n=1 an is convergent.

Proof. Suppose that
∑∞

n=1 |an| converges, and let us define two new series
∑∞

n=1 bn and
∑∞

n=1 cn

such that:

bn =

{
an, if an ≥ 0
0, if an < 0

, and cn =

{
0, if an ≥ 0
−an, if an < 0

(3.5.1)

then both bn and cn are non-negative. Moreover, bn ≤ |an| and cn ≤ |an| for n = 1, 2, ..., so by the
Comparison theorem, since

∑∞
n=1 |an| converges, it follows that

∑∞
n=1 bn and

∑∞
n=1 cn converge.

Thus:
∞∑

n=1
an =

∞∑
n=1

(bn − cn) =
∞∑

n=1
bn −

∞∑
n=1

cn (3.5.2)

also converges. ■

Example. Consider the series:
∞∑

n=1

(−1)n+1n

n3 + 1
(3.5.3)

and its absolute analogue:
∞∑

n=1

n

n3 + 1
(3.5.4)

Now note that if we define an = n
n3+1 and bn = 1

n2 then:

lim
n→∞

an

bn
= lim

n→∞

n3

n3 + 1
= 1 6= 0 (3.5.5)

By the limit comparison theorem, since
∑∞

n=1
1

n2 converges, it follows that
∑∞

n=1
n

n3+1 con-
verges. Hence by the absolute convergence test

∑∞
n=1

(−1)n+1n
n3+1 must also converge. ◀

Proposition (Triangle inequality) If∑∞
n=1 an is absolutely convergent:∣∣∣∣∣

∞∑
n=1

an

∣∣∣∣∣ ≤
∞∑

n=1
|an| (3.5.6)

Proof. Suppose that
∑∞

n=1 |an| converges, and let us define two new series
∑∞

n=1 bn and
∑∞

n=1 cn

such that:

bn =

{
an, if an ≥ 0
0, if an < 0

, and cn =

{
0, if an ≥ 0
−an, if an < 0

(3.5.7)
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then both bn and cn are non-negative. Then, since:

∞∑
n=1

an =
∞∑

n=1
bn −

∞∑
n=1

cn (3.5.8)

we find that
−

∞∑
n=1

cn ≤
∞∑

n=1
an ≤

∞∑
n=1

bn (3.5.9)

Thus, since cn ≤ |an| and bn ≤ |an|we find

−
∞∑

n=1
|an| ≤

∞∑
n=1

an ≤
∞∑

n=1
|an| =⇒

∣∣∣∣∣
∞∑

n=1
an

∣∣∣∣∣ ≤
∞∑

n=1
|an| (3.5.10)

as required. ■

Example. Using the absolute convergence test it is immediate that:

∞∑
n=1

(−1)n+1

2n
(3.5.11)

converges. Note that: ∣∣∣∣∣
∞∑

n=1

(−1)n+1

2n

∣∣∣∣∣ ≤
∞∑

n=1

1
2n

= 1 (3.5.12)

so it follows that the value at which the sum converges must lie in the interval [−1, 1]. ◀

Theorem (Alternating series test)
Let an = (−1)n+1bn for n = 1, 2, ... then if (bn) is a decreasing null sequence with positive
terms:

∞∑
n=1

an converges (3.5.13)

Proof. Let us write the partial sum s2k of the series as:

s2k = (b1 − b2) + (b3 − b4) + ...+ (b2k−1 + b2k) (3.5.14)

Since (bn) is decreasing, each bracket evaluates to a non-negative value. Consequently (s2n) is an
increasing sequence. Moreover:

s2k = b1 − (b2 − b3)− (b4 − b5)− ...− (b2k−2 − b2k−1)− b2k ≤ b1 (3.5.15)

By the monotone convergence theorem it follows that

lim
n→∞

s2n = s (3.5.16)

for some s. Also:

s2k−1 = b1 − (b2 − b3)− (b4 − b5)− ...− (b2k−2 − b2k−1) = s2k + b2k (3.5.17)
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so that:
lim

n→∞
s2k+1 = lim

n→∞
s2k + lim

n→∞
b2k = s (3.5.18)

where since bn is null, all its subsequences are null. Since both the odd and even subsequences
converge to s, we find that sn → s =⇒

∑∞
n=1 an = s. ■

Example. Consider the sequence:

∞∑
n=1

(−1)n+1

n+
√
n

(3.5.19)

We can write its terms as:

an = (−1)n+1

n+
√
n

= (−1)n+1 1
n+
√
n

= (−1)n+1bn (3.5.20)

Now:
(i) bn = 1

n+
√

n
≥ 0 for n = 1, 2, ...

(ii) Since:
1

n+
√
n
≤ 1
n

(3.5.21)

and 1
n is a null sequence, by the Squeeze theorem (bn) is a null sequence.

(iii) (bn) is decreasing, since
(

1
bn

)
= n+

√
n is increasing. Hence, by the alternating test:

∞∑
n=1

(−1)n+1

n+
√
n

(3.5.22)

converges.

◀

The sequence (an) is divergent if at least one of its subsequences tends to infinity or minus infin-
ity.

The above proposition follows immediately from writing the converse of the subsequence diver-
gence theorem.

Example. Consider the sequence an = n
3 −

⌊
n
3
⌋
for n = 1, 2, .... Then the subsequence:

a3n = n− bnc = 0 (3.5.23)

so limn→∞ a3n = 0. Instead:
a3n+1 = n+ 1

3
− n = 1

3
(3.5.24)

so limn→∞ a3n+1 = 1
3 . Since an has two subsequences converging to different values, we

can conclude that an is divergent. ◀
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Theorem (Convergent subsequence theorem)Let (an) bemade up of two subsequences
(amk

) and (ank
) which tend to the same limit l. Then:

lim
n→∞

an = l (3.5.25)

Proof. Let ϵ > 0, then there existsK1 andK2 such that:

|amk
− l| < ϵ, ∀k > K1 (3.5.26)

|ank
− l| < ϵ, ∀k > K2 (3.5.27)

If we let N = max{K1,K2} then:
|an − l| < ϵ, ∀k > N (3.5.28)

since for all n > N , an = amk
or an = ank

, in which case the inequality is satisfied since N ≥ K1
and N ≥ K2. ■

3.6 Monotone convergence theorem

Theorem (Monotone convergence theorem)
If the sequence (an) is either:
(i) increasing and bounded above
(ii) decreasing and bounded below

then (an) is convergent.

Proof. Suppose (an) is bounded above, so that max{an : n = 1, 2, ...} = l, and let ϵ > 0. Then there
exists an integer N such that

aN > l − ϵ, ∀n > N (3.6.1)

since otherwise l− ϵwould be an upper bound of an. Since an is increasing, an ≥ aN for n > N so
that:

an > l − ϵ ⇐⇒ l − an < ϵ, ∀n > N (3.6.2)

Hence:
|an − l| = l − an < ϵ, ∀n > N (3.6.3)

proving that (an) converges to l. ■

Moreover, note that if (an) is increasing but not bounded above, then an → ∞. Indeed, if it did
converge to some value, then for any ϵ > 0 there exists N such that:

|an − l| < ϵ, ∀n > N (3.6.4)

but since (an) is increasing but not bounded above, we can use the triangle inequality to write
that:

|an| < ϵ+ |l|, ∀n > n (3.6.5)
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proving boundedness for all terms after N . If we define M = max{|a1|, |a2|, ..., |aN |, 1 + |l|}
then:

|an| ≤M (3.6.6)

which is a contradiction, since it was assumed an is unbounded.

We may restate this theorem as follows:

Theorem (Monotonic sequence theorem) A monotonic sequence is either convergent
or diverges to∞.
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4.1 Real functions

Definition (Real function)
LetA ⊆ R and f : A→ R is a bijective function. Then the inverse function f−1 : Im(A)→ A

and has rule:
f−1(f(x)) = x, ∀x ∈ A (4.1.1)

Example. Consider the function:

f(x) = 1
1− x

, ∀x ∈ (−∞, 1) (4.1.2)

Let’s solve the equation y = f(x).

y = 1
1− x

⇐⇒ 1
y

= 1− x ⇐⇒ x = 1− 1
y

(4.1.3)

so every value of y ∈ Im(f) is the image of one x ∈ A, showing that f is bijective, and thus
invertible. Its inverse is clearly:

f−1(x) = 1− 1
x

(4.1.4)

To determine the domain, we firstly find the image of f . Since x < −1, we must have that:

Im(f) = f(A) =
{

1
1− x

: ∀x < −1
}

= (0,∞) (4.1.5)

so the domain of f−1 must be (0,∞).

◀

Unfortunately, often times it is hard to solve y = f(x9) for x. In such instances, one can use the
following theorem to prove that a function is bijective.

Theorem (Invertibility of monotonic functions)
If a function f is strictly increasing or strictly decreasing on some interval A, then it is in-
vertible on A.
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Example. Consider the function:

f(x) = x5 + x− 1, ∀x ∈ R (4.1.6)

If x1 < x2, then x5
1 < x5

2 so:

x5
1 + x1 < x5

2 + x2 =⇒ x5
1 + x1 − 1 < x5

2 + x2 =⇒ f(x1) < f(x2) (4.1.7)

Thus, f(x) is strictly increasing, and thus invertible. ◀

4.2 Continuity
Consider some real function f , one important question to ask about this function is whether or
not it has any weird gaps, jumps, whether its graph can be drawn without lifting the pen from the
paper.

Intuitively, we can define continuity as a property of a function f such that if (xn) is any sequence
on its domain that tends to a, then f(xn) tends to f(a).

In the case of a jump for example, xn → a, yet f(xn) has no limit, because the subsequence f(xn)
with xn < a and the subsequence f(xn) with xn > a do not converge to the same value.

Definition (Continuity)
A function f : A → R is continuous at a ∈ A if ∀(xn) ∈ A such that xn → a, we have
f(xn)→ f(a).
If f is not continuous at a, it is discontinuous at a.
We say that f is continuous on A if it is continuous for all points in A.

Example. Consider the function:

f(x) = x3 − 2x2 (4.2.1)

at the point a = 2. Consider any sequence xn → 2, then:

f(xn) = x3
n − 2x2

n → 23 − 2 · 22 = 0 (4.2.2)

using the limit combination properties. Moreover, f(2) = 0 thus f is indeed continuous at
a = 2. ◀

Example. Consider the function:
f(x) = bxc (4.2.3)

at the point a = 1. Consider the sequence xn = 1− 1
n , so that xn → 1. Then:

f(xn) =
⌊

1− 1
n

⌋
= 0 (4.2.4)

since for any n ≥ 1, 1 − 1
n < 1 and thus

⌊
1− 1

n

⌋
= 0. However, f(1) = 1 6= 0, thus the
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function is discontinuous at a = 1. ◀

Example. Consider the function:

f(x) =

{
sin 1

x , x 6= 0
0, x = 0

(4.2.5)

Note that:
sin
(

2n+ 1
2

)
π = 1 (4.2.6)

so if we define xn = 1

(2n+ 1
2

)
π

then:

sin xn → 1 6= 0 = f(0) (4.2.7)

so we see that f is discontinuous at x = 0. ◀

Example. Consider the function:

f(x) = |x|, ∀x ∈ R (4.2.8)

Consider any a ∈ R and let (xn) be any sequence in R such that xn → a as n → ∞. Now
using the triangle inequality:

|xn − a| ≥ ||xn| − |a||, n = 1, 2, ... (4.2.9)

and since xn−a is a null sequence, wemust have that |xn|−|a| is also a null sequence. Thus,
|xn| → |a| = f(a) as desired. Thus f is continuous everywhere on R. ◀

Example. Consider the function:

f(x) =
√
x, ∀x ∈ [0,∞) (4.2.10)

Consider any a ∈ [0,∞) and let (xn) be any sequence in R such that xn → a as n → ∞.
Now since xn − a is a null sequence, |xn − a| is also a null sequence, and by the power rule√
|xn − a|must also be a null sequence.

Also note that in unit D1 we derived:√
|xn − a| ≥ |

√
xn −

√
a| (4.2.11)

and thus
√
xn −

√
a is also a null sequence. Thus, √xn →

√
a = f(a) as desired. Thus f is

continuous everywhere on R. ◀
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4.3 Properties of continuous functions

Proposition (Combination of continuous functions)
Suppose f, g are continuous functions at a, then:
(i) f + g

(ii) αf, ∀α ∈ R

(iii) fg

(iv) f/g is g(a) 6= 0
(v) f ◦ g

Proof. We prove (v). Suppose f is continuous at a and g is continuous at f(a). If f has domain A
and g has domain B, so that the domain of g ◦ f is:

C = {x ∈ A : f(x) ∈ B} 3 a (4.3.1)

We know that f(xn) → a for all sequences (xn) ∈ A, implying that (f(xn)) ∈ B. Moreover, we
know that g is continuous at f(a) so that g(f(xn))→ g(f(a)), as desired. ■

The following theorem results immediately

Theorem (Continuity of polynomials and their rationals)
The following are continuous:
(i) any polynomial p(x) = a0 + a1x+ ...+ anx

n

(ii) any rational function r(x) = p(x)
q(x) where p, q are polynomials (overR−{x : q(x) = 0}).

Example. Let’s prove that:

f(x) =
√
x2 + 2x+ 2− 3x

x4 + 4
, ∀x ∈ R (4.3.2)

is continuous. To do so, first note that x2 + 2x + 2 is a polynomial, and thus continuous.
Moreover, it is always positive, since it has no real roots. Therefore, if we define h(x) =
x2 + 2x + 2, h is continuous on R, and g(x) =

√
x is continuous on [0,∞). Thus, g(h(x)) is

also continuous on R.
Similarly, e(x) = x4 + 4 is continuous everywhere on R since it is a polynomial, and has
non-zero values, since x4 = −4 has no real roots. Therefore, if we define d(x) = 3x

x4+4
must also be continuous on R, since 3x and x4 + 4 are (non-zero) polynomials. Hence,
f(x) = g(h(x)) + d(x) is continuous on R by the combination rules. ◀

Theorem (Squeeze rule)
Let f, g, h be defined on an open interval I and let a ∈ I . If:
(i) g(x) ≤ f(x) ≤ h(x) for x ∈ I
(ii) g(a) = f(a) = h(a)
(iii) g, h are continuous at a
then f is continuous at a.
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Proof. Suppose that f, g, h satisfy these conditions. Since xn → a, there must exist N such that:

xn ∈ (a− ϵ, a+ ϵ) ⊆ I, ∀n > N (4.3.3)

Hence by condition 1:
g(xn) ≤ f(xn) ≤ h(xn) (4.3.4)

Condition 2,3 imply that:
lim

n→∞
g(xn) = lim

n→∞
h(xn) = f(a) (4.3.5)

so by the Squeeze rule of sequences, limn→∞ f(xn) = f(a), and f is continuous at a. ■

Example. Consider the function:

f(x) =

{
x2 cos 1

x2 , x 6= 0
0, x = 0

(4.3.6)

Then, we know that:
− 1 ≤ cos 1

x2 ≤ 1, x 6= 0 (4.3.7)

so that:
− x2 ≤ x2 cos 1

x2 ≤ x
2, x 6= 0 (4.3.8)

Now, since −x2 = 0 ≤ f(0) = 0 ≤ 0 = x2, we may assert that:

g(x) ≤ f(x) ≤ h(x) (4.3.9)

where g(x) = −x2 and h(x) = x2. Moreover, g(0) = h(0) = f(0) = 0, and since g, h are
polynomials they are continuous. Thus by the squeeze rule f must be continuous at x = 0.

◀

Theorem (Glue rule)
Let f be defined on an open interval I and let a ∈ I . If h, g are functions satisfying:
(i) f(x) = g(x) for x ∈ I, x < a, and f(x) = h(x) for x ∈ I, x > a

(ii) f(a) = g(a) = h(a)
(iii) g, h are continuous at a
then f is continuous at a.

Proof. Suppose f, g, h satisfy the above conditions. Then:

xn ∈ (a− ϵ, a+ ϵ) ⊆ I, ∀n > N (4.3.10)

since xn → a. We define (xn)∞
N , consists of two subsequences (xmk

) and (xnk
) satisfying:

xmk
< a, and xnk

≥ a (4.3.11)

The conditions give:

g(xmk
)→ g(a) = f(a), and h(xnk

)→ h(a) = g(a) (4.3.12)
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so that:
f(xmk

)→ f(a), and f(xnk
)→ f(a) (4.3.13)

Therefore, f(xn) consists of two subsequences convergent to f(a), and thus f(xn) → f(a), as de-
sired. ■

Example. Consider:

f(x) =

{
x3 − 3x+ 5, x < 1
2x+1
3x−2 , x ≥ 1

(4.3.14)

Let’s define g(x) = x3 − 3x+ 5 and h(x) = 2x+1
3x−2 , then:

f(x) = g(x), for x < 1 (4.3.15)

and
f(x) = h(x), for x > 1 (4.3.16)

Moreover, f(1) = 3 = g(1) = h(1), and g, h are both continuous at x = 1 since the first is
a polynomial and the second is the ratio of two polynomials, with non-zero determinant.
Hence, by the Glue theorem, we have that f is continuous. ◀

4.4 Trigonometric and exponential functions
We will now prove that the function sin, cos, tan and exp are continuous.

Proposition (Sine inequality)
We have that:

sin x ≤ x, for 0 ≤ x ≤ π

2
(4.4.1)

Proof. Consider the function f(x) = x− sin x. If x = 0 then f(x) = 0. Moreover, for 0 ≤ x ≤ π
2 we

have that:
f ′(x) = 1− cosx (4.4.2)

and since 0 ≤ cosx ≤ 1 over this interval, we have that:

0 ≤ f ′(x) ≤ 1 (4.4.3)

so f(x) is increasing over 0 ≤ x ≤ π
2 , and since f(0) = 0, f(x) ≥ 0 implying that sin x ≤ x as

desired. ■

An important consequence of this inequality is the following.

Corollary. | sin x| ≤ |x|

Proof. The sine inequality proves this result for 0 ≤ x ≤ π
2 . For x >

π
2 :

| sin x| ≤ 1 < π

2
< x = |x| (4.4.4)
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Finally, if x < 0 then:
| sin(x)| = | sin(−x)| ≤ | − x| = |x| (4.4.5)

as desired. ■

Theorem (Continuity of trigonometric functions)
The trigonometric functions sin, cos, tan are continuous.

Proof. We need to show that:
sin xn → sin a (4.4.6)

for all null sequences xn − a.

We can use the property:

sin x− sin a = 2 cos
(

1
2

(x+ a)
)

2 sin
(

1
2

(x− a)
)

(4.4.7)

So:

| sin xn − sin a| = 2
∣∣∣∣ cos

(
1
2

(x+ a)
)

2 sin
(

1
2

(x− a)
)∣∣∣∣ (4.4.8)

≤ 2| sin
(

1
2

(x− a)
)∣∣∣∣ (4.4.9)

≤ |xn − a| (4.4.10)

Since xn − a is a null sequence, we must have that sin xn → sin a as desired.

Since cosx = sin
(
x+ π

2
)
, we can use the continuity of composite functions to state that it too must

be continuous. The same goes for tan x = sin x
tan x . ■

Proposition (Exponential inequalities)
(i) ex ≥ 1 + x for x ≥ 0
(ii) ex ≤ 1

1−x for 0 ≤ x < 1.

Proof. These follow immediately from the power series representation of ex (for x ≥ 0) and 1
1−x

(for 0 ≤ x < 1.). Indeed:

ex = 1 + x+ x2

2!
+ x3

3!
+ ... ≤ 1 + x (4.4.11)

for x ≥ 0. Similarly:

ex = 1 + x+ x2

2!
+ x3

3!
+ ... ≤ 1 + x+ x2 + x3 + ... = 1

1− x
(4.4.12)

for 0 ≤ x < 1. ■

Corollary. 1 + x ≤ ex ≤ 1
1−x for |x| < 1.
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Proof. We have already proven the case for 0 ≤ x < 1. Consider now the case for −1 < x < 0 =⇒
0 < −x < 1.Then:

1− x ≤ e−x ≤ 1
1 + x

(4.4.13)

Since all terms in the inequality are non-zero on 0 < −x < 1, we can take the reciprocal:

1 + x ≤ ex ≤ 1− x (4.4.14)

Thus, the inequality has been proven. ■

Theorem (Continuity of the exponential function) The exponential function exp is
continuous.

Proof. We need to prove that for all sequences xn → awe have exn → ea.

If xn − a is a null sequence, then there exists N such that |xn − a| ≤ 1 for n > N (we use ϵ = 1).
Therefore:

1 + (xn + a) ≤ exn−a ≤ 1
1− (xn − a)

, ∀n > N (4.4.15)

By the squeeze rule, we find that exn−a → 1 and thus exn → ea as desired. ■

We summarize the main continuous functions we have found below:

Proposition (Standard continuous functions) The following are all continuous:
(i) polynomials and rational functions of polynomials
(ii) f(x) = |x|
(ii) f(x) =

√
x

(iv) the trigonometric functions
(v) the exponential function
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5A5 Limits

5.1 Introduction to limits of functions

Definition 9.1 (Punctured neighbourhood) The punctured neighbourhood of a point
c ∈ R is a bounded open interval whose midpoint is c and has been removed. If we define
the width of the neighborhood to be 2ε then:

Nε(c) = (c− ε, c) ∪ (c, c+ ε) (5.1.1)

The concept of a punctured neighborhood is essential in defining the limit of a function.

Definition 9.2 (Limit of a function)
Let f be a function defined on Nε(c). Then f(x) tends to l as x tends to c if l ∈ R and for all
sequences (xn) in Nε(c) such that xn → c, we have that f(xn)→ l. We write this as:

lim
x→c

f(x) = l (5.1.2)

Example. Let us try to prove that lim
x→0

sin x
x = 1.

Firstly, in the previous unit we established the inequality:

sin x ≤ x, for 0 < x ≤ π

2
(5.1.3)

We may also deduce that:
x ≤ tan x, for 0 < x ≤ π

2
(5.1.4)

as can be seen from the figures below:

The first inequality (5.1.3) may be rearranged into the more useful form:

sin x
x
≤ 1, for 0 < x ≤ π

2
(5.1.5)
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and similarly for the second inequality (5.1.4) may be written as:

cosx ≤ sin x
x

, for 0 < x ≤ π

2
(5.1.6)

Hence, these two may be combined into a single inequality providing upper and lower
bounds for sin x

x :
cosx ≤ sin x

x
≤ 1, for 0 < x ≤ π

2
(5.1.7)

Now since both cosx and sin x
x are both even functions, we may substitute x′ = −x into

(5.1.7) to find that:
cosx ≤ sin x

x
≤ 1, for 0 < |x| ≤ π

2
(5.1.8)

Suppose (xn) is a null sequence in the neighborhood Nπ
2
(0) so that:

cosxn ≤
sin xn

xn
≤ 1, n = 1, 2, ... (5.1.9)

Using the squeeze rule, we see that since cosxn → 1 it must be that sin xn

xn
→ 1. This proves

that:
lim
x→0

sin x
x

= 1 (5.1.10)

◀

Example. Consider lim
x→0
bxc, we will show that this limit does not exist. Indeed, consider

the neighbourhood N 1
2
(1) and the sequences xn = 1 −

(
1
2

)n

and yn = 1 +
(

1
2

)n

defined

on this neighbourhood. We see that:

lim
n→∞

f(xn) = lim
n→∞

⌊
1−

(
1
2

)n⌋
= 0 (5.1.11)

whereas:
lim

n→∞
f(xn) = lim

n→∞

⌊
1 +

(
1
2

)n⌋
= 1 (5.1.12)

Therefore, we have found two different sequences on N 1
2
(0) which converge to different

values, showing that f(x) = bxc does not tend to a limit as x→ 1. ◀

Theorem 9.3 (Continuity ⇐⇒ limit)
Let f be a function defined on an open interval I and let c ∈ I . Then:

f is continuous at c ⇐⇒ lim
x→c

f(x) = f(c) (5.1.13)

This is particularly useful when trying to determine the limit of a function that falls within the
class of standard continuous functions, such as polynomials, exponential and logarithmic functions
etc...
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Proposition 9.4 (Composition rule)
If lim

x→c
f(x) = l and lim

x→l
g(x) = L, then lim

x→c
g(f(x)) = L provided:

g is defined and continuous at l (5.1.14)

or
f(x) 6= l, ∀x ∈ Nε(c) (5.1.15)

Example. Let us try to evaluate lim
x→0

√
x

sin x . Let us define f(x) = sin x
x and g(x) = 1√

x
.

Then, we have that:
lim
x→0

f(x) = 1 (5.1.16)

as was found previously. Moreover

lim
x→1

g(x) = 1 (5.1.17)

so that, since g is defined and continuous at 1 (using the composition rules of continuous
functions):

lim
x→0

g(f(x)) = lim
x→0

√
x

sin x
= 1 (5.1.18)

◀

Example. We consider the limit:

lim
x→0

1− cosx
x

(5.1.19)

We use the identity:
cosx = 1− 2 sin2 x

2
(5.1.20)

to find that:
lim
x→0

2 sin2 x
2

x
= lim

x→0

sin x
2

x
2
· lim

x→0
sin x

2
= 0 (5.1.21)

where we used the substitution u = x
2 to evaluate lim

x→0
sin x

2
x
2

. ◀

Theorem 9.5 (Squeeze rule for limits)
Let f, g, h be functions defined on Nϵ(c) for some r > 0. If:
(i) g(x) ≤ f(x) ≤ h(x), ∀x ∈ Nϵ(c)
(ii) lim

x→c
g(x) = limx→c h(x) = l then lim

x→c
f(x) = l.

Example. We have shown previously that:

1 + x ≤ ex ≤ 1
1− x

, for |x| < 1 (5.1.22)
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This may rearranged into:

1 + x ≤ ex ≤ 1
1− x

, for |x| < 1 (5.1.23)

1 ≤ ex − 1
x

≤ ex − 1
x

≤ 1
1− x

, for 0 < |x| < 1 (5.1.24)

Now we have that:
1− |x|

1− x
= x− |x|

1− x
≤ 1 (5.1.25)

since if x < 0 then |x| − x = 2|x| > 0 whereas if x > 0 then |x| − x = 0. Similarly:

1
1− x

≤ 1 + |x|
1− x

= 1 + (|x| − x)
1− x

(5.1.26)

Consequently, we have the following inequality:

1− |x|
1− x

≤ ex − 1
x

≤ 1 + |x|
1− x

(5.1.27)

Define g(x) = 1− |x|
1−x , h(x) = 1 + |x|

1−x and f(x) = ex−1
x on Nϵ(c) for some ϵ > 0. Then the

first condition of the squeeze rule is clearly satisfied:

g(x) ≤ f(x) ≤ h(x) (5.1.28)

Next, we also have that:
lim
x→0

g(x) = 1 = lim
x→0

h(x) (5.1.29)

Therefore we may conclude that
lim
x→0

ex − 1
x

= 1 (5.1.30)

using the Squeeze rule. ◀

Definition 9.6 (One-sided limit)
Let f(x) be a function defined on (c, c + r) for r > 0. Then we say that f(x) tends to l as x
tends to c from the right:

lim
x→c+

f(x) = l (5.1.31)

provided that for each sequence (xn) in (c, c+ r) such that xn → c, f(xn)→ l.
Let f(x) be a function defined on (c − r, c) for r > 0. Then we say that f(x) tends to l as x
tends to c from the left:

lim
x→c−

f(x) = l (5.1.32)

provided that for each sequence (xn) in (c− r, c) such that xn → c, f(xn)→ l.

The following result follows immediately from the fact that (c− ϵ, c) ∪ (c, c+ ϵ) = Nϵ(c).

Theorem 9.6 (Ordinary limits and one sided-limits)
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Let f be defined on Nϵ(c) for r > 0. Then:

lim
x→c

f(x) = l ⇐⇒ lim
x→c+

f(x) = lim
x→c−

f(x) = l (5.1.33)

Finally, we also have an analogue of Theorem 9.3 for one-sided limits:

Proposition 9.7 (Continuity ⇐⇒ one-sided limit)
Let f be a function whose domain I is an interval with left-hand endpoint c included (so
either [c,∞), [c, b)or[c, b] where b > c). Then:

f is continuous at c ⇐⇒ lim
x→c±

f(x) = f(c) (5.1.34)

Example. Let us evaluate lim
x→0+

(
sin x

x +
√
x

)
.

We have from typical combination rules that:

lim
x→0+

(
sin x
x

+
√
x

)
= lim

x→0+

sin x
x

+ lim
x→0+

√
x = 1 + 0 = 0 (5.1.35)

where we used Theorem 9.6 to get:

lim
x→0

sin x
x

= 1 =⇒ lim
x→0+

sin x
x

= 1 (5.1.36)

and Proposition 9.7 to get

lim
x→0

√
x = 1 =⇒ lim

x→0+

√
x = 1 (5.1.37)

◀

5.2 Asymptotic behaviour

Definition 9.8 (Infinite limit)
Let f be defined onNϵ(C). Then f(x) tends to∞ as x tends to c if for each sequence (xn) in
Nϵ(c) such that xn → c, f(xn)→∞. We write that:

f(x)→∞ as x→ c (5.2.1)

Theorem 9.9 (Reciprocal rule for limits)
If f is a function satisfying:
(i) f(x) > 0 for x ∈ Nϵ(c), where ϵ > 0
(ii) f(x)→ 0 as x→ c

then 1
f(x) →∞ as x→ c.
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Example. Consider the asymptotic behaviour of 1
x3−1 as x → 1+. Define f(x) = x3 − 1,

then we have that:
f(x) = x3 − 1 > 0 ∀x ∈ (1,∞) = (1, 1 + r) (5.2.2)

for some r > 0. Moreover
lim

x→1+
f(x) = 0 (5.2.3)

Therefore: 1
x3 − 1

→∞ as x→ 1+ (5.2.4)

◀

Theorem 9.10 (Squeeze rule for x→∞)
Let f, g, h be defined on (R,∞). Then:
(a) if

(i) g(x) ≤ f(x) ≤ h(x), ∀x ∈ (R,∞)
(ii) lim

x→∞
g(x) = lim

x→∞
h(x) = l

then lim
x→∞

f(x) = l.
(b) if

(i) g(x) ≤ f(x), ∀x ∈ (R,∞)
(ii) g(x)→∞ as x→∞
then f(x)→∞ as x→∞.

Example. Let’s examine the asymptotic behaviour as x→∞ of:

f(x) = sin(1/x)
x

(5.2.5)

We have that for x 6= 0:
− 1 ≤ sin(1/x) ≤ 1 (5.2.6)

so that:
− 1
x
≤ sin(1/x)

x
≤ 1
x
, ∀x 6= 0 (5.2.7)

Then, since:
lim

x→∞
− 1
x

= lim
x→∞

1
x

= 0 (5.2.8)

we must have that
lim

x→∞

sin(1/x)
x

= 0 (5.2.9)

◀

Proposition 9.11 (Asymptotic behaviour of standard functions)
(a) let a0, a1, ..., an−1 ∈ R, and let

p(x) = xn + an−1x
n−1 + ...+ a1x+ a0 (5.2.10)
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Then
p(x)→∞, and 1

p(x)→ 0
as x→∞ (5.2.11)

(b) For n ∈ N, then:
ex

xn
→∞, and xn

ex
→ 0 as x→∞ (5.2.12)

(c) we have log x→∞ as x→∞, and for a > 0 we have:

lim
x→∞

log x
xa

= 0 (5.2.13)

Proof. (a) Firstly, we have that the zeros of the polynomial pmust lie in some interval (−M,M),
so we have that:

p(x) > 0, ∀x ∈ (M,∞) (5.2.14)

Now if x 6= 0 then:
p(x) = xn

(
1 + an−1

x
+ ...+ a0

xn

)
(5.2.15)

Now we have that:

1 + an−1

x
+ ...+ a0

xn
→ 1 + 0 + ...+ 0 = 1 as x→∞ (5.2.16)

Therefore
1

p(x)
=

1
xn

1 + an−1
x + ...+ a0

xn

→ 0 as x→∞ (5.2.17)

It follows from the reciprocal rule that, since p(x)→∞ as x→∞.

(b) We use the series expansion:

ex =
∞∑

i=0

xi

i!
≥ xn+1

(n+ 1)!
, ∀x ≥ 0 (5.2.18)

Hence, if x > 0 then:
ex

xn
≥ x

(n+ 1)!
, and 0 ≤ xn

ex
≤ (n+ 1)!

x
(5.2.19)

Now x
(n+1)! →∞ so that:

ex

xn
→∞, as x→∞ (5.2.20)

Similarly, using the Squeeze rule

xn

ex
→ 0 as x→∞ (5.2.21)

(c) We know that log x is the strictly increasing inverse of the exponential, so that log x→∞.

Now let a > 0, if we define t(x) = a log x then xa = ea log x = et, giving:

log x
xa

= t

aet
(5.2.22)
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We have shown that t→∞ since a is positive. Hence, using part (b)

t

aet
→ 0 (5.2.23)

Using the composition rule of limits:

lim
x→∞

log x
xa

= 0 (5.2.24)

as desired.

■

Example. Let us examine the bahaviour of

f(x) = 2ex − x2

ex + log x
(5.2.25)

Then:
f(x) =

2ex

x2 − 1
ex

x2 + log x
x2

(5.2.26)

Using the combination rules of limits:

lim
x→∞

f(x) =
limx→∞

2ex

x2 − 1
limx→∞

(
ex

x2 + log x
x2

) (5.2.27)

=
limx→∞

2ex

x2 − 1
limx→∞

ex

x2
(5.2.28)

= lim
x→∞

(
2− x2

ex

)
(5.2.29)

= 2 (5.2.30)

◀

Example. Let’s prove that limx→∞ x sin 1
x = 1. We use the substitution u(x) = 1

x so that:

lim
x→∞

x sin 1
x

= lim
u→0

sin u
u

= 1 (5.2.31)

as desired. ◀

5.3 Continuity of functions

Definition 9.12 (Continuity of functions)
Let f have a domain A and let c ∈ A. Then f is continuous at c if ∀ϵ > 0, there exists δ > 0
such that:

|f(x)− f(c)| < ϵ, ∀x ∈ Awith |x− c| < δ (5.3.1)
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Much like in the definition of limits for series, we can view definition 9.12 as an ϵ − δ game. One
player chooses a small positive ϵ, and challenges the other player to find δ suitable small such
that

|f(x)− f(c)| < ϵ, ∀x ∈ Awith |x− c| < δ (5.3.2)

is satisfied.

The general strategy to prove the continuity of polynomial functions f with domain A at some
point c ∈ A is:

(i) express f(x)− f(c) = (x− c)g(x)

(ii) obtain a bound |g(x)| ≤M for |x− c| ≤ r where r > 0 such that [c− r, c+ r] ⊂ A.

(iii) use |f(x)− f(c)| ≤M |x− c| for |x− c| ≤ r and set ϵ = M |x− c| to choose δ such that:

|f(x)− f(c)| < ϵ, ∀x ∈ Awith |x− c| < δ (5.3.3)

Example. Let us prove that f(x) = x3 is continuous at c = 1.
Firstly we note that the domain of f is R. Suppose we are given ϵ > 0, our goal is to choose
δ > 0 such that:

|x3 − 1| < ϵ, ∀xwith |x− 1| < δ (5.3.4)

We can write that:
x3 − 1 = (x− 1)(x2 + x+ 1) (5.3.5)

Now we find an upper bound for |x2 + x+ 1|. When |x− 1| ≤ 1 then x ∈ [0, 2] so that:

|x2 + x+ 1| ≤ |x2|+ |x+ 1| ≤ 4 + 3 = 7, ∀|x− 1| ≤ 1 (5.3.6)

Therefore:
|f(x)− f(1)| ≤ 7|x− 1|, ∀|x− 1| ≤ 1 (5.3.7)

Therefore, if |x− 1| < δ, then |f(x)− f(1)| ≤ 7δ|x− 1|. Now we need 5δ < ϵ so that δ ≤ 1
7ϵ.

Hence, we must have that if δ = min{1, ϵ
7} then:

|f(x)− f(1)| < ϵ, ∀xwith |x− 1| < δ (5.3.8)

as desired. ◀

Theorem 9.13 (Equivalence of continuity definitions)
The ϵ− δ definition and the sequence definition of continuity are equivalent.

Proof. Let f have domain Awith c ∈ A.

Assume that continuity according to ϵ− δ is satisfied, so that for ϵ > 0, ∃δ > 0 such that:

|f(x)− f(c)| < ϵ, for |x− c| < δ (5.3.9)

Now consider a sequence xn ∈ A such that xn → c. Then, there exists N such that:

|xn − c| < δ, ∀n > N (5.3.10)
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so that:
|f(xn)− f(c)| < ϵ, ∀n > N (5.3.11)

Consequently, f(xn)→ f(c), which the sequence definition of continuity.

Now suppose that f is continuous according to the sequence definition, we argue by contradiction
that for some ϵ > 0, there is no δ > 0 such that

|f(x)− f(c)| < ϵ, for |x− c| < δ (5.3.12)

Hence, for all n, ∃xn ∈ Awith |xn − 1| < 1
n such that

|f(x)− f(c)| ≥ ϵ (5.3.13)

By the sequential definition limn→∞ f(xn) = f(c) contradicting the above inequality. Hence the
ϵ− δ definition must also be satisfied. ■

5.4 Unusual function continuity

Proposition 9.14 (Dirichlet function)
The Dirichlet function defined as:

f(x) =

{
1, if x is rational
0, if x is irrational

(5.4.1)

is discontinous everywhere on R.

Proof. Let c ∈ R. By the density ofR, each interval
(
c− 1

n , c+ 1
n

)
with n natural contains a rational

xn and irrational yn. Then xn → c and yn → c, yet f(xn) = 1 and f(yn) = 0 so f is discontinuous
at c. ■

Proposition 9.15 (Blancmange function)
The sawtooth function defined as:

s(x) =

{
x− bxc, if 0 ≤ x− dxe ≤ 1

2

1− (x− bxc), if 1
2 < x− bxc < 1

(5.4.2)

and the Blancmange function B is defined as:

B(x) =
∞∑

n=0

1
2n
s(2nx) (5.4.3)

is continous everywhere on R.
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Proof. Let c ∈ R, and let ϵ > 0. Then:

B(x)−B(c) =
∞∑

n=0

1
2n

(s(2nx)− s(2nc)) (5.4.4)

Using the triangle ineqality:

|B(x)−B(c)| =

∣∣∣∣∣
∞∑

n=0

1
2n

(s(2nx)− s(2nc))

∣∣∣∣∣ ≤
∞∑

n=0

1
2n
|s(2nx)− s(2nc)| (5.4.5)

Now since s(2nx) ∈
[
0, 1

2

]
and s(2nc) ∈

[
0, 1

2

]
for all x, c and natural n, we may write:

|s(2nx)− s(2nc)| ≤ 1
2

=⇒
∞∑

n=N

1
2n
|s(2nx)− s(2nc)| ≤ 1

2

∞∑
n=N

1
2

n

(5.4.6)

and using our standadrd results for geoemtric series:

∞∑
n=N

1
2n
|s(2nx)− s(2nc)| ≤ 1

2N
(5.4.7)

Now consider:
x 7→ s(2nx), n = 0, 1, 2... (5.4.8)

which is a continuous function. Consequently, for all n there is a positive δn such that:

|s(2nx)− s(2nc)| < ϵ

4
, ∀|x− c| < δn (5.4.9)

Choosing δ = minn∈N δn we get that for |x− c| < δ

N−1∑
n=0

1
2n
|s(2nx)− s(2nc)| ≤

N−1∑
n=0

1
2N

ϵ

4
< 2 · ϵ

4
= ϵ

2
(5.4.10)

Consequently
∞∑

n=0

1
2n
|s(2nx)− s(2nc)| ≤ ϵ

2
+ 1

2N
(5.4.11)

so we need to choose N such that 1
2N < 1

2ϵ for the condition of continuity to be satisfied. We can
always do so because 1

2n is a basic null sequence.

The blancmange function is therefore continuous ■

Definition 9.16 (ϵ− δ definition of limit)
Let f be a function defined onNϵ(c) of c. Then f(x) tends to l as x tends to c if ∀ϵ > 0,∃δ > 0
such that

|f(x)− l| < ϵ, ∀x such that 0 < |x− c| < δ (5.4.12)

We then write that:
lim
x→c

f(x) = l (5.4.13)
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Example. We evaluate

lim
x→1

2x3 + 3x− 5
x− 1

(5.4.14)

Since 2x3 + 3x − 5 = (x − 1)(2x2 + 2x + 5) we guess that the limit tends to 9. Indeed, we
need to show that for each ϵ > 0, there exists δ > 0 such that:

|f(x)− 9| < ϵ, ∀xwith 0 < |x− 1| < δ (5.4.15)

But we have that for 0 < |x− 1| < 1 then x ∈ (−1, 2) so that:

|2x2 + 2x+ 5| < 17, ∀0 < |x− 1| < 1 (5.4.16)

so that
|f(x)− 9| < 17|x− 1|, ∀0 < |x− 1| < 1 (5.4.17)

Consequently if |x− 1| < δ then:

|f(x)− 9| < 17δ, ∀0 < |x− 1| < δ (5.4.18)

To have that |f(x) − 9| < ϵ, we need δ ≤ ϵ
17 . So given ϵ > 0 we need to find δ ≤ ϵ

17 , which
can always be done. Consequently f is continuous. ◀

5.5 Uniform continuity

Definition 9.17 (Uniform continuity)
A function f defined on the interval I is uniformly continuous on I if for all ϵ > 0 then
∃δ > 0 such that:

|f(x)− f(y)| < ϵ, ∀x, y ∈ I such that |x− y| < δ (5.5.1)

Example. Let us prove that f(x) = x2 is uniformly continuous on I = [−4, 4].
Let ϵ > 0, we have:

f(x)− f(y) = x2 − y2 = (x+ y)(x− y) (5.5.2)

Therefore x, y ∈ [−4, 4] implies that |x| ≤ 4 and |y| ≤ 4 so that:

|f(x)− f(y)| = |x+ y||x− y| (5.5.3)
≤ (|x|+ |y|)|x− y| (5.5.4)
≤ 8|x− y| (5.5.5)

Thus if we choose δ = ϵ
8 and |x− y| < δ then:

|f(x)− f(y)| < ϵ (5.5.6)

as desired. ◀
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Theorem 9.17 (Sequential definition of uniform discontinuity)
Let f be defined on I , then f is not uniformly continuous on I iff ∃(xn), (yn) ∈ I and ∃ϵ > 0
such that:
(i) |xn − yn| → 0 as n→∞
(ii) |f(xn)− f(yn)| ≥ ϵ, for n = 1, 2...

Proof. Suppose f is not uniformly continuous on I . Then ∃ϵ > 0 such that for all δ > 0 there are
x, y ∈ I such that:

|x− y| < δ and |f(x)− f(y)| ≥ ϵ (5.5.7)

Setting δ = 1, 1
2 ,

1
3 ...we obtain

|xn − yn| <
1
n
and |f(xn)− f(yn)| ≥ ϵ, n = 1, 2, ... (5.5.8)

Therefore |xn − yn| → 0 and |f(xn)− f(yn)| ≥ ϵ as desired.

Now suppose that |xn − yn| → 0 and |f(xn)− f(yn)| ≥ ϵ are satisfied. Furthermore, suppose that
f is uniformly continuous such that there exists δ > 0 satisfying:

|f(x)− f(y)| < ϵ, ∀x, y ∈ I with |x− y| < δ (5.5.9)

But by statement 1, |xn − yn| < δ for n > N , so

|f(xn)− f(yn)| < ϵ, ∀n > N (5.5.10)

contradicting the second statement. Therefore f is not uniformly continuous on I . ■

Example. We show that f(x) = x2 is not uniformly continuous on R.
Indeed, taking xn = n+ 1

n and yn = n then we see that:

|xn − yn| =
∣∣∣∣ 1n
∣∣∣∣ = 1

n
→ 0 (5.5.11)

Moreover:

|f(xn)− f(yn)| =
∣∣∣∣(n+ 1

n

)2

− n2
∣∣∣∣ (5.5.12)

= 2 + 1
n2 > ϵ (5.5.13)

where ϵ = 2. ◀
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6A6 Differentiation

Definition 10.1 (Differentiability) Let f be defined on the open interval I , and let c ∈ I .
Then the derivative of f at c is defined as

f ′(c) = lim
x→c

f(x)− f(c)
x− c

= lim
x→c

Q(x) (6.0.1)

where Q(x) is the difference quotient. If this limit exists, then f is differentiable at c. If f is
differentiable ∀c ∈ I then we say that f is differentiable.

Example. Let us prove that f(x) = 1
x is differentiable on I = R∗. Indeed the difference

quotient reads:

Q(x) = f(x)− f(c)
x− c

= 1/x− 1/c
x− c

= − 1
cx

(6.0.2)

so that:
lim
x→c

Q(x) = lim
x→c

1
cx

= 1
c2 (6.0.3)

where c ∈ R∗. We may therefore conclude that:

f ′(x) = − 1
x2 (6.0.4)

◀

Example. Let us prove that the function:

f(x) =

{
x2 cos 1

x , x 6= 0
0, x = 0

(6.0.5)

is differentiable at x = 0. Indeed:

Q(x) = f(x)− f(0)
x

= x cos 1
x

(6.0.6)

so we must prove that the following limit exists:

lim
x→0

x cos 1
x

(6.0.7)
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Let us define

fnew(x) =

{
x cos 1

x , x 6= 0
0, x = 0

(6.0.8)

To do so, we know that:
− x ≤ x cos 1

x
≤ x (6.0.9)

Now by the squeeze rule, we see that since h(x) = x and g(x) = −x are continuous at 0 and
h(0) = g(0) = fnew(0) = then

lim
x→0

x cos 1
x

= 0 (6.0.10)

so that f is indeed differentiable at x = 0 with f ′(0) = 0. ◀

Example. Let us examine the differentiability of

f(x) =

{√
|x| sin 1

x , x 6= 0
0, x = 0

(6.0.11)

The difference quotient is:

Q(x) =
√
|x| sin 1

x

x
(6.0.12)

Now consider the sequence hn = 1
nπ so that

Q(hn) = nπ

√
1
nπ

sinnπ (6.0.13)

which does not exist. Hence we must have that lim
x→0

Q(x) does not exist. ◀

Proposition 10.2 (Standard derivatives)
(i) f(x) = k with k ∈ R then f ′(x) = 0
(ii) f(x) = xn with n ∈ N then f ′(x) = nxn−1

(iii) f(x) = sin x then f ′(x) = cosx
(iv) f(x) = cosx then f ′(x) = − sin x
(v) f(x) = ex then f ′(x) = ex

Alternatively, in some situations it may be easier to define the difference quotient as:

Q(h) = f(h+ c)− f(h)
h

(6.0.14)

so that differentiability at c is given when the following limit exists:

lim
h→0

Q(h) (6.0.15)

Proof. (a) we have that
Q(x) = k − k

x− c
= 0 =⇒ f ′(x) = 0 (6.0.16)

− 70 −



(b) we have that:

Q(h) = (c+ h)n − cn

h
= ncn−1 + n(n− 1)

2
cn−2h+ ...+ hn−1 (6.0.17)

so that Q(h)→ ncn−1 as h→ 0.

(c) The difference quotient is:

Q(h) = sin(c+ h)− sin c
h

= sin c cosh+ sin h cos c− sin c
h

(6.0.18)

= cos c sin h
h

+ sin c
(

cosh− 1
h

)
(6.0.19)

so using some standard trigonometric limits:

lim
h→0

Q(h) = cos c =⇒ f ′(x) = cosx (6.0.20)

(d) The difference quotient is:

Q(h) = cos(c+ h)− cos c
h

= cos c cosh− sin h sin c− cos c
h

(6.0.21)

= − sin c sin h
h

+ cos c
(

cosh− 1
h

)
(6.0.22)

so using some standard trigonometric limits:

lim
h→0

Q(h) = − sin c =⇒ f ′(x) = − sin x (6.0.23)

(e) The difference quotient is:

Q(h) = eceh − ec

h
= ec e

h − 1
h

(6.0.24)

so Q(h)→ ec as h→ 0 proving that f ′(x) = ex.

■

Definition 10.3 (One-sided derivative)
Let f be defined on I and let c ∈ I . Then the left derivative of f at c is:

f ′
L(c) = lim

x→c−

f(x)− f(c)
x− c

= lim
h→0−

Q(h) (6.0.25)

If this limit exists, then f is left-differentiable at c. Similarly for the right derivative:

f ′
R(c) = lim

x→c+

f(x)− f(c)
x− c

= lim
h→0+

Q(h) (6.0.26)

Proposition 10.4 (Differentiability and one-sided differentiability)
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Let f be defined on I and let c ∈ I .

f is differentiable at c ⇐⇒ f ′
R(c) = f ′

L(c) = f ′(c). (6.0.27)

Theorem 10.5 (Glue rule for differentiation)
Let f be defined on I and let c ∈ I . If there are functions g, h defined on I such that
(1) f(x) = g(x) for x ∈ I, x < c and f(x) = h(x) for x ∈ I, x > c

(2) f(c) = g(c) = h(c)
(3) g, h are differentiable at c

then f is differentiable at c iff g′(c) = h′(c). In this case then f ′(c) = g′(c) = h′(c).

Note also that since differentiability is a local property, if we define a piece-wise function such
as:

f(x) =

{
g(x), x > c

h(x), x ≤ c
(6.0.28)

then we will have that:

f ′(x) =

{
g′(x), x > c

h′(x), x < c
(6.0.29)

Example. Let us prove that:

f(x) =

{
−x2, x < 0
x2, x ≥ 0

(6.0.30)

is differentiable on R. Indeed define g(x) = −x2 and h(x) = x2 so that f(x) = g(x) for
x ∈ R, x < 0 and f(x) = h(x) for x ∈ R, x > 0. Moreover, we also have that:

f(0) = g(0) = h(0) = 0 (6.0.31)

Finally, we also know that g′(0) = 0 and h′(0) = 0, so that by the Glue rule f ′(0) = 0.

f ′(x) =


g′(x) = −2x, x < 0
h′(x) = 2x, x > 0
0, x = 0

= 2|x|, x ∈ R (6.0.32)

as desired. ◀

6.1 Continuity and differentiability

Theorem 10.6 (Differentiability implies continuity)
Let f be defined on I , and let c. If f is differentiable at c then it is continuous at c.
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Proof. Suppose f is differentiable at c so that

f ′(c) = lim
x→c

f(x)− f(c)
x− c

(6.1.1)

For x ∈ I and x 6= cwe have that:

f(x)− f(c) = f ′(c)(x− c) (6.1.2)

Hence
lim
x→c

f(x)− f(c) = f ′(c) · 0 = 0 (6.1.3)

so that f(x)→ f(c) implying continuity. ■

6.2 Rules of differentiation

Proposition 10.7 (Combination rules)
Let f, g be defined on I and let c ∈ I . If f, g are differentiable at c then:
(i) (f + g)′(c) = f ′(c) + g′(c)
(ii) (λf)′(c) = λf ′(c) with λ ∈ R

(iii) (fg)′(c) = f ′(c)g(c) + f(c)g′(c)
(iv) if g(c) 6= 0 then

(
f
g

)′(c) = g(c)f ′(c)−f(c)g′(c)
(g(c))2

Proof. (i) Let F = f + g, then:

F (x)− F (c)
x− c

= f(x)− f(c)
x− c

+ g(x)− g(c)
x− c

(6.2.1)

→ f ′(c) + g′(c) (6.2.2)

as required.

(ii) Use product rule with f = λ.

(iii) Let F = fg then:

F (x)− F (c)
x− c

= f(x)g(x)− f(c)g(c)
x− c

+ g(x)− g(c)
x− c

(6.2.3)

= f(x)− f(c)
x− c

g(c) + f(c)g(x)− g(c)
x− c

(6.2.4)

→ f ′(c)g(c) + f(c)g′(c) (6.2.5)

as required.

(iv) Let F = f
g , since g is continuous at c and g(c) 6= 0, there exists δ > 0 such that J = (c− δ, c+

δ) ⊆ I and:
|g(x)− g(c)| < 1

2
|g(c)|, ∀xwith |x− c| < δ (6.2.6)

This shows that there is some J such that g(x) 6= 0 for x ∈ J . Therefore, for x ∈ J we have
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that:

F (x)− F (c)
x− c

= f(x)/g(x)− f(c)/g(c)
x− c

+ g(x)− g(c)
x− c

(6.2.7)

= f(x)g(c)− f(c)g(x)
(x− c)g(x)g(c)

(6.2.8)

= g(c)(f(x)− f(c))− f(c)(g(x)− g(c))
(x− c)g(x)g(c)

(6.2.9)

= 1
g(x)g(c)

(
g(c)f(x)− f(c)

x− c
− f(c)g(x)− g(c)

x− c

)
(6.2.10)

→ g(c)f ′(c)− f(c)g′(c)
(g(c))2 (6.2.11)

as desired.

■

Theorem 10.8 (Composition rule) Let f be defiend on I and let g be defined on J so
that f(I) ⊂ J and let c ∈ I .
If f is differentiable at c and g is differentiable at f(c) then

(g ◦ f)′(c) = g′(f(c))f ′(c) (6.2.12)

Proof. Let F = g ◦ f then:
F (x)− F (c)

x− c
= g(f(x))− g(f(c))

x− c
(6.2.13)

Let y = f(x) with x ∈ I and let d = f(c). Then the right hand side of the above equation is:(
g(y)− g(d)
y − d

)(
f(x)− f(c)

x− c

)
, y 6= d (6.2.14)

We may introduce the function h(y) to deal with the discontinuity at y 6= d:

h(y) =

{
g(y)−g(d)

y−d , y 6= d

g′(f(c)), f(x) = f(c)
(6.2.15)

Since g is differentiable at d, we have h(y) → g′(d) as y → d. Since h(d) = g′(d) we have that h is
continuous at d. We deduce that:

(h ◦ f)(x) =

{
g(f(x))−g(f(c))

f(x)−f(c) , f(x) 6= f(c)
g′(f(c)), f(x) = f(c)

(6.2.16)

is continuous at c.

Therefore:
F (x)− F (c)

x− c
= (h ◦ f)(x)

(
f(x)− f(c)

x− c

)
(6.2.17)

so that as x→ c then:
F (x)− F (c)

x− c
→ g′(f(c))f ′(c) (6.2.18)
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as desired. ■

Example. Let’s find the derivative of f(x) = cos
(

cos 2x
x2

)
.

Let us define
g(x) = cosx, x ∈ I (6.2.19)

and
h(x) = cos 2x

x2 , x ∈ I = (0,∞) (6.2.20)

Then h(I) ⊆ (0,∞) = I so we may apply the composition rule:

(g ◦ f)′(x) = − sin
(

cos 2x
x2

)
· −2x2 sin 2x− 2x cos 2x

x4 (6.2.21)

= 2 sin
(

cos 2x
x2

)
x sin 2x+ cos 2x

x3 (6.2.22)

◀

Proposition 10.9 (Inverse function rule)
Let f be a function with domain I on which it is continuous and strictly monotonic. If it is
differentiable on I and f ′(x) 6= 0, ∀x ∈ I , then f−1 is differentiable on J . For c ∈ I and
d = f(c) then:

(f−1)′(d) = 1
f ′(c)

(6.2.23)

Proof. We have that f is invertible on I with inverse f−1 whose domain is J = f(I). Let y ∈ J \{d},
it follows that f−1(y) = x ∈ I \ c due to the strict monotonicity of f . Therefore we find that:

f−1(y)− f−1(d)
y − d

= x− c
f(x)− f(c)

= 1
f(x)−f(c)

x−c

(6.2.24)

Taking the limit as y → d =⇒ x = f−1(y)→ c due to the continuity of f−1. Hence:

lim
y→d

f−1(y)− f−1(d)
y − d

= 1
f ′(c)

(6.2.25)

proving that f−1 is differentiable at dwith derivative (f−1)′(d) = 1
f ′(c) . ■

Example. Let us consider f(x) = tan x, x ∈ (−π/2, π/2). The domain of this function is
I = (−π/2, π/2), over which it is continuous and strictly increasing. Hence f will have an
inverse f−1 with domain f(I) = R.
Furthermore, f is differentiable on I , and its derivative is f ′(x) = sec2 x, which is non-
zero ∀x ∈ I . Therefore f−1 must be differentiable on R by the Inverse function rule, with
derivative at y ∈ f(c), ∀x ∈ (−π/2, π/2) given by:

(f−1)′(y) = 1
sec2 x

= 1
1 + tan2 x

= 1
1 + y2 (6.2.26)
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implying that:
(tan−1)′(x) = 1

1 + x2 , ∀x ∈ R (6.2.27)

◀

6.3 Rolle’s theorem and local extrema

Definition (Local extrema)
The function f with domain J is said to have a:

1. local maximum f(c) at x = c if there exists I = (c − r, c + r) ⊆ J where r > 0 such
that:

f(x) ≤ f(c), ∀x ∈ I (6.3.1)

2. local minimum f(c) at x = c if there exists I = (c − r, c + r) ⊆ J where r > 0 such
that:

f(c) ≤ f(x), ∀x ∈ I (6.3.2)

3. local extremum f(c) at x = c if f(c) is either a local maximum or minimum

Therefore, a local extremum is a value of f at some point such that f has lower values in some
neighborhood of c.

Theorem (Local extreme value theorem)
If f has a local extremum at c and is differentiable at c then f ′(c) = 0

Proof. Suppose that f has a local maximum at c so that ∃r > 0 such that:

f(x) ≤ f(c), for c− r < x < c+ r (6.3.3)

Let xn = c+ r
n and x′

n = c− r
n for n = 2, 3, .... Then c < xn < c+ r so that f(xn) ≤ f(c) and xn > c.

Hence:
f(xn)− f(c)

xn − c
≤ 0 =⇒ f ′(c) ≤ 0 (6.3.4)

We also have that c− r < x′
n < c so that f(x′

n) ≤ f(c) and x′
n < c and hence:

f(x′
n)− f(c)
xn − c

≥ 0 =⇒ f ′(c) ≥ 0 (6.3.5)

We deduce that f ′(c) = 0 as desired. ■

It is important to note that the converse of the local extreme value theorem is not necessarily true.
All we know is that local extreme values of a differentiable function f on [a, b] occur either at x =
a, x = b or at points x ∈ (a, b) where f ′(x) = 0.

Example. Let’s find the local extrema of f(x) = sin2 x + cosx on [0, π/2]. Firstly f is
continuous on [0, π/2], sowe have that f(0) = 1 and f(π/2) = 1. Moreover f is differentiable
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on (0, π/2) with:
f ′(x) = 2 sin x cosx− sin x (6.3.6)

which vanishes when:

2 sin x cosx = sin x =⇒ sin x = 0 or cosx = 1
2

(6.3.7)

We see that sin x = 0 =⇒ x = πn, ∀n ∈ Z. Instead cosx = 1
2 =⇒ x = 2πn + π

3 , ∀n ∈ Z.
Sincewe’re restricted to the interval (0, π/2)weonly consider x = π

3 where f(x) = 3
4 + 1

2 = 5
4 .

We see that this provides the largest value of f compared to x = 0, x = π
2 and is therefore

the local maximum. The local minimum, on the other hand, occurs at the endpoints x =
0, x = π

2 where f(x) = 1. ◀

Theorem (Rolle’s theorem)
Let f be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then there exists c
with c ∈ (a, b) such that f ′(c) = 0.

Proof. Suppose f is constant on [a, b], then clearly f ′(x) = 0 everywhere on (a, b).

Suppose f is not constant on [a, b]. Since f is continuous it must have both a maximum and min-
imum on [a, b]. At least one of these must be different from f(a) = f(b) since f is non-constant.
Hence f has an extreme value for some c ∈ (a, b). The extreme value theorem then shows that
f ′(c) = 0 as desired.

■

6.4 Mean value theorem

Theorem (Mean value theorem)
Let f be continuous on [a, b] and differentiable on (a, b). Then ∃c ∈ (a, b) such that:

f ′(c) = f(b)− f(a)
b− a

(6.4.1)

Proof. The gradient of the chord joining the points (a, f(a)) and (b, f(b)) is:

m = f(b)− f(a)
b− a

(6.4.2)

Consequently its equation will be y = f(b)−f(a)
b−a (x− a) + f(a). Let us then define:

h(x) = f(x)− f(b)− f(a)
b− a

(x− a)− f(a) (6.4.3)

We then have that h(a) = h(b) = 0 and that h is continuous on [a, b], differentiable on (a, b). Con-
sequently Rolle’s theorem tells us that there exists some c ∈ (a, b) for which:

h′(c) = f ′(c)− f(b)− f(a)
b− a

= 0 =⇒ f ′(c) = f(b)− f(a)
b− a

(6.4.4)
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as desired. ■

Example. Let’s consider f(x) = xex over the interval (0, 2). Clearly f is differentiable on
this interval, and continuous on [0, 2] by the product rule. We also have that:

m = 2e2

2
= e2 =⇒ ∃c ∈ (0, 2) s.t.f ′(c) = e2 (6.4.5)

by the mean value theorem. ◀

Proposition (Increasing-Decreasing) Let f be continuous on I and differentiable on the
interior J of I . Then if:
(i) f ′(x) ≤ 0, ∀x ∈ J then f is decreasing on I .
(ii) f ′(x) ≥ 0, ∀x ∈ J then f is increasing on I .

Proof. Let us take x1, x2 ∈ I such that x1 < x2. Then since f satisfies the condition for the mean
value theorem there exists c ∈ (x1, x2) such that:

f ′(c) = f(x2)− f(x1)
x2 − x1

(6.4.6)

If f ′(x) ≤ 0∀x ∈ J then f ′(c) ≤ 0 and hence f(x2)− f(x1) ≤ 0 proving that f is decreasing on I .

If f ′(x) ≥ 0∀x ∈ J then f ′(c) ≥ 0 and hence f(x2)−f(x1) ≥ 0 proving that f is increasing on I . ■

This gives us an efficient way to prove inequalities. Indeed, supposewewished to prove that

g(x) ≥ h(x), ∀x ∈ [a, b] (6.4.7)

Then we let f(x) = g(x)− h(x), and if it is continuous on [a, b] and differentiable on (a, b) we show
that either:

f(a) ≥ 0 and f ′(x) ≥ 0∀x ∈ (a, b) (6.4.8)

which shows that f is smallest at a in [a, b], or:

f(b) ≥ 0 and f ′(x) ≤ 0∀x ∈ (a, b) (6.4.9)

which shows that f is smallest at b in [a, b]. In both cases we have that f will always be positive,
and hence that g(x) ≥ h(x) on [a, b].

Example. Let’s prove that for α ≥ 1 and x ≥ −1:

(1 + x)α ≥ 1 + αx (6.4.10)

The case where α = 1 is clearly true, so we assume that α > 1.
Let us define f(x) = (1 + x)α − 1 − αx for x ∈ I = [−1,∞) which is continuous on I and
differentiable on its interior. The derivative of f over I is:

f ′(x) = α(1 + x)α−1 − α = α((1 + x)α−1 − 1) (6.4.11)
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We see that for −1 < x < 0 then 0 < 1 + x < 1 so that 0 < (1 + x)α−1 < 1 and hence
f ′(x) < 0, f is decreasing on (−1, 0).
Similarly for 0 < x then 1 < 1 +x so that 1 < (1 +x)α−1 and hence f ′(x) > 0, f is increasing
on (0,∞).
Finally, f(0) = 0 ≥ 0, from which it follows that f(x) ≥ 0 for all x ∈ [−1,∞), as desired. ◀

Theorem (Second derivative test)
Let f be a twice-differentiable function defined on the open interval I containing c, such
that f ′(c) = 0 and f ′′ is continuous at c.
(i) if f ′′(c) > 0 then f(c) is a local minimum of f .
(ii) if f ′′(c) < 0 then f(c) is a local maximum of f .

Proof. Suppose that f ′′(c) > 0. Since f ′′ is continuous at c, we have that ∃δ > 0 such that (c− δ, c+
δ) ⊆ I and:

|f ′′(x)− f ′′(c)| < ϵ = 1
2
f ′′(c), ∀x ∈ (c− δ, c+ δ) (6.4.12)

implying that f ′′(x) > 1
2f

′′(c) > 0. Hence f ′ is strictly increasing on (c− δ, c+ δ). Furthermore we
have that f ′(c) = 0 so:

f ′(x) < 0, ∀x ∈ (c− δ, c)f ′(x) > 0, ∀x ∈ (c, c+ δ) (6.4.13)

This implies that

f(x) is decreasing, ∀x ∈ (c− δ, c)f(x) is increasing, ∀x ∈ (c, c+ δ) (6.4.14)

proving that f has a local minimum at c. ■

6.5 L’Hopital’s rule

Theorem (Cauchy’s mean value theorem)
Let f, g be continuous on [a, b] and differentiable on (a, b). Then ∃c ∈ (a, b) such that:

f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)) (6.5.1)

Proof. Let us define:
h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a)) (6.5.2)

Clearly by the combination rules of continuity and differentiability, hmust be continuous on [a, b]
and differentiable on (a, b). Note also that:

h(a) = f(a)g(b)− g(a)f(b) = h(b) (6.5.3)

We may therefore apply Rolle’s Theorem:

∃c ∈ (a, b) s.t.h′(c) = f ′(c)(g(b)− g(a))− g′(c)(f(b)− f(a)) = 0 (6.5.4)
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thus implying that:
f ′(c)(g(b)− g(a)) = g′(c)(f(b)− f(a)) (6.5.5)

as desired. ■

Theorem (L’Hopital’s rule)
Let f, g be differentiable on I which contains c, and suppose f(c) = g(c) = 0. Then:

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

(6.5.6)

provided the latter limit exists.

Proof. Assume that:

lim
x→c

f ′(x)
g′(x)

= l (6.5.7)

Let ϵ > 0, then it follows from the existence of the above limit that ∃δ > 0 such that:∣∣∣∣f ′(x)
g′(x)

− l
∣∣∣∣ < ϵ, 0 < |x− c| < δ (6.5.8)

so we cannot have that g′(x) = 0 within 0 < |x − c| < δ. Note however that if g(x0) = g(c) for
some x0 (wlog x0 > c), then by Rolle’s theorem g′(x) = 0 for some x ∈ (c, x0), which is impossible.
Hence we must have that g(x) 6= g(c) for all 0 < |x − c| < δ. Applying Cauchy’s mean value
theorem, we have some d ∈ (c, x) such that:

f ′(d)(g(x)− g(c)) = g′(d)(f(x)− f(c)) =⇒ f ′(d)
g′(d)

= f(x)− f(c)
g(x)− g(c)

(6.5.9)

and since f(c) = g(c) = 0 we get that:
f ′(d)
g′(d)

= f(x)
g(x)

(6.5.10)

Therefore: ∣∣∣∣f(x)
g(x)

− l
∣∣∣∣ =

∣∣∣∣f ′(d)
g′(d)

− l
∣∣∣∣ < ϵ, 0 < |x− c| < δ (6.5.11)

proving that

lim
x→c

f(x)
g(x)

= l (6.5.12)

as desired. ■

Example. Consider
lim
x→0

sin x− x cosx
x3 (6.5.13)

We see that f(x) = sin x − x cosx is continuous and differentiable in R by the combination
rules, and so is g(x) = x3. Moreover, we also have that f(0) = g(0) = 0, hence wemay apply
l’Hopital’s theorem:

lim
x→0

sin x− x cosx
x3 = lim

x→0

cosx− cosx+ x sin x
3x2 = lim

x→0

sin x
3x

= 1
3

(6.5.14)
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◀
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7A7 Integration

7.1 The Riemann integral

Definition (Partition)
A partition P of a closed interval [a, b] is a collection of closed non-intersecting subintervals
whose union gives [a, b]:

P = {[x0, x1], [x1, x2], ..., [xi−1, xi], ..., [xn−1, xn]} (7.1.1)

with:
a = x0 < x1 < ... < xi < ... < xn = b (7.1.2)

The points xi are known as partition points, and the ith subinterval is Ii = [xi−1, xi] whose
length is δxi = xi − xi−1. Instead the mesh of P is defined as ‖P‖ = max1≤i≤n{δxi}.

Example. Consider the following partition P of [0, 1]:

P =
{[

0, 1
2

]
,

[
1
2
,

3
5

]
,

[
3
5
,

3
4

]
,

[
3
4
, 1
]}

(7.1.3)

We find that:
δx1 = 1

2
, δx2 = 1

10
, δx3 = 3

20
, δx4 = 1

4
(7.1.4)

so that:
‖P‖ = max{δx1, δx2, δx3, δx4} = 1

2
(7.1.5)

◀

Definition (Riemann sums)
Let f be bounded on [a, b] and let P = {[a, x1], [x1, x2], ..., [xi−1, xi], ..., [xn−1, b]}. Define:

mi = inf
x∈Ii

f, Mi = sup
x∈Ii

f (7.1.6)

Then the lower Riemann sum for f on [a, b] is:

L(f, P ) =
n∑

i=1
miδxi (7.1.7)
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while the upper Riemann sum for f on [a, b] is:

U(f, P ) =
n∑

i=1
Miδxi (7.1.8)

Geometrically, the upper Riemann sum represents an upper bound for the area under f , whereas
the lower Riemann sum represents a lower bound for the area under f .

At the essence of Riemann integration is that we may approximate a function as constant over a
sufficiently small interval Ii = [xi−1, xi]. Doing this for the entire partition of P , we get a series of
intervals over which f is taken to be constant. In other words, we may consider the area under f as
a series of vertical strips of width δxi. But what constant value should we take for the height of the
columns? Well, mi gives the largest lower bound of f over Ii, while Mi gives the smallest upper
bound of f . Consequentlymiδxi will underestimate the area of the ith vertical strip, whileMiδx2
will overestimate it.

Example. Consider the function

f(x) =

{
2x, 0 < x < 1
1, x = 0, 1

(7.1.9)

and the partition P =
{[

0, 1
4
]
,
[ 1

4 ,
1
2
]
,
[ 1

2 ,
3
4
]
,
[ 3

4 , 1
]}

. Then we see that:

m1 = 0, M1 = 1, δx1 = 1
4

(7.1.10)

m2 = 1
2
, M2 = 1, δx2 = 1

4
(7.1.11)

m3 = 1,M3 = 3
2
, δx3 = 1

4
(7.1.12)

m4 = 1,M4 = 2, δx4 = 1
4

(7.1.13)

(7.1.14)

and therefore:

L(f, P ) = 1
4

(0 + 1
2

+ 1 + 1) = 5
8

(7.1.15)

U(f, P ) = 1
4

(1 + 1 + 3
2

+ 2) = 11
8

(7.1.16)

◀

Example. Let

f(x) =

{
x2, 0 ≤ x ≤ 1
2, 1 < x ≤ 2

(7.1.17)

and the partition P =
{[

0, 1
n

]
,
[ 1

n ,
2
n

]
, ...,

[
2− 1

n , 2
]}

.
Now we see that the ith interval is

[
i−1

n , i
n

]
, while the interval width is δxi = 1

n . Also, note
that f is increasing over [0, 2], somi will be the value of f at the left endpoint of the ith inter-
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val, whileMi will be the value of f at the right endpoint of the ith interval. Consequently,
for 1 ≤ i ≤ n we find that mi = (i−1)2

n2 , while Mi = i2

n2 . Instead for i = n + 1, mi = 1
(which is coherent with mi = (i−1)2

n2 ) whereas Mi = 2. Finally for n + 2 ≤ i ≤ 2n we get
thatmi = Mi = 2. Hence:

L(f, P ) =
n+1∑
i=1

(i− 1)2

n2
1
n

+
2n∑

i=n+2
2 1
n

(7.1.18)

= 1
n3

n∑
i=0

i2 +
2n∑

i=n+2
2 1
n

(7.1.19)

= 1
n3
n(n+ 1)(2n+ 1)

6
+ 2
n

(2n− n− 1) (7.1.20)

= n(n+ 1)(2n+ 1)
6n3 + 2− 2

n
(7.1.21)

Instead:

U(f, P ) =
n∑

i=1

i2

n2
1
n

+
2n∑

n+1
2 1
n

(7.1.22)

= n(n+ 1)(2n+ 1)
6n3 + 2 1

n
(2n− n) = n(n+ 1)(2n+ 1)

6n3 + 2 (7.1.23)

Note that taking the limit as n→∞:

lim
n→∞

L(f, P ) = 1
3

+ 2 = 7
3

(7.1.24)

and similarly:
lim

n→∞
U(f, P ) = 1

3
+ 2 = 7

3
(7.1.25)

We define this number as the integral of f on [a, b]. ◀

Theorem (Lower and upper Riemann sum inequality)
Let f be bounded on [a, b] and let P, P ′ be partitions of [a, b]. Then L(f, P ) ≤ U(f, P ′).

Proof. Suppose f is non-negative on [a, b].

Since for any given partition P ,mi ≤Mi we have that L(f, P ) ≤ U(f, P ). Also, let P ′′ be the union
of the P and P ′ partitions. For example, if P =

{[
0, 1

4
]
,
[ 1

4 ,
1
2
]}

and P ′ =
{[

0, 1
3
]
,
[ 1

3 ,
1
2
]}

, then

P ′′ =
{[

0, 1
4
]
,
[ 1

4 ,
1
3
]
, [ 1

3 ,
1
2
]}

.

Now consider what happens when we add a new partition x′ to P = {[x0, x1], ..., [xn−1, xn]}. Since
f is positive adding this partition will not increase the upper Riemann sum. Similarly, adding the
partition will not decrease the lower Riemann sum.

In other words, if we add a refinement from the P partition onto the P ′ partition to form the P ′′

partition, we will find that U(f, P ′′) ≤ U(f, P ′). Similarly if we add a refinement from the P ′

partition onto the P partition to form the P ′′ partition, we will find that L(f, P ) ≤ L(f, P ′′).
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Therefore, we may write that:

L(f, P ) ≤ L(f, P ′′) ≤ U(f, P ′′) ≤ U(f, P ′) (7.1.26)

as desired.

If instead f is negative over some interval, then because it is boundedwemay still form the function
g = f + c where c is some constant. Applying the same reasoning as before we will find that
L(g, P ) ≤ U(g, P ′) and thus L(f, P ) ≤ U(f, P ′) since the upper and lower riemann sums of a
constant function c are identical. ■

Definition (Integral)
Let f be a bounded function on [a, b], and let P be a partition of [a, b]. Then the lower integral
of f on [a, b] is: ∫ b

a

f = sup
P
L(f, P ) (7.1.27)

while the upper integral of f is: ∫ b

a

f = inf
P
U(f, P ) (7.1.28)

If these two are equal, then we say that f is integrable on [a, b]. The values they are equal to
is the integral of f on [a, b].

In the previous example, we would write that:

∫ 2

0
f =

∫ 2

0
f = 7

3
=⇒

∫ 2

0
f = 7

3
(7.1.29)

Example. Let f be the Dirichlet function defined by

f(x) =

{
1, 0 ≤ x ≤ 1, x is irrational
0, 0 ≤ x ≤ 1, x is rational

(7.1.30)

with a partition P = {[0, x1], [x1, x2], ..., [xn−1, 1]}. Due to the density of real numbers, we
can always find a rational and irrational number within each interval, so that mi = 0 and
Mi = 1. Hence we find that:

L(f, P ) =
∑

i

miδxi = 0 (7.1.31)

while
U(f, P ) =

∑
i

Miδxi =
∑

i

δxi = 1 (7.1.32)

Therefore: ∫ 1

0
f = 0 6=

∫ 1

0
f = 1 (7.1.33)

from which it follows that f is not integrable on [0, 1]. ◀
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Theorem (Integrability)
Let f be bounded on [a, b], if there exists a sequence of partitions (Pn) of [a, b] such that
‖Pn‖ → 0 then:

lim
n→∞

L(f, Pn) = lim
n→∞

U(f, Pn) = A ∈ R (7.1.34)

then
∫ b

a
f = A.

Proof. Let ϵ > 0, then there exists n such that:

|L(f, Pn)−A| < 1
2
ε =⇒ L(f, Pn) > A− 1

2
ε (7.1.35)

and similarly:
U(f, Pn) < A+ 1

2
ε (7.1.36)

Also, by definition we must have that:

L(f, Pn) ≤
∫ b

a

f ≤
∫ b

a

f ≤ U(f, Pn) (7.1.37)

so that:

A− 1
2
ε ≤

∫ b

a

f ≤
∫ b

a

f ≤ A+ 1
2
ε (7.1.38)

Therefore, we find that f is integrable on [a, b] with:∫ b

a

f = A (7.1.39)

as desired. ■

Proposition (Integrability)
A function f which is
(a) bounded and monotonic on [a, b] or
(b) continuous on [a, b]

is integrable on [a, b].

Proof. (a) Consider the following partition of [a, b] into equal-sized intervals:

Pn = {[a, x1], [x1, x2], ..., [xn−1, n]} (7.1.40)

with xi = a+ b−a
n i and thus δxi = b−a

n . Since f is increasing, wemust have thatmi = f(xi−1)
andMi = f(xi). Hence:

U(f, Pn)− L(f, Pn) =
∑

i

(f(xi)− f(xi−1))b− a
n

= (f(b)− f(a))b− a
n

(7.1.41)

This sequence is clearly null, so f is integrable on [a, b].

■
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Proposition (Properties of Riemann integral)
Let f be integrable on an interval containing a, b, c, then:∫ c

a

f +
∫ b

c

f =
∫ b

a

f (7.1.42)

Suppose that f is integrable on [a, b], then |f | is also integrable on [a, b]. Also:∫ b

a

(f + g) =
∫ b

a

f +
∫ b

a

g (7.1.43)

and ∫ b

a

λf = λ

∫ b

a

f (7.1.44)

Finally,both fg and f/g are integrable, provided that 1
g is bounded on [a, b] in the latter case.

7.2 Inequalities and series with integrals
Series

Proposition (Inequality rules)
Let f and g be integrable over [a, b]. then:
(i) if f(x) ≤ g(x), ∀x ∈ [a, b] then: ∫ b

a

f ≤
∫ b

a

g (7.2.1)

(ii) ifm ≤ f(x) ≤M, ∀x ∈ [a, b] then:

m(b− a) ≤
∫ b

a

f ≤M(b− a) (7.2.2)

(iii) ∣∣∣∣ ∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f | (7.2.3)

Proof. (i) Suppose that f(x) ≤ g(x), ∀x ∈ [a, b], and let P be any partition of [a, b]. Then:

inf
[xi,xi+1]

f ≤ inf
[xi,xi+1]

(7.2.4)

implying that: ∫ b

a

f = sup
P
L(f, p) ≤ sup

P
L(g, P ) =

∫ b

a

g (7.2.5)

as desired.

(ii) Supposem ≤ f(x) ≤M over [a, b]. Then from the results of part (a)∫ b

a

m ≤
∫ b

a

f ≤
∫ b

a

M =⇒ m(b− a) ≤
∫ b

a

f ≤M(b− a) (7.2.6)
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(iii) Note that −f(x) ≤ |f(x)| ≤ f(x) for all x ∈ [a, b], so that:

−
∫ b

a

|f | ≤
∫ b

a

f ≤
∫ b

a

|f | =⇒
∣∣∣∣ ∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f | (7.2.7)

as desired.

■

Example.
(a) Let us prove that: ∫ 3

1
x sin 1

x10 dx ≤ 4 (7.2.8)

We have that for all x ∈ [1, 3]:

− 1 ≤ sin 1
x10 ≤ 1 (7.2.9)

implying that: ∫ 3

1
x sin 1

x10 dx ≤
∫ 3

1
x = 1

2
[x2]30 = 4 (7.2.10)

as desired.
(b) Let us prove that:

1
2
≤
∫ 1

2

0
ex2

dx ≤ 1
2
e1/4 (7.2.11)

Indeed, note that:
d

dx
(ex2

) = 2xex2
≥ 0, ∀x ∈

[
0, 1

2

]
(7.2.12)

showing that ex2 is increasing on
[
0, 1

2
]
. It then follows that:

1 ≤ ex2
≤ e 1

4 , ∀x ∈
[
0, 1

2

]
(7.2.13)

and hence:
1
2
≤
∫ 1

2

0
ex2

dx ≤ 1
2
e1/4 (7.2.14)

as desired.
(c) Finally, let us prove that: ∣∣∣∣ ∫ π

4

0

tan x
3− sin x2 dx

∣∣∣∣ ≤ 1
4

log 2 (7.2.15)

Indeed, we have that:

− 1 ≤ sin
(
x2) ≤ 1 =⇒ 2 ≤ 3− sin x2 ≤ 4 (7.2.16)

Thus: 1
4

tan x ≤ tan x
3− sin x2 ≤

1
2

tan x (7.2.17)
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implying that: ∣∣∣∣ tan x
3− sin x2

∣∣∣∣ ≤ 1
2
| tan x| (7.2.18)

Also tan x ≥ 0, ∀x ∈
[
0, π

4
]
, so that:∣∣∣∣ tan x

3− sin x2

∣∣∣∣ ≤ 1
2

tan x (7.2.19)

Using the limit inequality:∣∣∣∣ ∫ π
4

0

tan x
3− sin x2 dx

∣∣∣∣ ≤ ∫ π
4

0

1
2

tan xdx = 1
2

[ln | secx|]
π
4
0 (7.2.20)

= 1
2

ln
∣∣∣∣√2

∣∣∣∣ = 1
4

ln 2 (7.2.21)

as desired.

◀

Wallis’ formula
Lemma. Let

In =
∫ π

2

0
sinn xdx, n = 0, 1, 2... (7.2.22)

Then In = n−1
n In−2 for n ≥ 2.

Proof. It is easy to see that:
I0 = π

2
, I1 = 1 (7.2.23)

Also, for n ≥ 2:

In =
∫ π/2

0
sinn xdx =

∫ π/2

0
sin x sinn−1 xdx (7.2.24)

= [− cosx sinn−1 x]π/2
0 +

∫ π/2

0
(n− 1) cos2 x sinn−2 xdx (7.2.25)

= (n− 1)

(∫ π/2

0
sinn−2 xdx−

∫ π/2

0
sinn xdx

)
(7.2.26)

=⇒ nIn = (n− 1)In−2 =⇒ In = n− 1
n

In−2 (7.2.27)

as desired. ■

For example, we have that even powers of sin x integrate to:

I4 = 3
4

1
2
π

2
, I6 = 5

6
3
4

1
2
π

2
(7.2.28)

or more generally:
I2n = 2n− 1

2n
2n− 3
2n− 2

...
3
4

1
2
π

2
(7.2.29)

− 89 −
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Similarly, we have that odd powers of sin x integrate to:

I5 = 4
5

2
3
, I7 = 6

7
4
5

2
3

(7.2.30)

or more generally:
I2n+1 = 2n

2n+ 1
2n− 2
2n− 1

...
4
5

2
3

(7.2.31)

Lemma. Let:

an = 2
1

2
3

4
3

4
5

6
5

6
7
...

2n
2n− 1

2n
2n+ 1

(7.2.32)

bn = (n!)222n

(2n)!
√
n

(7.2.33)

then:
b2

n = 2n+ 1
n

an, n = 1, 2, ... (7.2.34)

Proof. Firstly note that:

b2
1 = 24

4
= 4, a1 = 2

1
2
3

= 4
3

=⇒ b2
1 = 3a1 (7.2.35)

More generally, suppose that for some n:

b2
n = 2n+ 1

n
an (7.2.36)

then:

b2
n+1 = ((n+ 1)!)424(n+1)

((2n+ 2)!)2(n+ 1)
(7.2.37)

= (n!)4(n+ 1)424n24

(2n!)2(2n+ 2)2(2n+ 1)2(n+ 1)
(7.2.38)

= (n!)424n

((2n)!)2n

n

n+ 1
(n+ 1)424

22(n+ 1)2(2n+ 1)2 (7.2.39)

= 2n+ 1
n

n

n+ 1
(n+ 1)222

(2n+ 1)2 an (7.2.40)

= 4(n+ 1)
2n+ 1

an (7.2.41)

Now note that:
an+1 = 2n+ 2

2n+ 1
2n+ 2
2n+ 3

an =⇒ 4(n+ 1)
2n+ 1

an = 2n+ 3
n+ 1

an+1 (7.2.42)

and hence:
b2

n+1 = 2n+ 3
n+ 1

an+1 (7.2.43)

as desired. ■

Theorem (Wallis’ Formula) Wallis’ formula:

lim
n→∞

(n!)222n

(2n)!
√
n

=
√
π (7.2.44)
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Proof. We begin by proving that:
lim

n→∞
an = π

2
(7.2.45)

Indeed, note that:
π

2
an = I2n+1

I2n
(7.2.46)

so we need to prove that:
lim

n→∞

I2n+1

I2n
= 1 (7.2.47)

Furthermore, for x ∈ [0, π/2] then:

sin2n+2 x ≤ sin2n+1 x ≤ sin2n x =⇒ I2n+2 ≤ I2n+1 ≤ I2n (7.2.48)

using the inequality rules for integrals. Therefore:

I2n+2

I2n
= 2n+ 1

2n+ 2
≤ I2n+1

I2n
≤ 1 (7.2.49)

Hence, using the squeeze rule:

lim
n→∞

I2n+1

I2n
= 1 =⇒ lim

n→∞
an = π

2
(7.2.50)

as desired.

We then have that:

lim
n→∞

b2
n = lim

n→∞

2n+ 1
n

an = π =⇒ lim
n→∞

bn =
√
π (7.2.51)

■

7.3 Series

Theorem (Integral test)
Let f be positive and decreasing on [1,∞), and suppose limx→∞ f(x) = 0. Define:

In =
∫ n

1
f (7.3.1)

Then:
(i)

∞∑
n=1

f(n) converges if (In) is bounded above.

(ii)
∞∑

n=1
f(n) diverges if (In) diverges.

Proof. Let sn =
n∑

k=1
f(k) be the nth partial sum of

∞∑
n=1

f(n), and let Pn−1 be the partition of [1, n]:

Pn = {[1, 2], ..., [i, i+ 1], ..., [n− 1, n]} (7.3.2)
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Now since f(x) is decreasing on [0,∞), we must have that:

mi = f(i+ 1) =⇒ L(f, Pn−1) = f(2) + f(3) + ...+ f(n) = sn − f(1) (7.3.3)
Mi = f(i) =⇒ U(f, Pn−1) = f(1) + f(2) + ...+ f(n− 1) = sn − f(n) (7.3.4)

Hence:
sn − f(1) ≤

∫ n

1
f ≤ sn − f(n) (7.3.5)

(i) Suppose In =
n∫
1
f is bounded above by someM :

sn − f(1) ≤ In ≤M =⇒ sn ≤M + f(1) (7.3.6)

Since (sn) is an increasing bounded sequence, it follows from the Monotone convergence
theorem that sn converges. Hence

∞∑
n=1

f(n) converges.

(b) Suppose In is not bounded above, since f is positive:

In+1 − In =
∫ n+1

n

f ≥ 0 =⇒ In is increasing (7.3.7)

So we have that In diverges. Note also that:

sn ≥ In (7.3.8)

so using the Squeeze rule, sn diverges, and hence so does
∞∑

n=1
f(n).

■

Example. Consider: ∫
dx

x(log x)2 =
∫
du

u2 = − 1
log x

(7.3.9)

where we used u = log x, du = 1
x . Hence:

In =
∫ n

2

dx

x(log x)2 =
[

1
log x

]2

n

= 1
log 2

− 1
logn

(7.3.10)

Note that x(log x)2 is positive and increasing on [2,∞), implying that f = 1
x(log x)2 is positive

an decreasing on [2,∞). Furthermore:

In = 1
log 2

− 1
logn

≤ 1
log 2

(7.3.11)

so In is bounded above. It follows that:
∞∑

n=2

1
n(logn)2 is convergent (7.3.12)

◀
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8A8 Power series

8.1 Taylor series

Definition (Taylor polynomial)
Let f ∈ Cn(I) be a n−times differentiable function defined on an open interval I containing
a. Then the Taylor polynomial of degree n at a is the polynomial:

Tn(x) =
n∑

k=0

f (k)(x)
k!

(x− a)k = f(a) + f ′(a)(x− a) + f ′′(a)
2

(x− a)2 + ...+ f (n)(x)
n!

(x− a)n

(8.1.1)

Example. Consider f(x) = cosx, let us find its nth order Taylor polynomial about a ∈ R.
Firstly we evaluate the derivatives:

f(x) = cosx =⇒ f(a) = cos a
f ′(x) = − sin x =⇒ f ′(a) = − sin a
f ′′(x) = − cosx =⇒ f ′′(a) = − cos a

f (3)(x) = sin x =⇒ f (3)(a) = sin a

f (4)(x) = cosx =⇒ f (4)(a) = cos a
...

f (2n)(x) = (−1)n cosx =⇒ f (2n)(a) = (−1)n cos a

f (2n+1)(x) = (−1)n+1 sin x =⇒ f (2n+1) = (−1)n+1 sin a

Consequently, even order taylor polynomials are:

T2n(a) =
n∑

k=0

(−1)k cos a
(2k)!

(x− a)2k +
n−1∑
k=0

(−1)k+1 sin a
(2k + 1)!

(x− a)2k+1 (8.1.2)

while odd order taylor polynomials are:

T2n+1(a) =
n∑

k=0

(−1)k cos a
(2k)!

(x− a)2k +
n∑

k=0

(−1)k+1 sin a
(2k + 1)!

(x− a)2k+1 (8.1.3)
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Taking a = 0 we find that:

T2n(0) = T2n+1(0) =
n∑

k=0

(−1)k

(2k)!
(x− a)2k (8.1.4)

◀

Example. Consider f(x) = sin x, let us find its nth order Taylor polynomial about a ∈ R.
Firstly we evaluate the derivatives:

f(x) = sin x =⇒ f(a) = sin a
f ′(x) = cosx =⇒ f ′(a) = cos a

f ′′(x) = − sin x =⇒ f ′′(a) = − sin a

f (3)(x) = − cosx =⇒ f (3)(a) = − cos a

f (4)(x) = sin x =⇒ f (4)(a) = sin a
...

f (2n)(x) = (−1)n sin x =⇒ f (2n)(a) = (−1)n sin a

f (2n+1)(x) = (−1)n cosx =⇒ f (2n+1) = (−1)n cos a

Consequently, even order taylor polynomials are:

T2n+2(a) =
n+1∑
k=0

(−1)k sin a
(2k)!

(x− a)2k +
n∑

k=0

(−1)k cos a
(2k + 1)!

(x− a)2k+1 (8.1.5)

while odd order taylor polynomials are:

T2n+1(a) =
n∑

k=0

(−1)k sin a
(2k)!

(x− a)2k +
n∑

k=0

(−1)k cos a
(2k + 1)!

(x− a)2k+1 (8.1.6)

Taking a = 0 we find that:

T2n+1(0) = T2n+2(0) =
n∑

k=0

(−1)k

(2k + 1)!
(x− a)2k+1 (8.1.7)

◀

Example. Consider f(x) = ex, let us find its nth order Taylor polynomial about a ∈ R.
First we evaluate the derivatives:

f (n)(a) = ea (8.1.8)

so that:
Tn(a) =

n∑
k=1

ea

k!
(x− a)k =⇒ Tn(0) =

n∑
k=1

xk

k!
(8.1.9)

◀
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Theorem (Taylor’s theorem)
Let f ∈ Cn+1(I) and a, x ∈ I . Then:

f(x) = Tn(x) +Rn(x) (8.1.10)

where Tn(x) is the nth order Taylor about a, and:

Rn(x) = f (n+1)(c)
(n+ 1)!

(x− a)n+1 (8.1.11)

for some c ∈ (a, x) is known as the error term.

Proof. Let’s consider:
h(t) = f(t)− Tn(t)−A(t− a)n+1 (8.1.12)

where A is chosen so that h(x) = 0. Note also that:

f (k)(a) = T (k)
n (a) =⇒ h(k)(a) = 0, k = 0, 1, ..., n (8.1.13)

fromwhich it follows thath is continuous andn-fold differentiable on I , and thath(k)(a) = h(k)(x) =
0. Using Rolle’s theorem applied to h on the interval [a, x], we see that there must be some c1 such
that h′(c1) = 0.

Similarly, applying Rolle’s theorem to h′ on the interval [a, c1], we see that there must be some c2
such that h′′(c2) = 0. Repeating this reasoning to h′′, h(3), ..., h(n) on the intervals:

[a, c2], [a, c3], ..., [a, cn], c2 > c3 > ... > cn > a (8.1.14)

we find that there must be some c ∈ [a, cn] such that:

h(n+1)(c) = f (n+1)(c)−A(n+ 1)! = 0 =⇒ A = f (n+1)(c)
(n+ 1)!

(8.1.15)

Substituting this into our original expression for h(t), and setting t = xwith h(x) = 0:

f(x) = Tn(x) + f (n+1)(c)
(n+ 1)!

(x− a)n+1 (8.1.16)

as desired.

Example. The Taylor expansion of f(x) = log x about a = 0 is:

Tn(x) =
n∑

k=1

(−1)k+1xk

k
(8.1.17)

for x ∈ (−1, 1]. Let us limit the domain to I = [−0.02, 0.02] = [a − r, a + r] where r = 0.02.
The second order polynomial is therefore:

T2(x) = x− x2

2
, x ∈ I (8.1.18)
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implying that:

|R2(x)| =
∣∣∣∣f (3)(c)

3!
x3
∣∣∣∣ ≤ |f (3)(c)|r

3

3!
(8.1.19)

for some c ∈ I . Now we have that:

|f (3)(c)| =
∣∣∣∣ 2
(1 + c)3

∣∣∣∣ ≤ 2 (8.1.20)

so that:
|R2(x)| ≤ 2 · (0.02)3

3!
= 2.66× 10−6 (8.1.21)

so we know that the error will be negligible up to 5 decimal places. Consequently:

log(1.02) ≈ (0.02)− (0.02)2

2
≈ 0.01980(5 d.p.) (8.1.22)

◀

Example. The fourth order Taylor polynomial T4(x) at π for f(x) = cosx is:

T4(x) =
4∑

k=0

(−1)k+1

(2k)!
(x− π)2k = −1 + 1

2
(x− π)2 (8.1.23)

We need to show that T4(π) approximates f(π) = cosπ to at least a 0.01 error on
[3π/4, 5π/4] = [a− r, a+ r] where a = π, r = π

4 .

To do so we must find and upper bound for the remainder |R4(x)| =
∣∣∣∣ f(5)(c)

5! (x− a)5
∣∣∣∣. Now

|x− a| ≤ r = π
4 , so:

|R4(x)| ≤ |f (5)(c)|r
5

5!
(8.1.24)

for some c ∈ [3π/4, 5π/4]. We also have that:

f (5)(x) = − sin x =⇒ |f (5)(c)| = | sin c| ≤ 1 (8.1.25)

and thus:
|R4(x)| ≤ (π/4)5

5!
= 0.0025 < 0.01 (8.1.26)

as desired. ◀

■

Theorem (Taylor series)
Let f be a class C∞ on an open interval I at points a and x. If Rn(x)→ 0 as n→∞ then

f(x) =
∞∑

n=0

f (n)(a)
n!

(x− a)n (8.1.27)

which is known as the Taylor series at a for f .
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Proof. This follows immediately from the fact that f(x) = Tn(x) +Rn(x). ■

Proposition (Important taylor series at 0)

1
1− x

=
∞∑

n=0
xn, |x| < 1 (8.1.28)

sin x =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
, x ∈ R (8.1.29)

cosx =
∞∑

n=0

(−1)nx2n

(2n)!
, x ∈ R (8.1.30)

ex =
∞∑

n=0

xn

n!
, x ∈ R (8.1.31)

log(1 + x) =
∞∑

n=1

(−1)n+1xn

n
, −1 < x ≤ 1 (8.1.32)

Proof. (a) It can easily be seen that the nth order taylor polynomial of f(x) = 1
1−x is:

Tn(x) =
n∑

k=0

xk (8.1.33)

which is a geometric series. It converges to 1
1−x only for |x| ≤ 1, as desired.

(b) The nth order taylor polynomial of f(x) = sin x is:

Tn(x)
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
(8.1.34)

implying that the error term Rn(x) may be expressed as:

|Rn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!
(8.1.35)

since f (n+1)(c) = ± sin c or ± cos c. Therefore:

|Rn(x)| ≤ |x|n+1

(n+ 1)!
→ 0 as n→∞ (8.1.36)

where we have used the squeeze rule for null sequences. This is true for all x, and the result
follows.

(c) The nth order taylor polynomial of f(x) = cosx is:

Tn(x)
∞∑

n=0

(−1)nx2n

(2n)!
(8.1.37)
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implying that the error term Rn(x) may be expressed as:

|Rn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣ ≤ xn+1

(n+ 1)!
(8.1.38)

since f (n+1)(c) = ± sin c or ± cos c. Therefore:

|Rn(x)| ≤ |x|n+1

(n+ 1)!
→ 0 as n→∞ (8.1.39)

where we have used the squeeze rule for null sequences. This is true for all x, and the result
follows.

(d) The nth order taylor polynomial of f(x) = ex is:

Tn(x) =
n∑

k=0

xk

k!
(8.1.40)

The error term may be written as:

Rn(x) = f (n+1)(c)
(n+ 1)!

xn+1 = ec xn+1

(n+ 1)!
(8.1.41)

and since c lies between 0 and x:

|Rn(x)| ≤ ex |xn+1|
(n+ 1)!

→ 0 as n→∞ (8.1.42)

as desired.

(e) The nth order Taylor polynomial of f(x) = log(1 + x) is:

Tn(x) =
n∑

k=1

(−1)k+1xk

k
(8.1.43)

Consequently, we have that for 0 < x ≤ 1 then the error term reads:

|Rn(x)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
xn+1

∣∣∣∣ (8.1.44)

=
∣∣∣∣ n!
(1 + c)n+1

xn+1

(n+ 1)!

∣∣∣∣ (8.1.45)

= |x|n+1

(n+ 1)(c+ 1)n+1 ≤
1
n
→ 0 as n→∞ (8.1.46)

where we noted that |x|n+1 ≤ 1 and 1 + c > 1. Using the sequeeze rule we readily find the
desired result.

■
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8.2 Convergence

Definition (Power series) Let a, an, x ∈ R for n = 0, 1, 2.... Then a power series at a in x
is a series of the form:

∞∑
n=0

an(x− a)n (8.2.1)

Lemma. If the power series
∞∑

n=0
anx

n converges for some x0 6= 0, then it converges absolutely on

(−|x0|, |x0|).

Proof. Let r = |x0|. Note that the convergence of
∞∑

n=0
anx

n
0 implies that (anx

n
0 ) is a null sequence,

and hence there exists someK such that:

|an|rn = |anx
n
0 | ≤ K, n = 0, 1, 2... (8.2.2)

Let |x| < r, then clearly:

∞∑
n=0

anx
n =

∞∑
n=0

anr
nx

n

rn
=⇒ |anx

n| ≤ K |x|
n

rn
(8.2.3)

Since we assumed that |x| < r, we have that the geometric series
∑∞

n=0
( |x|

r

)n is convergent. By the

comparison test, it follows that
∞∑

n=0
anx

n converges for |x| < |x0|. ■

Theorem (Radius of convergence)
The power series

∞∑
n=0

an(x− a)n exactly one of the following is true:

(a) it converges only for x = a

(b) it converges for all x
(c) there exists some R > 0 such that the series diverges if |x − a| > R and converges if
|x− a| < R.

and in all cases absolute convergence follows on the same intervals.

Proof. Let us define:

E =
{
x ∈ R :

∞∑
n=0

an(x− a)n converges
}

(8.2.4)

If E = {a} then we have satisfied condition (a).

If E is unbounded, then for all x ∈ R there is some x0 ∈ E obeying |x| < |x0|. It follows that
∞∑

n=0
an(x− a)n converges absolutely for (−|x0|, |x0|) by the Lemma we have just proven. Since this

holds for all x ∈ R the power series must sastisfy condition (b).

The only remaining set is bounded and containing some x0 6= a. Consequently the power series
converges absolutely over (−|x0|, |x0|) ⊆ E. We see that the radius of convergence is R = supE, so
that R > |x0|.
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In the case where |x− a| < R, then there exists some x1 ∈ E such that |x− a| < x1. Therefore, the
series converges absolutely.

In the case where |x − a| > R, then we can find x2 > R such that |x − a| > x2. If
∞∑

n=0
an(x − a)n

were to converge then we would find that
∞∑

n=0
anx

n
2 converges, a contradiction.

So here condition (c) is satisfied. ■

Theorem (Ratio test)
Suppose that

∞∑
n=0

an(x− a)n is a power series with radius of convergence R.

(a) If
∣∣an+1

an

∣∣→∞ as n→∞ then R = 0.
(b) If

∣∣an+1
an

∣∣→ 0 as n→∞ then R =∞.
(c) If

∣∣an+1
an

∣∣→ L as n→∞ then R = 1
L provided L > 0.

Proof. (a) Suppose that
∣∣an+1

an

∣∣→∞ as n→∞. If x 6= a then:

|an+1(x− a)n+1|
|an(x− a)n|

=
∣∣∣∣an+1

an

∣∣∣∣|x− a| → ∞ as n→∞ (8.2.5)

proving that
∑∞

n=0 |an(x− a)n| diverges. Since absolute convergence of power series follows
from normal convergence, we have that

∑∞
n=0 an(x − a)n diverges. So the series only con-

verges when x = a, giving R = 0.

(b) Suppose that
∣∣an+1

an

∣∣→ 0 as n→∞. If x 6= a then:

|an+1(x− a)n+1|
|an(x− a)n|

=
∣∣∣∣an+1

an

∣∣∣∣|x− a| → 0 as n→∞ (8.2.6)

proving that
∑∞

n=0 |an(x − a)n| converges. Since absolute convergence of power series fol-
lows from normal convergence, we have that

∑∞
n=0 an(x − a)n diverges. So the series only

converges when x = a, giving R = 0.

(c) Suppose that
∣∣an+1

an

∣∣→ L as n→∞. If x 6= a then:

|an+1(x− a)n+1|
|an(x− a)n|

=
∣∣∣∣an+1

an

∣∣∣∣|x− a| → L|x− a| as n→∞ (8.2.7)

If |x− a| > 1
L then we find that:

|an+1(x− a)n+1|
|an(x− a)n|

→ L|x− a| > 1 as n→∞ (8.2.8)

proving that
∑∞

n=0 |an(x−a)n|diverges over this interval, and hence so does
∑∞

n=0 an(x−a)n.
It follows that R ≤ 1

L . If |x− a| <
1
L , then we find that:

|an+1(x− a)n+1|
|an(x− a)n|

→ L|x− a| < 1 as n→∞ (8.2.9)
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proving that
∑∞

n=0 |an(x− a)n| converges over this interval, and hence so does
∑∞

n=0 an(x−
a)n. It follows that R ≥ 1

L .

Together, these results show that R = 1
L as desired.

■

Example. Consider the power series (about 0):

∞∑
n=1

(n!)2

(2n)!
xn (8.2.10)

We see that an = (n!)2

(2n)! , and hence:∣∣∣∣an+1

an

∣∣∣∣ = ((n+ 1)!)2

(n!)2 (8.2.11)

(2n)!
(2n+ 2)!

= (n+ 1)2

(2n+ 1)(2n+ 2)
(8.2.12)

= n+ 1
2(2n+ 1)

→ 1
4
as n→∞ (8.2.13)

Using the ratio test for power series we see that R = 4.
Consider the power series (about 0):

∞∑
n=1

nnxn (8.2.14)

We see that an = nn, and hence:∣∣∣∣an+1

an

∣∣∣∣ = (n+ 1)n+1

nn
=
(

1 + 1
n

)n

(n+ 1)→∞ as n→∞ (8.2.15)

Using the ratio test for power series we see that R = 0.
Consider the power series (about 0):

∞∑
n=1

(n+ 2−n)(x− 1)n (8.2.16)

We see that an = (n+ 2−n), and hence:∣∣∣∣an+1

an

∣∣∣∣ = n+ 1 + 2−n−1

n+ 2−n
(8.2.17)

1 + 2−n−1 − 2−n

n+ 2−n
+ 1
n+ 2−n

(8.2.18)

= 1 + 1
2(n2n + 1)

+ 1
n+ 2−n

→ 1 as n→∞ (8.2.19)

Using the ratio test for power series we see that R = 1. ◀
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Example. Let’s consider the following power series:

∞∑
n=0

α(α− 1)...(α− n+ 1)
n!

xn (8.2.20)

where α is not an integer. Then this is a power series about 0 with coefficients:

an = α(α− 1)...(α− n+ 1)
n!

(8.2.21)

We see that: ∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ α(α− 1)...(α− n)
α(α− 1)...(α− n− 1)

n!
(n+ 1)!

∣∣∣∣ (8.2.22)

=
∣∣∣∣α− nn+ 1

∣∣∣∣→ 1 as n→∞ (8.2.23)

◀

8.3 The combination rules

Proposition (Combination rules)
Let f, g be a function represented by a Taylor series at a:

f(x) =
∞∑

n=0
an(x− a)n, |x− a| < R (8.3.1)

g(x) =
∞∑

n=0
bn(x− a)n, |x− a| < R′ (8.3.2)

then for r = min{R,R′} and λ ∈ R :

(f + g)(x) =
∞∑

n=0
(an + bn)(x− a)n, |x− a| < r (8.3.3)

λf(x) =
∞∑

n=0
(an + bn)(x− a)n, |x− a| < R (8.3.4)

(8.3.5)

Note that the theorem does not state that the radius of convergence is r = min{R,R′}, it may be
larger.

Example. Let us find the taylor series at 0 for f(x) = cosh x. We use the identity:

f(x) = cosh x = ex + e−x

2
= 1

2

∞∑
n=0

(1 + (−1)n)x
n

n
=

∞∑
n=0

x2n

(2n)!
(8.3.6)

with infinite radius of convergence. ◀
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Proposition (Product rule)
Let f, g be a function represented by a Taylor series at a:

f(x) =
∞∑

n=0
an(x− a)n, |x− a| < R (8.3.7)

g(x) =
∞∑

n=0
bn(x− a)n, |x− a| < R′ (8.3.8)

then for r = min{R,R′}:

(fg)(x) =
∞∑

n=0
cn(x− a)n, |x− a| < r (8.3.9)

where
cn =

n∑
k=0

akbn−k (8.3.10)

Example. Let’s consider the following function:

f(x) = (1 + x) log(1 + x) (8.3.11)

The taylor series for log(1 + x) at 0 is:

log(1 + x) =
∞∑

n=0

(−1)n+1xn

n
, −1 < x ≤ 1 (8.3.12)

implying that:

(1 + x) log(1 + x) =
∞∑

n=1

(−1)n+1

n
(xn + xn+1) (8.3.13)

=
∞∑

n=1

(−1)n+1

n
xn +

∞∑
n=1

(−1)n+1

n
xn+1 (8.3.14)

=
∞∑

n=1

(−1)n+1

n
xn +

∞∑
n=2

(−1)n

n− 1
xn (8.3.15)

= x+
∞∑

n=2

(
(−1)n+1

n
+ (−1)n

n− 1

)
xn (8.3.16)

= x+
∞∑

n=2
(−1)n xn

n(n− 1)
(8.3.17)

for −1 < x ≤ 1.
Let’s consider the following function:

f(x) = 1
(1− x)2 (8.3.18)
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The taylor series for 1
1−x is:

1
1− x

=
∞∑

n=0
xn, |x| < 1 (8.3.19)

Therefore:
1

(1− x)2 =
∞∑

n=0
cnx

2n, |x| < 1 (8.3.20)

where
cn =

n∑
k=0

1 = n+ 1 =⇒ 1
(1− x)2 =

∞∑
n=0

(n+ 1)xn, |x| < 1 (8.3.21)

Consider the function:
f(x) = 1

1 + 2x2 (8.3.22)

The taylor series for 1
1+x is:

1
1 + x

=
∞∑

n=0
(−1)nxn, |x| < 1 (8.3.23)

Consequently:

1
1 + 2x2 =

∞∑
n=0

(−1)n(2x2)n =
∞∑

n=0
(−2)nx2n, |2x2| < 1 (8.3.24)

so the range of validity for this expansion is 2x2 < 1 =⇒ |x| ≤ 1√
2 .

Consider the function
f(x) = ex

(1− x)2 (8.3.25)

The taylor series reads:
∞∑

n=0
cnx

n, |x| < 1 (8.3.26)

where
cn =

n∑
k=0

k + 1
(n− k)!

(8.3.27)

so:

c0 = 1, c1 = 1 + 2 = 3, c2 = 1
2

+ 2 + 3 = 11
2

(8.3.28)

◀

Theorem (Differentiation rule) The following taylor series:

f(x) =
∞∑

n=0
an(x− a)n, (8.3.29)

g(x) =
∞∑

n=1
nan(x− a)n−1 (8.3.30)

− 104 −



8.3. THE COMBINATION RULES

have the same radius of convergence, and f ′(x) = g(x) for |x− a| < R.

Theorem (Integration rule) The following taylor series:

f(x) =
∞∑

n=0
an(x− a)n, (8.3.31)

F (x) =
∞∑

n=0

an

n+ 1
(x− a)n+1 (8.3.32)

have the same radius of convergence R, and if R > 0 then:∫
f(x)dx = F (x), |x− a| < R (8.3.33)

Proof. The two series have the same radius of convergence by applying the differentiation rule to
F (x). The differentiation rule also implies that F ′(x) = f(x) over |x − a| < R, giving the desired
integral. ■

Example. Let’s find the taylor series at 0 for f(x) = tanh−1 x. We have that:

f ′(x) = 1
1− x2 =

∞∑
n=0

x2n, |x| < 1 (8.3.34)

Consequently:

f(x) =
∞∑

n=0

x2n+1

2n+ 1
, |x| < 1 (8.3.35)

Let’s find the taylor series of e−x2 :

e−x2
=

∞∑
n=0

(−x2)n

n!
=

∞∑
n=0

(−1)n

n!
x2n, x ∈ R (8.3.36)

implying that: ∫ 1

0
e−x2

=
∞∑

n=0

∫ 1

0
frac(−1)nn!x2n =

∞∑
n=0

(−1)n

n!
1

2n+ 1
(8.3.37)

We define the error function as:

erf(x) = 2√
π

∞∑
n=0

(−1)nx2n+1

n!
1

2n+ 1
=⇒

∫ 1

0
e−x2

=
√
π

2
erf(1) (8.3.38)

Finally, let’s find the taylor series of f(x) = log(1 + x). We know that:

1
1 + x

=
∞∑

n=0
(−1)nxn, |x| < 1 (8.3.39)
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implying that:

log(1 + x) =
∫

1
1 + x

dx

∞∑
n=0

(−1)n

n+ 1
xn+1 =

∞∑
n=1

(−1)n+1

n
xn (8.3.40)

for |x| < 1. ◀

Theorem (General binomial theorem) Let α ∈ R, then:

(1 + x)α =
∞∑

n=0

(
α

n

)
xn, |x| < 1 (8.3.41)

Proof. Let us define:

f(x) =
∞∑

n=0

(
α

n

)
xn, g(x) = f(x)(1 + x)−α (8.3.42)

Differentiating g we find that:

g′(x) = f ′(x)(1 + x)−α − αf(x)(1 + x)−α−1 (8.3.43)
= (1 + x)−α−1((1 + x)f ′(x)− αf(x)) (8.3.44)

= (1 + x)−α−1
(

(1 + x)
∞∑

n=1

(
α

n

)
nxn−1 − α

∞∑
n=0

(
α

n

)
xn

)
(8.3.45)

We can simplify the expression in brackets:

(1 + x)
∞∑

n=1

(
α

n

)
nxn−1 − α

∞∑
n=0

(
α

n

)
xn (8.3.46)

=
∞∑

n=1

(
α

n

)
nxn−1 +

∞∑
n=1

(
α

n

)
nxn − α

∞∑
n=0

(
α

n

)
xn (8.3.47)

=
∞∑

n=0

(
α

n+ 1

)
(n+ 1)xn +

∞∑
n=1

(
α

n

)
(n− α)xn (8.3.48)

We find that: (
α

n+ 1

)
(n+ 1) = α!

(n+ 1)!(α− n− 1)!
(n+ 1) = α!

(n)!(α− n− 1)!
(8.3.49)

and (
α

n

)
(n− α) = α!

n!(α− n)!
(n− α) = − α!

n!(α− n− 1)!
(8.3.50)

implying that:(
α

n+ 1

)
(n+ 1) +

(
α

n

)
(n− α) = α!

(n)!(α− n− 1)!
− α!
n!(α− n− 1)!

= 0 (8.3.51)

Consequently, we see that g′(x) = 0, that is, g(x) = f(x)(1+x)−α takes a constant value. Evaluating
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g(0) we get the desired result. ■
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9GT1 Symmetry and groups

9.1 Symmetry in R2

Symmetries of plane figures
A special class of transformations of the plane are called isometries. They are transformations
that preserve distances between points, and include reflections, rotations, translation, and glide
reflections (reflections followed by a translation parallel to line of reflection).

Symmetries are special isometries, that maps a bounded plane figure to itself.

Definition 14.1 (Symmetry of plane figures)
A symmetry of a plane figure F is an isometry:

f :R2 → R2 (9.1.1)
F 7→ F (9.1.2)

For bounded plane figures, translations do not map the figure to itself, and so neither do glide-
reflections. They are not symmetries, leaving only rotations and reflections. We also have the
identity transformation, which leaves every point in R2 as they are.

It is important to note that when specifying the angle through which a rotation occurs, this angle
must be measured anti-clockwise by convention.

The axes of symmetry of a figure all pass through a point, called the centre of the bounded figure,
is also the center of all rotational symmetries.

Consider the symmetries of a square. To keep track of its orientation and position we mark a dot
on its upper left corner, and color its other side darker (this allows us to distinguish a rotation by
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π/2 from a reflection about a horizontal axis of symmetry for example).

We then find that the square has four rotational symmetries including the identity symmetry) as
shown below.

Figure 9.1. Rotational symmetry of a square

The square also has 4 reflection symmetries, 1 horizontal, 1 vertical and 2 diagonal:

Figure 9.2. Reflection symmetries of a square

In general, it can be shown that a regular polygon, that is, a bounded plane figurewith n equilateral
sides, has 2n symmetries.

Theorem 14.2 (Symmetries of n-gon)
Aregularn-gonhas 2n symmetries, namelyn rotations through 2π

k , k ∈ N∗ andn reflections.
The set of all symmetries is called D2n, and is called the dihedral group.

We shall go back to defining the dihedral group more rigorously in chapter 17.

Identities and subsets of S(F)

Proposition 14.3 (Properties of S(F)) The set of symmetries S(F) of a bounded plane
figure F satisfies the following properties
(i) Closure under composition: if f, g ∈ S(F) then g ◦ f ∈ S(F)
(ii) Associativity: if f, g, h ∈ S(F) then h ◦ (g ◦ f) = (h ◦ g) ◦ f
(iii) Identity existence: for each symmetry f ∈ S(F), f ◦ e = e ◦ f = f where e is the

identity symmetry.
(iv) Inverse existence: for each symmetry f ∈ S(F),∃f−1 ∈ S(F) such that f ◦ f−1 =

f−1 ◦ f = e, where e is the identity symmetry.

Consider for example the symmetries of a square labelled below:

Then clearly, ifwe apply t◦u as shownbelow, it is equivalent to applying c, so t◦u = c ∈ S(F).

− 110 −



9.1. SYMMETRY IN R2

Figure 9.3. Symmetries of a square

More generally we can write that:

◦ rotation reflection
rotation rotation reflection
reflection reflection rotation

It is also interesting to note that the composition of the same reflection twice gives the identity
symmetry i.e. r ◦ r = s ◦ s = t ◦ t = u ◦ u = e. We say that the reflection symmetries are self-
inverse.

The inverses of the square symmetries can be summarised as:

Element e a b c r s t u
Inverse e c b a r s t u

Definition 14.4 (Direct and Indirect symmetries)
Direct symmetries are symmetries of a plane figureF that do not require us to lift the figure
out of R2 and flip it. The set of direct symmetries of F is denoted as S+(F).
Indirect symmetries are symmetries of a plane figure F that require us to lift the figure out
of R2 and flip it.

For bounded plane figures it is immediate that rotations are direct symmetries and reflections are
indirect symmetries. Therefore, for a square:

S+(□) = {e, a, b, c} (9.1.3)

We then find that:

◦ direct indirect
direct direct indirect
indirect indirect direct

from which it follows that if f ◦ f−1 = e, since e is a direct symmetry, f and its inverse must have
the same nature of directness (inverse of direct is direct, inverse of indirect is indirect).

Theorem 14.5 (Number of direct and indirect symmetries)
If a plane figure has finite symmetries, either

• all symmetries are direct
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• half the symmetries are direct and the other half indirect

Proof. Consider a plane figure F with finite symmetries with n direct symmetries. If it has no
indirect symmetries, than this case falls under category 1. Consider the case where F has at least
one indirect symmetry. But then, we can compose this indirect symmetry with n direct symmetries
creating n− 1 other indirect symmetries (since e is unique and one of the n direct symmetries, its
composite with the indirect symmetry gives the same transformation, so we don’t count it). So the
figure also has n indirect symmetries. This algorithm is shown for S(□): ■

Figure 9.4. Deriving indirect symmetries from direct symmetries

An immediate consequence of this theorem is that no bounded plane figure can have solely indirect
symmetry. This is easy to see applying the closure property. Indeed, if f, g are indirect symmetries
then f ◦ g must be a direct symmetry.

9.2 Representing symmetries
Two line symbol
Because labelling each transformation by a lettermay be time consuming and impractical for figures
with several symmetries, we introduce the notation of two line symbols.

Consider for example the transformation r of the square with the vertices labelled as shown: We

Figure 9.5. Two line symmetry notation

can then represent this transformation as:

r ↔
(

1 2 3 4
4 3 2 1

)
(9.2.1)
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where the top row shows the initial vertex, and the second row showswhere it gets mapped.

Definition 14.6 (Two line symbol)
The two line symbol representing a symmetry f of a polygon F with vertices 1, 2, 3...n is:

f ↔
(

1 2 3 . . . n

f(1) f(2) f(3) . . . f(n)

)
(9.2.2)

The inverse f−1 is then clearly represented by:

f−1 ↔
(
f(1) f(2) f(3) . . . f(n)

1 2 3 . . . n

)
(9.2.3)

Cayley tables
The tables we have used so far to categorize composites of reflections and rotations, direct and
indirect symmetries are called Cayley tables. They can be constructed by listing all the elements
of S(F) on the top and left hand side of a square array. For any x, y ∈ S(F), their composite x ◦ y
is in the xth row and yth column.

The Cayley table for the symmetries of a rectangle is shown below:

◦ e a r s
e e a r s
a a e s r
r r s e a
s s r a e

Table 9.1. Rectangle symmetries and its Cayley table

Since we chose to list the direct symmetries and indirect symmetries separately, we formed four
blocks each containing only direct or indirect symmetries.

The same occurs with the Cayley table for a square:

Figure 9.6. Block patterns in Cayley table
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9.3 Definition of a Group

Definition 14.7 (Binary operation)
A binary operation * is a transformation mapping twomembers of a setG to another mem-
ber of G:

∗ : G×G −→ G (9.3.1)
(f, g) 7−→ h (9.3.2)

where f, g, h ∈ G. G is therefore closed under ∗.

If we combine the set G with the binary operation *, then we get a mathematical structure known
as a group.

Definition 14.8 (Group)
LetG be a set and * be a binary operation onG. Then, (G, ∗) is a group provided ∀f, g, h ∈ G
(i) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h
(ii) Identity existence: ∃e ∈ G, called identity element such that f ∗ e = e ∗ f = f

(iii) Inverse existence: ∃g−1 ∈ G called the inverse of g such that g ∗ g−1 = g−1 ∗ g = e

Example. Let X = {(a, b) ∈ R2 : a 6= 0} and (a, b) ∗ (c, d) = (ac, ad+ b). Show that (X, ∗)
is a group.
(i) Closure: let (a, b), (c, d) ∈ X , so a, b, c, d ∈ R with a 6= 0 and c 6= 0. Then:

(a, b) ∗ (c, d) = (ac, ad+ b) ∈ R (9.3.3)

since ac, ad+ b ∈ R and ac 6= 0 because a 6= 0 and c 6= 0.
(ii) Associativity: let (a, b), (c, d), (e, f) ∈ X then:

((a, b) ∗ (c, d)) ∗ (e, f) = (ac, ad+ b) ∗ (e, f) = (ace, acf + ad+ b) (9.3.4)

and

(a, b) ∗ ((c, d) ∗ (e, f)) = (a, b) ∗ (ce, cf + d) = (ace, acf + ad+ b) (9.3.5)

The two expressions are equivalent, as required, so associativity is satisfied.
(iii) Identity: let (e1, e2) be the identity element of the group. Then, we need ∀(a, b) ∈ X :

(a, b) ∗ (e1, e2) = (ae1, ae2 + b) = (a, b) (9.3.6)
(e1, e2) ∗ (a, b) = (ae1, be1 + e2) = (a, b) (9.3.7)

which upon equating terms component-wise gives:
ae1 = a

ae2 + b = b

be1 + e2 = b

=⇒

{
e1 = 1
e2 = 0

(9.3.8)
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So the identity element is (1, 0). Let us prove this. Firstly, (1, 0) ∈ X since 1 6= 0 and it
belongs to R2. Then, ∀(a, b) ∈ X :

(a, b) ∗ (1, 0) = (a · 1, a · 0 + b) = (a, b) (9.3.9)
(1, 0) ∗ (a, b) = (1 · a, 1 · b+ 0) = (a, b) (9.3.10)

as required, (1, 0) is the identity element of ∗ over X .
(iv) Consider (a, b) ∈ X , and suppose (c, d) is its inverse. Therefore:

(a, b) ∗ (c, d) = (ac, ad+ b) = (1, 0) (9.3.11)
(c, d) ∗ (a, b) = (ac, bc+ d) = (1, 0) (9.3.12)

which implies: 
ac = 1
ad+ b = 0
bc+ d = 0

=⇒

{
c = 1

a

d = − b
a

(9.3.13)

where we used a 6= 0 by definition since (a, b) ∈ X . Therefore the inverse of (a, b) is
( 1

a ,−
b
a ). To prove this, consider that ( 1

a ,−
b
a ) ∈ X because 1

a ,
b
a ∈ R and 1

a 6= 0 for
a 6= 0. Also:

(a, b) ∗
(1
a
,− b

a

)
=
(
a

1
a
,− b

a
a+ b

)
= (1, 0) (9.3.14)

(c, d) ∗
(1
a
,− b

a

)
=
(
a

1
a
, b

1
a
− b

a

)
= (1, 0) (9.3.15)

as required. So the inverse of (a, b) is ( 1
a ,−

b
a ), and every element in X has an inverse.

Since all group axioms are satisfied, (X, ∗) is a group. ◀

Note that the operation * need not to be commutative. In such cases we refer to the group as
Abelian.

Definition 14.9 (Abelian group)
A group (G, ∗) where ∗ is commutative, that is, ∀f, g ∈ G, f ◦ g = g ◦ f , is called an Abelian
group.

Definition 14.10 (Finite and Infinite groups)
A group (G, ∗) is said to be finite if |G| = n <∞.
A group is said to be infinite if G is an infinite set.

In Unit A1 we saw that a field (F,+,×) is a field provided it satisfies the twelve field axioms. With
our newfound knowledge of groups, we may now provide an alternative definition:

1. (F,+) is an Abelian group

2. (F \ {0},×) is an Abelian group

3. the distributive law holds for all x, y, z ∈ F , so x× (y + z) = x× y + x× z
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Checking group axioms with Cayley tables
Checking the group axioms 1 for a finite set can be done using a Cayley table.

Consider for example the group (Z4,+4), whose Cayley table is:

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

We can clearly see that every element in the body of the table belongs toZ4, soZ4 is closed under+4,
and the latter is a binary operation. We also know frommodule A2 that+4 is associative, so the first
group axiom is satisfied. The identity element is 0, because the row and column labelled 0 repeat
the borders of the table. Finally, because each row and column contains the identity element 0, this
means that every element of Z4 has an inverse. Indeed, 0−1 = 0, 1−1 = 3, 2−1 = 2, 3−1 = 1.

Hence (Z4,+4) satisfies the group axioms, and is therefore a group.

Note that just showing that one column labelled 0 or one row labelled 0 repeats the borders of the
table is not enough to show that 0 is the identity element. Both row and column must repeat the
borders.

Proposition 14.11 (Reading e from Cayley tables)
Let (G, ∗) be a group, then e is the identity element of the group iff both the group and
column labelled e repeat the table borders.

Proof. In the Cayley table, the row and column labelled e contains all elements e ∗ g and g ∗ e
respectively. So, saying that the row/column labelled e repeats the borders of the table is equivalent
to saying that e ∗ g = g and g ∗ e = g for all g ∈ G. So e is the identity element of G. ■

Figure 9.7. Row and column of the identity element e

Proposition 14.12 (Reading inverses from Cayley tables) Let (G, ∗) be a group, then
h is an inverse of giff e appears both in the position with row g, column h and in the position
with row h, column g.

Proof. The element in position with row g, column h is g ∗ h and similarly the element in position
with row h, column g is h ∗ g. Therefore, claiming that e is in both these positions is equivalent to
saying g ∗ h = h ∗ g = e, so that h is the inverse of g as required. ■
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We saw that Q,R, C are fields under addition and multiplication so that:

(Z,+), (Q,+), (R,+), (C,+), (Q∗,×), (R∗,×), (C∗,×) (9.3.16)

are all groups.

Theorem 14.13 (Zn and Un)
For n ≥ 2, the set Zn is a group under +n, and the set Un of integers in Zn coprime to n is a
group under ×n.

Proof. The group axioms for (Zn,+n) hold because they are the properties of addition in Zn as
explained in Unit 2.

Let us now prove that (Un,×n) is a group.

Closure

We need to prove that ∀a, b ∈ Un, a×n b ∈ Un. To do so, we use the result from Unit A2 that a×n b

is co-prime to n provided that it has a multiplicative inverse in Zn. If we denote the inverses of a, b
as c, d respectively then we can write using the commutativity of ×n:

(c×n d)×n (a×n b) = (c×n a)×n (d×n b) = 1×n 1 = 1 (9.3.17)

and similarly:
(a×n b)×n (c×n d) = 1 (9.3.18)

so c×n d is the multiplicative inverse of a×n b, and the latter is therefore co-prime to n.

Associativity

We know that modular multiplication is associative.

Identity

Consider 1 ∈ Un and ∀a ∈ Zn:
a×n 1 = 1×n a = a (9.3.19)

so 1 is the identity element.

Inverses

Let a ∈ Un, which implies that ∃b, a×n b = 1. We have to show that b ∈ Un. To do so, consider:

a×n b = b×N a = 1 (9.3.20)

so that b is also co-prime to n, and therefore b ∈ Un. Hence a has an inverse in Un.

Hence (Un,×n) satisfies all group axioms and is therefore a group. ■

An immediate consequence of this theorem is that (Z∗
p,×p) is a group provided p is prime.
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9.4 Properties of groups and group elements

Proposition 14.14 (Properties of groups)
For a group (G, ∗) the following properties hold:
(i) the identity element e is unique i.e. g ∗ e = g, g ∗ e′ = g =⇒ e = e′

(ii) each element has a unique inverse i.e. g ∗ h = e, g ∗ h′ = e =⇒ h = h′

(iii) the inverse of g−1 is g
(iv) (g ∗ h)−1 = h−1 ∗ g−1

(v) if g ∗ h = g ∗ f then h = f (left cancellation law) and if h ∗ g = f ∗ g then h = f (right
cancellation law)

(vi) gm ∗ gn = gm+n form,n ∈ Z

(vii) (gm)n = gmn form,n ∈ Z.

Proof. gsdgdsgd

(i) Let e, e′ ∈ (G, ∗) be both identity elements. Then e ∗ e′ = e since e′ is an identity element.
Similarly, e ∗ e′ = e′ since e is an identity element. Therefore e = e′, and thus the identity
element is unique.

(ii) Let g ∗h = e and g ∗h′ = e, then we may write h′ ∗ g ∗h = (h′ ∗ g)∗h = e∗h = h and similarly
h′ ∗ g ∗ h = h′ ∗ (g ∗ h) = h′ ∗ e = h′ so that h = h′ as required.

(iii) g ∗ g−1 = g−1 ∗ g = e implies that g is the inverse of g−1.

(iv) We first show that (g ∗ h) ∗ (h−1 ∗ g−1) = e:

(g ∗ h) ∗ (h−1 ∗ g−1) = g ∗ (h ∗ h−1) ∗ g−1 (9.4.1)
= g ∗ e ∗ g−1 (9.4.2)
= g ∗ g−1 (9.4.3)
= e (9.4.4)

We now show that (h−1 ∗ g−1) ∗ (g ∗ h) = e:

(h−1 ∗ g−1) ∗ (g ∗ h) = h−1 ∗ (g−1 ∗ g) ∗ h (9.4.5)
= h−1 ∗ e ∗ h (9.4.6)
= h−1 ∗ h (9.4.7)
= e (9.4.8)

as required.

(v) To prove the left cancellation law, g∗h = g∗f =⇒ g−1 ∗g∗h = g−1 ∗g∗f =⇒ (g−1 ∗g)∗h =
(g−1 ∗ g) ∗ f =⇒ e ∗ h = e ∗ f =⇒ h = f as required. To prove the right cancellation law
h ∗ g = f ∗ g =⇒ h ∗ g ∗ g−1 = f ∗ g ∗ g−1 =⇒ h ∗ (g ∗ g−1) = f ∗ (g ∗ g−1) =⇒ h ∗ e =
f ∗ e =⇒ h = f as required.

(vi) gm ∗ gn = g ∗ g ∗ ... ∗ g︸ ︷︷ ︸
m times

∗ g ∗ g ∗ ... ∗ g︸ ︷︷ ︸
n times

= g ∗ g ∗ g... ∗ g ∗ g︸ ︷︷ ︸
m + n times

= gm+n
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(vii) (gm)n = x ∗ x ∗ ... ∗ x︸ ︷︷ ︸
m times

∗... ∗ x ∗ x ∗ ... ∗ x︸ ︷︷ ︸
m times︸ ︷︷ ︸

n times

= g ∗ g ∗ g... ∗ g ∗ g︸ ︷︷ ︸
mn times

= gmn

■

9.5 Symmetry in R3

We now adapt the study of symmetry in R2 to bounded figures in R3, called solids. More specifi-
callywewill consider convex polyhedra, solidswhose faces are polygons, andwhich have no dents
or dimples, nor spikes.

Definition 14.15 (Symmetry)
A symmetry of a figure F is an isometry:

f :R3 → R3 (9.5.1)
F 7→ F (9.5.2)

Two symmetries f, g are equal if f(X) = g(X),∀X ∈ F

The potential symmetries of a bounded plane figure in R3 are:

1. identity transformation

2. rotation specified by an axis of symmetry, direction and angle of rotation

3. reflection in a plane

4. composite of the above

The two line symbol applies as always. For example, consider the rotation of a cube through π/2
about its vertical axis:

(a) Rotation of a cube through π/2 about its vertical
axis

(b) Reflection of a cube in the vertical plane

Figure 9.8.

Using two-line symbols we can write:

g ↔
(

1 2 3 4 5 6 7 8
4 3 7 8 1 2 6 5

)
(9.5.3)
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Similarly a reflection in the vertical plane is represented by:

f ↔
(

1 2 3 4 5 6 7 8
4 3 2 1 8 7 6 5

)
(9.5.4)

The composition of the two is performed as intuition would expect, that is, reading off y = g(x)
from 14.5.3 and then f(y) from 14.5.5 for all x vertices.

f ◦ g ↔
(

1 2 3 4 5 6 7 8
1 2 6 5 4 3 7 8

)
(9.5.5)

which is a reflection in the diagonal plane as shown below:

Figure 9.9. Reflection in diagonal plane of a cube

Theorem 14.16 (Symmetry group)
S(F) forms a group under the composition function for bounded figures in Rn. The group
(S(F), ◦) is called the symmetry group.

Analogously to plane figures, the symmetries of solid figures can also be classified as direct or
indirect. In this case however, it must be noted that one cannot physically demonstrate a reflec-
tion, since to do so would require accessing the fourth dimension. Therefore, we may define direct
symmetries as those which can be shown physically in R3, and indirect symmetries as all the oth-
ers.

Finding the number of symmetries of a polyhedron

Theorem 14.17 (Symmetries of regular polyhedra)
For a regular polyhedron with F faces each with n symmetries, then the number of symme-
tries of the polyhedron is F · n.

To see why this is the case, consider a tetrahedron, a polyhedron made up of 4 equilateral trian-
gular faces. We wish to find the number of ways of replacing the figure in the space it occupied
originally.

We can choose any one of the four equilateral triangles as a base, each with 6 symmetries. For each
symmetry of the base, we can allow the entire tetrahedron to be transformed accordingly, resulting
in a symmetry of the solid. So there are 4× 6 = 24 symmetries.

For irregular polyhedra, the process is similar. We consider for example a small rhombicuboctahe-
dron, with 18 squares and 8 equilateral triangles as faces.

− 120 −



9.5. SYMMETRY IN R3

Figure 9.10. Rhombicuboctahedron

Again we look at all the ways of replacing the polyhedron in the space it occupied originally. To
do so we first find a type of face we can use as base, such as a such as the square faces.

Now immediatelywe realize that not all squares of the rhombicuboctahedron can be used as a base.
Indeed, we have two different types of square faces that give different symmetries. We will choose
the type of square faces to the left in Figure 14.11 as our base.

Figure 9.11. Square faces of a rhombicuboctahedron

We then see that only 6 square faces are suitable squares of this type. Each have 8 symmetries
which give symmetries of the polyhedron (this is not always the case, for some polyhedra not all
symmetries of a base will correspond in symmetries of the figure). Therefore, there are 48 total
symmetries.

Hadwe chosen the second type of square face (ofwhich there are 12), then only 4 of the symmetries
of the square would have been suitable. Indeed, rotations by π/2 and 3π/2, as well as the two
reflections in the diagonals do not give a symmetry of the polyhedron. Hence, as was found earlier,
there are 48 symmetries.

Finding the symmetries of a polyhedron
Let us try to find all the symmetries of a regular tetrahedron. Using Theorem 14.6 one can easily
show that it has 12 symmetries. We start by finding all direct symmetries. As always we have the
identity symmetry:

e =
(

1 2 3 4
1 2 3 4

)
(9.5.6)

For each base, there is a rotational symmetry about a fixed axis through the opposite vertex.

One can write the two line symbol for each of these symmetries, getting to a total of 9 direct sym-
metries. We are therefore missing three, which can be found by composing direct symmetries with
each other.

Having found all direct symmetries, we now try to find one indirect symmetry. For example, a
reflection in the vertical plane as shown:
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Figure 9.12. Rotational symmetries of the tetrahedron about axes through bases

Figure 9.13. Reflectional symmetry of tetrahedron

We can then compose this reflection symmetry with the 12 direct symmetries to find 12 indirect
symmetries. This accounts for all 24 symmetries of the tetrahedron.

9.6 The Dihedral group

Theorem 14.18 (Order of D2n)
The Dihedral group D2n, the group of symmetries of a regular n-gon, has order 2n.

Proof. We will consider the polygon F ⊆ C, with vertices at e2imπn, 0 ≤ m ≤ n.

We define the following map:

r : C −→ C (9.6.1)

z 7→ z · e 2iπ
n (9.6.2)

which is a rotation about the center of the polygon by 2π
n . This is a symmetry, since it preserves

distances ∀z, w ∈ C:
|r(z)− r(w)| = |(z − w) · e 2iπ

n | = |z − w| (9.6.3)

We define the reflection in the x-axis by the following map:

s : C −→ C (9.6.4)
z 7→ z̄ (9.6.5)

which is again another symmetry since ∀z, w ∈ C:

|s(z)− s(w)| = |z̄ − w̄| =
√

(z̄ − w̄)(z − w) = |z − w| (9.6.6)
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We will show that:
D2n = {e, r, r2, r3, .., rn−1︸ ︷︷ ︸

rotations

, s, rs, r2s, ..., rn−1s︸ ︷︷ ︸
reflections

} (9.6.7)

so that all symmetries of F are some composition of r and s.

Indeed, let f ∈ D2n so that 1 ∈ F =⇒ f(1) ∈ F , 1 gets mapped to another vertex, say e2πikn for
some 0 ≥ k < n. however, rk also maps 1 7→ e2πikn so that g ≡ r−k ◦ f is an isometry fixing 1.

Lemma. The composite of two isometries over the metric space (C, d) where d(z, w) = |z − w|, is
an isometry over the same metric space.

Proof. Let f, g be two such isometries. Then:

d((f ◦ g)(z), (f ◦ g)(w)) = |(f ◦ g)(z)− (f ◦ g)(w)| (9.6.8)
= |f(g(z))− f(g(w))| (9.6.9)
= |g(z)− g(w)| = |z − w| (9.6.10)
= d(z, w) (9.6.11)

so f ◦ g is an isometry over (C, d). ■

Since e2πin shares an edge with 1, and since g preserves distances, we require g(e2πin) to also share
an edge with 1.

The two possibilities are either e2πin or e2πi(n−1)n.

In the first case where g fixes 1 and e2πin. We can repeat the same argument as before for g(e4πin,
which can only get mapped to itself in order to preserve distances. Suppose all vertices e2πiknwith
k ≤ m − 1 for some 0 < m < n have been mapped to themselves by g. Then, e2πimn can only
be mapped to itself or e2πi(m−2)n. However, the latter cannot be the case, since g(e2πi(m−2)n) =
e2πi(m−2)n, the vertex has already been "taken". Consequently, g(e2πimn) = e2πi(m−2)n, and by
the principle of induction all vertices have been fixed. Hence, g = e, the identity transformation,
implying f = rk.

If instead g fixes 1, and g(e2πin) = e2πi(n−1)n. We then have (s ◦ g)(e2πin) = e
2πi

n . Also, (s ◦
g)(1) = s(1) = 1, hence s ◦ g fixes 1 and e 2πi

n . By the same argument as before then, s ◦ g = e, and
consequently f = rk ◦ s.

We have therefore proven that any isometry f can be expressed as either rk, a rotation, or rk ◦ s, a
reflection. In total, there are n such rotations and n such reflections1, giving |D2n| = 2n as desired.

■

Proposition 14.19 (Properties of D2n)
Let r, s ∈ D2n be a rotation and reflection respectively, as defined in the previous proof.
Then:
(i) srks = r−k for all 0 ≤ k < n

(ii) ord(r) = n, ord(ris) = 2, for all 0 ≤ i < n

1they are also all distinct. Clearly, if rm = rk , then 1 gets mapped to e
2πim

n and e
2πik

n , giving m = k. In other words
all the rotations ri are distinct for all 0 ≤ i < n. Also, s 6= ri for any i, since s fixes 1, whereas ri only does so if ri = e = s,
which is a contradiction. Finally, ris 6= rks follows immediately by composing by s to the left
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(iii) D2n is not abelian if n ≥ 3.
(iv) any rotation is the composition of two reflections

Proof. sdfdsf

(i) Consider where rksmaps the vertex e 2πim
n . s sends it to e−2πim

n , followed by rk which sends
it to e

2πi(k−m)
n . Similarly, sr−k maps e 2πim

n to e
2πi(m−k)

n , and then to e
2πi(k−m)

n . Hence rks and
sr−k map e 2πim

n to the same vertex, and are equivalent. sr−k = rks =⇒ r−k = srks.

(ii) Since e, r, r2, ..., rn−1 are all distinct, and rn = e, it follows that ord(r) = n, since for any
i < n, ri 6= rn = e. Note that by definition, s2(z) = s(z̄) = ¯̄z = z =⇒ s2 = e. Also,
(ris)(ris) = (ris)(sr−i) = ris2r−i = rir−i = e, so ord(ris) = 2.

(iii) We have that rs = sr−1, and suppose rs = sr, then sr−1 = sr =⇒ r2 = e, which is a
contradiction since ord(r) = n > 2 by assumption.

(iv) Consider the rotation ri for some 0 ≤ i < n. Then, it may be written as ri = (ri+1s) ◦ (sr)

■
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10GT2 Subgroups and isomorphisms

10.1 Subgroups

Definition 15.1 (Subgroup)
A subgroup of a group (G, ∗) is a group (H, ∗) whereH ⊆ G. We write that (H, ∗) ≤ (G, ∗).

For example, the group S+(F , ◦) is a subgroup of S(F , ◦) because S+(F) ⊆ S(F).

Every non-empty group (G, ∗) has at least two subgroups, (e, ∗) called the trivial subgroup and
(G, ∗) itself. All subgroups other than (H, ∗) with H ⊊ H are called proper subgroups.

Theorem 15.2 (Identity and inverses of subgroups)
Let (G, ∗) be a group with subgroup (H, ∗). Then:
(i) the identity element of (H, ∗) is the same as the identity element of (G, ∗)
(ii) ∀h ∈ H , the inverse of h in (G, ∗) and (H, ∗) is the same.

Proof. sdgsg

(i) Let the identity element in (G, ∗) and (H, ∗) be e and eH respectively. Wemust therefore have
eH ◦ e = eH since e is the identity element of (G, ∗) and eH ◦ e = e since eH is the identity
element of (H, ∗). It follows immediately that e = eH .

(ii) Let the inverses of h in (H, ∗) be x and y. We then have that h ∗ a = h ∗ b = e where e is the
identity element of (G, ∗) and thus of (H, ∗). Using the left cancellation law, a = b as required.

■

The astute readermay have noted that some of the group axioms hold for any subgroup of a group.
It is therefore only necessary to prove some of the properties of a group to ascertain that it is a
subgroup.

Theorem 15.3 (Subgroup criteria)
Let (G, ∗) be a group with identity element e and let H ⊆ G. Then (H, ∗) is a subgroup of
(G, ∗) if and only if ∀x, y ∈ H

(SG1) x ∗ y ∈ H
(SG2) eG ∈ H
(SG3) x−1

G ∈ H
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where x−1
G is the inverse of x in G and eG is the identity element of (G, ∗).

Proof. We begin by proving the =⇒ implication. Suppose that (H, ∗) is a subgroup of (G, ∗), so
that H ⊆ G. Then, the closure group axiom of H under ∗ asserts that x ∗ y ∈ H . Similarly, the
existence of an identity element eG was proven in Theorem 15.2 (a). Finally the existence of the
inverse was proven in Theorem 15.2(b)

We now prove the ⇐= implication. Suppose that (SG1)-(SG3) are satisfied, we must check that
the group axioms are satisfied.

Closure is trivial

Associativity since (G, ∗) is a group, ∀x, y, z ∈ (G, ∗) we have that x ∗ (y ∗ z) = (x ∗ y) ∗ z. Since H ⊆ G it
follows that x, y, z ∈ (H, ∗) =⇒ x, y, z ∈ (G,H∗) and therefore associativity holds in H as
well.

Identity if e ∈ G then x ∈ H =⇒ x ∈ G and thus x ∗ eG = eG ∗ x = x using the identity group axiom
of G. eG ∈ H is trivial, since it is equivalent to (SG2).

Inverses if x ∈ G then x−1
G ∈ G and x ∈ H . Thus x ∗ x−1

G = x−1
G ∗ x = eG as required. x−1

G ∈ H is
trivial, since it is equivalent to (SG3).

■

Example. Show that ({e, a, b, c}, ◦) is a subgroup of (S(□), ◦)
We have that {e, a, b, c} ⊆ S(□) and ◦ is a binary operation.
The Cayley table is:

◦ e a b c

e e a b c

a a b c e

b b c e a

c c e a b
Closure is clearly satisfied since all elements in the table are {e, a, b, c, }. The identity element
in (S(□), ◦) is e, which is in {e, a, b, c}. The elements e, b are self-inverse and a, c are inverses
of each other so ({e, a, b, c}, ◦) contains all the inverses of its elements. ◀

Proposition 15.4 (Integer Multiples subgroups)
The only subgroups of (Z,+) are nZ = {kn : k ∈ Z} for n ∈ N.

Proof. It is clear that nZ are subgroups. Let us prove that they are the only subgroups of (Z,+).

Let H ≤ (Z,+), then we must have 0 ∈ H . If no other elements are included, then H = 0Z.

If we instead have other elements, we pick the smallest positive integer n in H. Then H = nZ.
Otherwise, if this is not the case, then ∃a ∈ H such that n doesn’t divide a. The division algorithm
allows us to write a = p · n + q ∈ H , with 0 < q < n. By closure a, p · n ∈ H , implying q ∈ H .
Yet, q < n is smaller than n, the smallest element of H , giving us a contradiction. So there are no
elements of H not divisible by its smallest element. Furthermore, to satisfy closure we must have
all multiples of n. So, H = nZ. ■
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Example. Show that (A, ∗) is a subgroup of (X, ∗) with A = {(a, b) ∈ X : a = 1}.
(i) Closure: Let (1, b), (1, d) ∈ A then:

(1, b) ∗ (1, d) = (1, d+ b) ∈ A (10.1.1)

since the first term is 1 and the second belongs to R.
(ii) Identity: the identity element in X is (1, 0) which belongs to A as required.
(iii) Inverse: the inverse of (1, b) ∈ A in (X, ∗) is given by (1,−b). This element belongs to

A so every element in A has an inverse.
Because these subgroup properties are all satisfied, (A, ∗) is a subgroup of (X, ∗). ◀

Subgroup of symmetry groups
We saw that the symmetries of a figure form a symmetry group under the composition function.
We also saw how the subset of all direct symmetries of a square forms a group under composition,
so that (S∗(□), ◦) is a subgroup of (S(□), ◦). This is true for any figure aswe shall prove now.

Theorem 15.5 (Direct symmetry subgroup) Let F ⊊ R2(R3) be a figure. Then
(S+(F), ◦) is a subgroup of (S(F), ◦).

Proof. We have S+(F) ⊆ S(F) and ◦ is the same binary operation on both sets. We now check the
three subgroup properties:

(i) Closure: composing any two direct symmetries gives a direct symmetry, so S+(F) is closed.

(ii) Identity: the identity element of (S(F), ◦) is e, the identity symmetry, which also belongs to
(S+(F), ◦) since it is direct.

(iii) Inverse: if f is a direct symmetry, then because e is a direct symmetry f−1 must also be direct
and hence belong to S+(F).

So all the subgroup properties are satisfied as required. ■

Another way to produce a subgroup is to modify the figure by adding shaded patterns. For exam-
ple, consider coloring the square as shown below:

Figure 10.1. Symmetries of □, and the modified square F ′ with symmetries {e, b, r, t}
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Then clearly the symmetries of the figure are restricted. Indeed,we can see that the only symmetries
are S(F ′) = {e, b, r, t}, which therefore forms a subgroup under ◦ of the symmetry group of a
square.

Finally, a third way to find a subgroup of a symmetry group is to fix some feature of the figure
(an edge or vertex usually). The resulting symmetries will still form a subgroup, as will be shown
now.

Proposition 15.6 (Fixed subset symmetries) Let F ⊊ R2(R3), and let A ⊆ F . Then
the subset of S(F) whose elements are all symmetries of FF that fix A is a subgroup under
◦.

Proof. Let H be a subset of S(F) that fixes A. Then:

(i) Closure: if f, g ∈ H , then they both fixA. Hence, if we perform one symmetry after the other
Awill still remain fixed so f ◦ g ∈ H .

(ii) Identity: the identity symmetry fixes A, and so the identity element of S(F) belongs to H .

(iii) Inverses: let f ∈ H , then performing the symmetry in reverse, that is, f−1, A must remain
fixed. So H contains the inverse of each of its elements.

The three subgroup properties are satisfied, and thus H forms a subgroup under ◦. ■

Example. Find the elements of the subgroup that consists of all symmetries of the tetra-
hedron fixing the vertex labelled 4.
The only such symmetries are rotations about lines containing the vertex 4 and reflections
about planes containing the vertex 4.
We therefore have that the only direct symmetries are rotations about the line through 4 and
the centre of the opposite face, which are three (including e).
There exists an indirect symmetry, a reflection about the plane containing 4, and the height
of its opposite face. There must therefore be two other indirect symmetries using Theorem
14.5. Indeed all of the three reflections shown below (they are the only ones containing 4).
◀

Figure 10.2. Indirect symmetries of the tetrahedron fixing a vertex

We saw in proposition 14.14 that the following properties hold for a group (G, ∗):

(i) gm ∗ gn = gm+n

(ii) (gm)n = gmn
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Using this index notation to represent the repeated use of a binary operation works if the opera-
tion is akin to multiplication. However, it would not work well for operations using addition. For
example, in the group (R,+) one would not denote x+ x+ x as x3 but rather 3x. These two types
of notations are known as multiplicative and additive notation.

We can therefore write:

Proposition 15.7 (Index laws in additive notation)
Let g be an element of a group (G, ∗) then form,n ∈ Z:
(i) mx+ nx = (m+ n)x
(ii) n(mx) = (nm)x

Definition 15.8 (Group element order)
Let x be an element of a group (G, ∗). If there exists n ∈ N such that xn = e then the smallest
such n is the order of the element x, which has finite order.
If there is no such n then we say that x has infinite order.

For example the element a ∈ S(□) which is the rotation anti-clockwise by π
2 has order 4. Indeed,

a4 = e is the smallest n = 4 displaying this periodicity.

Instead, 2 ∈ (R∗,×) has infinite order, because there is no integer n such that 2n = 1.

It is also clear that the identity element has order 1. Similarly, any self inverse element x 6= e has
order 2.

Proposition 15.9 (Properties of element orders I)
(i) Let x be an element of a finite group G, then x has finite order.
(ii) If x is an element of a group, then either x and x−1 have the same finite order, or they

both have infinite order.

Proof. sdfsdf

(i) Consider the elements ..., x−3, x−2, x−1, x0, x, x2, x3... which must belong to G by closure.
Because the group is of finite order, at least one element must be repeated, or else we would
have infinitely many elements. So, ∃s, t ∈ Z with s < t such that:

xs = xt =⇒ xs ∗ (xs)−1 = xt ∗ (xs)−1 =⇒ e = xt−s (10.1.2)

Since t− s is positive, we have that x has finite order.

(ii) Let x be an element of a group with identity e. First let us show that xn = e ⇐⇒ (x−1)n = e.
Indeed, suppose that for some n ∈ Z:

xn = e =⇒ (xn)−1 ∗ xn = (xn)−1 =⇒ (x−1)n = e (10.1.3)

so we see that x−1 also has the same order. To prove the converse, because the implication
has been proven for any element of the group, we simply replace x−1 with x. So the values
for which xn = e are the same as the values for which (x−1)n, so x and x−1 have the same
order, or both have infinite order.

■
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Proposition 15.10 (Properties of element orders II)
Let x be an element of (G, ∗) then:
(i) if x has finite order n then:

e, x, x2, ..., xn−1 (10.1.4)

are all distinct and repeat every n powers.
(ii) If x has infinite order, then all powers of x are distinct.

Proof. sdsfd

(i) Suppose x has finite order n, and suppose that the powers e, x, x2, ..., xn−1 are not distinct, so
that xu = xt for some 0 ≤ t < u ≤ n− 1. We can then deduce that e = xu−t. However, since
0 < u − t < n, we see that x has order u − t, which is a contradiction. Therefore the above
powers of xmust all be distinct.

Now consider any integer multiple of n power: xkn with k ∈ Z. Then we have:

xkn = (xn)k = ek = e (10.1.5)

since e has order 1. It follows that e repeats every n elements, and since all other powers
are formed by composing x, it follows that all the elements listed above also repeat every n
elements.

(ii) Let x have infinite order, so that ∄n ∈ N such that xn = e. Then, suppose that the powers of
x are not all distinct, so that for some 0 ≤ t < u ≤ n − 1, xu = xt. But then xu−t = e which
implies that x has finite order, contradicting our initial assumption.

■

Example. Find the order of all elements in (Z6,+6).
The identity element 0 has order 1. For the element 1:

1 +6 1 +6 1 +6 1 +6 1 +6 1 = 0 (10.1.6)

so 1 has order 6, and 1−1 = 5 has order 6 as well.
For the element 2:

2 +6 2 +6 2 = 0 (10.1.7)

so 2 has order 3, and 2−1 = 4 has order 3 as well.
Finally the element 3 is self-inverse and therefore has order 2. ◀

10.2 Cyclic groups and subgroups
We can consider the powers of a group element as forming a cycle that repeats itself after n opera-
tions.

We can see in (a) that moving around the cycle anti-clockwise is equivalent to performing a repeat-
edly. Moving clockwise does the opposite, so it takes a−1. It follows that the element right before
the identity element in a cycle of powers of x is x−1.
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Figure 10.3. Cycle of powers of a in S(□)

In (b) we see that moving twice in the clockwise direction is the same as doing a ◦ a = a2 = b and
it is then clear that b has order 2.

Definition 15.11 (Generated subset)
Letx be an element of (G, ∗), then the set of all powers ofx is called the subset ofG generated
by x and denoted by 〈x〉 = {xk : k ∈ Z} in multiplicative notation and 〈x〉 = {kx : k ∈ Z}
in additive notation.

For example, the subset 〈a〉 of S(□) consists of the consecutive powers of a in Figure 15.3. Therefore
〈a〉 = {e, a, b, c}.

Theorem 15.12 (Cyclic subgroup)
(〈x〉 , ∗) is a subgroup of (G, ∗) for any element x ∈ G. We call (〈x〉 , ∗) cyclic subgroup ofG
generated by x, and x is a generator of 〈x〉.

Proof. sdgds

(i) Closure: let g, h ∈ 〈x〉 so that g = xs and h = xt for some s, t ∈ Z. Then:

g ∗ h = xs+t ∈ 〈x〉 (10.2.1)

so we have closure.

(ii) The identity element of (G, ∗), e, also belongs to (〈x〉 , ∗) since e = x0.

(iii) Let g ∈ 〈x〉, then g = xs. Then g−1 = (xs)−1 = x−s ∈ 〈x〉 so 〈x〉 includes the inverses of all of
its elements.

■

Example. Show that 〈x〉 = 〈x−1〉.

Proof. 〈x〉 = {xk : k ∈ Z} = {x−k : −k ∈ Z} = {x−k : k ∈ −Z}. However, note that
−Z = Z so that 〈x〉 = {x−k : k ∈ Z} = 〈x−1〉 as required. ■

◀

Since 〈a〉 = {e, a, b, c}, and c = a−1 we have that 〈c〉 = {e, a, b, c}.
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Proposition 15.13 (Cyclic subgroup order and element order)
If x has finite order n then the subgroup (〈x〉 , ∗) has order n.
If x has infinite order then so does the subgroup subgroup (〈x〉 , ∗).

Definition 15.14 (Cyclic group)
Let (G, ∗) be a group with element x such thatG = 〈x〉. Then (G, ∗) is called a cyclic group,
otherwise, if there is no such x then it is non-cyclic.

For example, we saw that (Z6,+6) contains two generators, 1 and 5. Note also that infinite groups
can be cyclic, such as (Z,+) which is generated by both 1 and −1.

Theorem 15.15 (Abelianity of cyclic (sub)groups)
Every cyclic group is abelian and every subgroup of a cyclic group is cyclic.

Proof. Let us first prove that every cyclic group is abelian. Suppose that (G, ∗) is a cyclic groupwith
generator a, and let f, g ∈ G, so that f = xs and g = xt Then:

f ∗ g = as ∗ at = as+t = at+s = at ∗ as = g ∗ f (10.2.2)

so (G, ∗) is abelian.

Let us now prove that every subgroup (H, ∗) of (G, ∗) is cyclic. Suppose H = {e}, the trivial
subgroup, then it is clearly cyclic (generated by e). Suppose now that H is non-trivial, but since
H ⊆ G all elements of H are powers of a. Letm be the smallest positive integer such that am ∈ H
(it must exist since if am ∈ H then a−m ∈ H and we must have at least one element in H with
non-zero exponent). We will prove that am generates H .

Indeed, let h ∈ H =⇒ h = ak for some k ∈ Z. By the division theorem: k = qm+ r for some q, r
with 0 ≤ r < m. Then:

ar = ak−qm = ak ∗ (am)−q = h ∗ (am)−q (10.2.3)

but since H is a group, it must be closed under ∗ and hence ar ∈ H . But since m is the smallest
positive integer such that am ∈ H and 0 ≤ r < m, we must have r = 0 to not have a contradiction.
Then k = qm and:

ak = (am)q (10.2.4)

so we can generateH with am as required. Hence (H, ∗) is cyclic. ■

Example. Find all subgroups of (Z∗
5,×5).

We firstly note that (Z∗
5,×5) is a cyclic group. Indeed looking at the generated subgroups:

〈1〉 = {1} (10.2.5)
〈2〉 = {2, 4, 3, 1} = Z∗

5 (10.2.6)
〈3〉 = {3, 4, 2, 1} = Z∗

5 (10.2.7)
〈4〉 = {4, 1} (10.2.8)
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we see that (Z∗
5,×5) is generated by 2, and is therefore cyclic. Hence, all the subgroupsmust

be cyclic, and are included in the list above:

{1}, {1, 4},Z∗
5 (10.2.9)

◀

10.3 Cyclic groups and modular arithmetic
We have seen that the additive group (Z6,+6) is cyclic and generated by 1 with order 6. This is true
more generally for any group (Zn,+n) with n ≥ 2, which is cyclic of order n.

Theorem 15.16 (Order of cyclic group elements)
(Zn,+n) is cyclic of order n. Any non-zero element m of the group has order n

d where
d = GCD(m,n).

Proof. We start by proving a useful lemma:

Lemma. Letm be a non-zero element of (Zn,+n), ifm is a factor of n thenm has order n
m .

Indeed, repeatedly addingm in (Zn,+n) is the same asmovingm places at a time around the cycle.
Starting from 0 then and adding m n

m times we reach 0, so starting from m and and adding m n
m

times we reachm. Hence the order ofm is n
m .

Now letm be a non-zero integer inZn and let d = GCD(m,n). Then m
d and n

d are coprime integers,
and by the lemma we have proven, d has order n

d .

Our goal is to prove that n
d ≤ ord(m) ≤ n

d .

To show that ord(m) ≤ n
d , consider the cycle of multiples of 1:

Figure 10.4. Cycle of 1 in Zn, +n)

If we start from 0 and move aroundm places at a time n
d times, then we move around a total of mn

d .
Since l ≡ m

d is an integer, this means that we have gone around l times, and so end up at 0. Hence,
ord(m) is indeed at most n

d .

Now let us show that n
d ≤ ord(m) by contradiction. Indeed, suppose that 1 ≤ ord(m) = r < n

d .
Then starting from 0 and moving m places at a time r times, we end up at 0 again by definition.
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Hence we must have for some k ∈ N:

rm = kn =⇒ r
m

d
= k

n

d
(10.3.1)

but since m
d and n

d are coprime, the only way the above equation may be true is if m
d is a factor of

k n
d and hence m

d is a factor of k. We can then write:

rd = kd

m
n (10.3.2)

where kd
m is an integer since m

d is a factor of k. Thus rd is amultiple of n, and therefore going around
the cycle d places at a time r times we end up at 0 again. In other words, ord(d) = r = n

d , which
contradicts the assumption 1 ≤ ord(m) = r < n

d . Thus the order or m cannot be less than n
d , and

we may conclude that:
ord(m) = n

d
(10.3.3)

as desired. ■

Corollary 1. For any prime p, any non-zero elementm of the group (Zp,+p) has order p.

Proof. Since p is prime, d = GCD(m, p) = 1 and so ord(m) = p
1 = p. ■

Corollary 2. A generatorm of a group (Zn,+n) must be coprime to n.

Proof. Ifm = 0 then it is not a generator and it also is not coprime to n. Now assumem is non-zero.
Then it is a generatoriff n

d = n where d = GCD(m,n). Hence d = 1 and thus m,n are coprime as
required. ■

This corollary also means that any element of (Zp,+p) is a generator.

Proposition 15.17 (Subgroups of (Zn, +n))
The group (Zn,+n) has exactly one cyclic subgroup of order q for each factor q of n, and no
other subgroups.
(i) the subgroup of order 1 is generated by 0
(ii) the subgroup of order q is generated by d = n

q

Proof. The cyclic subgroup of order 1 is the one generated by 0.

Let q be any factor of n that is not 1 and let qd = n. Then, GCD(n, d) = d and thus d generates a
cyclic subgroup 〈d〉 of order n

d = q.

Now let us prove that there are no further cyclic subgroups of order q. Let m ∈ Z∗
n and consider

(〈m〉 , ∗). If d = GCD(n,m) then m ∈ 〈d〉 =⇒ 〈m〉 ≤ 〈d〉 by Theorem 15.12. However, the two
subgroups must also have the same order by assumption, so they must be equal. Therefore 〈q〉 for
each factor q are all the subgroups, and they are uniquely determined. ■
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10.4 Isomorphisms
Let us compare two cyclic groups of order 4, (S+(□), ◦) and (Z4,+4). These two groups are struc-
turally identical.

Indeed, to "move" from one group to another it suffices to e ↔ 0, a ↔ 1, b ↔ 2, c ↔ 3 in their
Cayley tables.

Figure 10.5. Cayley tables for (S+(□), ◦) and Z4, +4) and corresponding pattern

Indeed one could entirely remove symbols, and simply color the tiles accordingly to get a pattern.
Now consider the group (Z∗

5,×5) which is also of group 4. One can quickly see that its pattern
table is:

Figure 10.6. Pattern table for (Z∗
5, ×5) and its relation with the pattern table for (Z4, +4)

The relation with the pattern in Figure 15.5 is then immediate. Indeed, one can switch columns
and rows 3,4 to find:

Because we have to switch columns and rows, we can claim that (Z4,+4) and (Z∗
5,×5) are not

structurally identical. This concept of "moving" is important and leads to the concept of an isomor-
phism.

We can define a mapping ϕ between (S+(□), ◦) and (Z4,+4) such that:

ϕ : (S+(□), ◦) −→ Z4,+4) (10.4.1)
{e, a, b, c} 7→ {1, 2, 3, 4} (10.4.2)
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We see that this type of mapping that transforms one Cayley table to another must be bijective, it
must map every element of the first group to exactly one element of the second group.

However, we must have another property, we cannot simply map the elements randomly. Indeed
if we used the rule {e, a, b, c} 7→ {2, 3, 4, 1} then we would find an entirely different Cayley table
shown in the figure below.

Figure 10.7. Cayley table using {e, a, b, c} 7→ {2, 3, 4, 1}

This table is clearly not the correct Cayley table for (Z4,+4). Although it has the same structure,
the relations between different elements is no longer satisfied (e.g. 1 +4 3 6= 2).

So to have a coherent mapping we must have not only the border elements of the table mapped
correctly, but also the body elements. In other words, for any two given elements we must have
ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y), ∀x, y ∈ G.

Definition 15.18 (Isomorphic groups)
Two groups (G, ◦), (H, ∗) are isomorphic if there exists a mapping ϕ : G −→ H called iso-
morphism such that:
(i) ϕ is bijective
(ii) ∀x, y ∈ G ϕ(x ◦ y) = ϕ(x) ∗ ϕ(y)

We then write (G, ◦) ∼= (H, ∗) to assert the isomorphic relation.
We can say that two groups belong to the same isomorphism class if they are isomorphic
to each other.

Proposition 15.19 (Order of isomorphic groups)
If two groups are isomorphic than they either have both finite order, or they are both infinite.
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Example. Let (G,×) be a cyclic subgroup of (R,×) with G = {2k : k ∈ Z}. Show that:

ψ : G −→ Z (10.4.3)
2k 7→ k (10.4.4)

We firstly show that ϕ is bijective, that is, both injective and surjective.
Suppose that ϕ(2j) = ϕ(2k) for j, k ∈ Z. Then j = k and hence ψ is injective.
Now Im(ϕ) = {k ∈ Z : 2k ∈ G} = Z and thus surjectivity is satisfied.
Finally, for 2j , 2k ∈ G:

ϕ(2j × 2k) = ϕ(2j+k) = j + k = ϕ(2j) + ϕ(2k) (10.4.5)

so ϕ is indeed an isomorphism. ◀

Proposition 15.20 (Properties of isomorphisms)
Let (G, ◦) and (H, ∗) be groups with identities eG, eH respectively. Then for any isomor-
phism ϕ : (G, ◦) −→ (H, ∗) and ∀g ∈ G:
(i) ϕ(eG) = eH

(ii) ϕ(g−1) = (ϕ(g))−1 (this is actually true for any k in the exponent, but the case k = −1
is very important)

(iii) ord(g) = ord(ϕ(g))
(iv) if (K, ◦) ≤ (G, ◦) then (ϕ(K), ∗) ≤ (H, ∗)
(v) if (G, ◦) is abelian/cyclic then so is (H, ∗).
(vi) ϕ(gk) = (ϕ(g))k, ∀k ∈ Z.

Proof. Sdgdg

(i) since eG ◦ eG = eG we have ϕ(eG ◦ eG) = ϕ(eG) ∗ ϕ(eG) = ϕ(eG). We now rewrite ϕ(eG) =
ϕ(eG) ∗ eH and use the left cancellation law to find that ψ(eG) = eH .

(ii) since g ◦ g−1 = g−1 ◦ g = eG we find ϕ(g ◦ g−1) = ϕ(g−1 ◦ g) = eH so ϕ(g) ∗ ϕ(g−1) = eH thus
proving that ϕ(g−1) = (ϕ(g))−1.

(iii) Suppose ord(g) = k, since ϕ is injective gk = eG ⇐⇒ ϕ(gk) = (ϕ(g))k = ϕ(eG) = eH .
Hence ord(ϕ(g)) ≤ ord(g) = k. Since ϕ is bijective, it has an inverse ϕ−1, so that repeating
the argument of before using ord(ϕ(g)) = l one finds: ϕ−1(ϕ(g)l) = (ϕ−1(ϕ(g)))l = gl = eG.
Consequently, l = ord(ϕ(g)) ≥ ord(g). Finally, we find that ord(ϕ(g)) = ord(g).

(iv) we prove the three subgroup properties for ϕ(K):

Closure: let l1 = ϕ(k1) and l2 = ϕ(k2) for some k1, k2 ∈ K. Then: l1 ∗ l2 = ϕ(k1) ∗ ϕ(k2) =
ϕ(k1 ◦ k2) ∈ ϕ(K) since k1 ◦ k2 ∈ K by the closure property of subgroups.

Identity: eH = ϕ(eG) ∈ ϕ(K)

Inverses: let l = ϕ(k) for some k ∈ K. Then l−1 = (ϕ(k))−1 = ϕ(k−1) ∈ ϕ(K) since k−1 ∈ K by
the subgroup properties ofK.

(v) suppose that (G, ◦) is abelian, and let h1 = ϕ(g1), h2 = ϕ(g2) for some g1, g2 ∈ G. Then
g1 ◦ g2 = g2 ◦ g1 =⇒ ϕ(g1 ◦ g2) = ϕ(g2 ◦ g1) and hence ϕ(g1) ∗ ϕ(g2) = ϕ(g2) ∗ ϕ(g1) and thus
(ϕ(K), ∗) is abelian as well.
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Now suppose that (G, ◦) is cyclic and generated by a. Let h = ϕ(g) for some g ∈ G then
g = ak =⇒ ϕ(g) = ϕ(ak) = (ϕ(a))k so (H, ∗) is generated by ϕ(a) and is thus cyclic as well.

(vi) The case for k = 1 is trivial. Now, suppose that for some k ≥ 1, ϕ(gk) = (ϕ(g))k. Then,
ϕ(gk+1) = ϕ(g ◦ gk) = ϕ(g) ◦ ϕ(gk) = (ϕ(g))k+1. Hence, by the principle of mathematical
induction, ϕ(gk) = (ϕ(g))k, ∀k ∈ N. The case for k = 0,−1 have been proven in (i) and (ii)
respectively. To prove this statement ∀k ∈ Z, simply repeat the induction proof, but use g−1

instead of g, and apply property (ii).

■

Note that one can use the above identities to prove that two groups are not isomorphic:

1. if one group has more/less number of self-inverse elements

2. if one group has a different order than the other

3. if one group is abelian/cyclic, and the other is not

Proposition 15.21 (Isomorphisms of cyclic groups)
Let (G, ◦) and (H, ∗) be finite cyclic groups of order n or infinite groups generated by a, b
respectively. Then they are isomorphic through ϕ : ak 7→ bk, k = 0, 1, 2...n − 1 for finite
ordered groups and k ∈ Z for infinite ordered groups.

Proof. It is trivial to see that ϕ is bijective. Also ∀aj , ak ∈ G:

ϕ(aj ◦ ak) = ϕ(aj+k) = bj+k = bj ∗ bk = ϕ(aj) ∗ ϕ(ak) (10.4.6)

as required. ■

10.5 Standard groups

Definition 15.22 (Cyclic group of order n)
We denote the standard, abstract cyclic group of order n as Cn.

Example. Find an isomorphism from (Z4,+4) to (Z5,×5)
We know that (Z4,+4) is generated by 1 and (Z5,×5) by 2, so we can define:

ϕ :Z4,+4) −→ (Z5,×5) (10.5.1)
0 7→ 1 (10.5.2)
1 7→ 2 (10.5.3)
2 7→ 4 (10.5.4)
3 7→ 3 (10.5.5)

◀
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Definition 15.23 (Klein four-group)
We denote the standard, abstract group of order 4 with all elements self inverse as theKlein
four-group V .

There are several examples where the Klein-four group comes to use. For example, let us consider
the Cayley tables of (S(⊏⊐), ◦) and (U8,×8):

We can see that they both share the same structure, and therefore are isomorphic to each other.

10.6 Direct product of groups

Definition 15.24 (Direct product of two groups)
Given two groups (G, ∗G) and (H, ∗H), then we may define their direct product, denoted as
(G×H, ∗), where:

G×H = {(g, h) : g ∈ G,h ∈ H} (10.6.1)

is the cartesian product of G,H , equipped with the operation

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2) (10.6.2)

for g1, g2 ∈ G and h1, h2 ∈ H .

We can easily see that this new group G ×H does indeed satisfy the group axioms. ∗ is certainly
binary. Indeed, for (g1, h1), (g2, h2) ∈ G×H :

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2) ∈ G×H (10.6.3)

since G and H are closed under ∗G and ∗H respectively.

Associativity can be proven similarly.

Also, the identity element is (eG, eH), since ∀(g, h) ∈ G×H :

(eG, eH) ∗ (g, h) = (eG ∗ g, eH ∗H h) = (g, h) (10.6.4)

and
(g, h) ∗ (eG, eH) = (g ∗G eG, h ∗H eH) = (g, h) (10.6.5)

as desired.
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Finally, the inverse of (g, h) is (g−1, h−1), since:

(g, h) ∗ (g−1, h−1) = (g ∗ g−1, h ∗H h−1) = (eG, eH) (10.6.6)

and
(g−1, h−1) ∗ (g, h) = (g−1 ∗G g, h−1 ∗H h) = (eG, eH) (10.6.7)

as desired. Taking the direct product of two groups can prove to be very useful. For example,
suppose we have two independent figures F and F ′. Then, the symmetries of this overall system
form the group S(F)× S(F ′).

Proposition 15.25 (Isomorphic group products)
Cn × Cm

∼= Cnm iff GCD(m,n) = 1.

Proof. Suppose that GCD(m,n) = 1, and let Cn = 〈a〉, Cm = 〈b〉, and ord((a, b)) = k so that:

(a, b)k = (ak, bk) = e (10.6.8)

which can only be the case if k is a common multiple ofm = ord(a) and n = ord(b). Since k must
be the minimum such integer, we require LCM(m,n) = k. Using the well known relation that:

LCM(m,n) = n ·m
GCD(m,n)

= n ·m = k (10.6.9)

hence the order of (a, b) is the product of the order of a and b.

Recall that 〈(a, b)〉 ≤ Cn×Cm, so that | 〈(a, b)〉 | = ord((a, b)) = n ·m. However, |Cn×Cn| = n ·m as
well, implying that 〈(a, b)〉 = Cn ×Cm. It is also immediate that 〈(a, b)〉 ∼= Cnm, so that Cn ×Cm

∼=
Cnm as desired.

Now suppose that GCD(m,n) 6= 1, so that k 6= n ·m. Hence,Cnm is of order n ·m, whereasCn×Cm

is of order k. Two groups cannot be isomorphic if they have different orders, and consequently
Cnm 6∼= Cn × Cm.

■

Theorem 15.26 (Direct product theorem)
Let H,F ≤ (G, ∗), and suppose ∀h ∈ H, f ∈ F, g ∈ G:
(i) H ∩ F = {e}
(ii) hf = fh

(iii) g = hf

Then G ∼= H × F .

Proof. We will prove that:

ϕ :H × F → G (10.6.10)
(h, g) 7→ h ∗ g (10.6.11)
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is an isomorphism. Indeed,

ϕ((h1, f1) ∗ (h2, f2)) = ϕ(h1 ∗ h2, f1 ∗ f2) (10.6.12)
= h1 ∗ h2 ∗ f1 ∗ f2 (10.6.13)
= (h1 ∗ f1) ∗ (h2 ∗ f2) (10.6.14)
= ϕ(h1, f1) ∗ ϕ(h2, f2) (10.6.15)

where we used the commutativity of h, f in the third line.

Also, ϕ is injective. Indeed:

ϕ(h1, f1) = ϕ(h2, f2) =⇒ h1 ∗ f1 = h2 ∗ f2 =⇒ h1 ∗ h−1
2 = f2 ∗ f−1

1 (10.6.16)

Nowby closure, the LHS belongs toH , and the RHS belongs toF , hence h1∗h−1
2 ∈ H and h1∗h−1

2 ∈
F , consequently h1 ∗h−1

2 ∈ H ∩F =⇒ h1 ∗h−1
2 = e =⇒ h2 = h1. Similar argument gives f2 = f1.

Hence, (h1, f1) = (h2, f2) as desired.

To prove surjectivity, note that if g ∈ G, then ∃h, f such that g = hf = ϕ(h, f) by assumption.

In conclusion, ϕ is a bijective homomorphism, hence an isomorphism. ■
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11.1 Permutations

Definition 16.1 (Permutation)
A permutation of a finite set S is a bijective map σ : S → S. The set of all permutations of
this set is denoted Sym(S).

We use the typical two-line notation to denote a permutation:

σ ↔
(

1 2 3 4
4 1 2 3

)
(11.1.1)

A more convenient and effective notation is the cycle form. Indeed starting from 1 and looking at
where each element gets mapped we find:

1 σ−−−−→ 4 σ−−−−→ 3 σ−−−−→ 2 σ−−−−→ 1 (11.1.2)

or more concisely as:
σ = (1 4 3 2) (11.1.3)

However it is not always possible to write a permutation in one single cycle. Indeed some permu-
tations map only some symbols in each cycle:

σg =
(

1 2 3 4 5 6 7 8
4 6 8 3 1 2 7 5

)
(11.1.4)

then we have three disjoint cycles (disjoint because every member appears only in one cycle):

Figure 11.1. Cycles of σg
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We can then write:
σg = (1 4 3 8 5)(2 6)(7) (11.1.5)

and we say that it is a product of three cycles.

Definition 16.2 (Permutation cycles)
A permutation σ of a set S is said to be cyclic if there exist ai...ak ∈ {1, 2, ..., n} such that:

aiσ = ai+1 for 1 ≤ i < k (11.1.6)
akσ = a1 (11.1.7)

and is denoted in cycle form as (a1 σa1 σ
2a1 ... σ

k−1a1). We refer to this cycle as a k-cycle
because it has order k. Two cycles are disjoint if they do not share any common elements.

The first line, aiσ = ai+1 for 1 ≤ i < k, tells us that if some a1 gets mapped to a2 by σ, then a2 itself
will get mapped to a3 and so forth until we reach ak. Here, the cycle restarts, so we must have that
ak gets mapped to a1, which is encapsulated in the second line.

For example, σ = (1 4 3 8 5) is a cycle. Indeed, defining a1 = 1 then:

a1σ = 4 = a2, (11.1.8)
a2σ = 3 = a3, (11.1.9)
a3σ = 8 = a4, (11.1.10)
a4σ = 5 = a5 (11.1.11)
a5σ = 1 = a1 (11.1.12)

so here k = 5, thus we have a 5-cycle.

Proposition 16.3 (Commutativity product of disjoint cycles)
The product of disjoint cycles is commutative.

Proof. Let σa = (a1 ... ak) and σb = (b1 ... bl) so that ai 6= bi. Then applying σbσa:

aiσaσb = ai+1σb = ai+1 sdd for i < k (11.1.13)
akσaσb = a1σb = a1 (11.1.14)
biσaσb = biσb = bi+1 sddffdf for i < l (11.1.15)
blσaσb = blσb = b1 (11.1.16)

Similarly applying σbσa one finds:

aiσbσa = aiσa = ai+1 sdgd for i < k (11.1.17)
akσbσa = akσa = a1 (11.1.18)
biσbσa = bi+1σa = bi+1 sdd for i < l (11.1.19)
blσbσa = b1σa = b1 (11.1.20)

■

− 143 −



11.1. PERMUTATIONS

An immediate consequence of Proposition 16.3 is that, if a permutation σ can be expressed as a
product of disjoint cycles σi:

σ =
n∏

i=1
σi =⇒ σk =

n∏
i=1

σk
i (11.1.21)

It turns out that this process of writing permutations as products of disjoint cycles can be done for
any cycle, and this process is well-defined. In other words, the cycle form is uniquely determined
for any permutation.

Theorem 16.4 (Existence and uniqueness cycle form)
Every permutation can bewritten in a unique cycle form (aside the choice of starting symbol
and order in which the symbols are listed).

Proof. Proof of existence

Consider a permutaton σ ∈ Sym({1, 2, ..., n}) and the infinite sequence:

a1, a1σ, a1σ
2, a1σ

3... (11.1.22)

where a1 ∈ {1, 2, ..., n}. Because {1, 2, ..., n} has finite cardinality, and the sequence continues
infinitely, we must have some repetition a1σ

i = a1σ
j for some i < j which implies a1σ

j−i = a1. If
we let k1 = j − i be the smallest integer such that a1σ

k1 = a1 then we denote {a1, a1σ...a1σ
k1−1}

the orbit of a1 which is our first cycle.

Now if k1 = n then the permutation σ is a cycle, and we are done. Otherwise, we choose a1 not in
the orbit of a1 and write its orbit.

The orbits of a1 and a2 are disjoint since σ is bijective. Indeed, if σia1 = σja2 then a1 = σj−ia2,
implying that a1 belongs to the orbit of a2, a contradiction.

Repeating this process, since the set S is finite eventually we exhaust the number of symbols and
find:

σ = (a1 a1σ... a1σ
k1−1)(a2 a2σ... a2σ

k2−1)...(ar aRσ... arσ
kr−1) (11.1.23)

where r is the different number of orbits.

Proof of uniqueness Suppose now that we can write the permutation as two distinct products of
disjoint cycles:

σ = ρ1ρ2...ρk = τ1τ2...τl (11.1.24)

Then a1 ∈ {1, 2, ..., n} appears exactly once in ρi and τj and as they are disjoint we reorder (through
commutativity) the order of cycles so that i = j = 1. Hence WLOG assume that 1 appears in τ1
and ρ1.

We can then show that:
ρ1 = (1 1σ 1σ2...1σk−1) = τ1 (11.1.25)

an repeating this for all other ρ and τ we get the desired result.

■

During this proof we encountered the important concept of an orbit which we shall revisit more in
depth later when studying group actions:
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Definition 16.5 (Orbit of a permutation element)
The orbit of some element a1 ∈ S in a permutation σ ∈ Sym(S) is the set {a1, σa1... σ

k1−1a1}
where k1 is the smallest integer such that σk1a1 = a1.

Strategy. (Composing permutations)
To find σg ◦ σf in cycle form:

1. Start with 1 and find the symbol of 1 under σf , and then find the image of that symbol
under σg , and denote it as x = σgσf 1 so that σg ◦ σf = (1 x...).

2. Start with the symbol x and repeat the process.
3. Continue repeating the process until you reach the original symbol 1. The cycle is then

complete.
4. Choose the smallest symbol not placed in the cycle, and repeat steps 1-3 again until

the second cycle is complete.
5. Continue until every symbol has been placed.

Example. Write in cycle form (1 4 6)(3 5) ◦ (1 5 3 2 4) ◦ (1 2)(3 5)(4 6).
We start with 1, which gets mapped to 2, then to 4 and finally to 6, so 1 7→ 6.
Now we see that 6 gets mapped to 4, then to 1 and finally to 4, so 6 7→ 4.
Nowwe see that 4 gets mapped to 6 and then doesn’t get mapped and finally to 1, so 4 7→ 1.
This completes the first cycle (1 6 4).
We start with 2, which gets mapped to 1, then to 5 and finally to 3, so 2 7→ 3.
Now we see that 3 gets mapped to 5, then to 3 and finally to 5 so 3 7→ 5.
Now we see that 5 gets mapped to 3, then to 2 and then doesn’t get mapped, so 5 7→ 2.
This completes the second cycle (2 3 5).
So we may write:

(1 4 6)(3 5) ◦ (1 5 3 2 4) ◦ (1 2)(3 5)(4 6) = (1 6 4)(2 3 5) (11.1.26)

◀

11.2 Permutation groups

Theorem 16.6 (Symmetric group)
The set Sn of all permutations of {1, 2, 3, ..., n} forms a group under ◦ called the symmetric
group of degree n

Proof. We check that the group axioms hold:

(Closure) Consider σg ◦ σf ∈ Sn. Since σg and σf are bijective maps mapping {1, 2, ..., n} to itself, then
σg ◦ σf and σf ◦ σg must necessarily also map Sn to itself and be bijective. So, σg ◦ σf ∈ Sn as
required.

(Associativity) Composition is associative.

(Identity) The identity permutation e is an identity, since its action is tomap every symbol of {1, 2, ..., n}
to itself.
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(Inverse) Since σf is bijective, it must have an inverse σ−1
f which is also a permutation since it too maps

{1, 2, ..., n} to itself.

■

It is important to notice the difference between the order and degree of Sn. The order is, as al-
ways, the number of permutations Sn contains whereas its degree is how many symbols each of
its permutations permute.

Theorem 16.7 (Properties of Sn)
The order |Sn| of Sn is n!, and for n ≥ 3, Sn is non-abelian.

Proof. Firstly, for σ ∈ Sn, there are n different possibilities for 1σ, and since σ is bijective, 1σ 6= 2σ
and thus there are n− 1 possibilities for 2σ. We can keep doing this to find:

n× (n− 1)× (n− 2)...× 2× 1 = n! (11.2.1)

are all the possible permutations. Now if x1, x2, x3 ∈ {1, 2, ..., n} are distinct then we can define:

σ1 :x1 7→ x1, x2 7→ x3, x3 7→ x2 (11.2.2)
σ2 :x1 7→ x2, x2 7→ x1, x3 7→ x3 (11.2.3)

We then find that:

σ2 ◦ σ1 : x1 7→ x2, x2 7→ x3, x3 7→ x1 (11.2.4)
σ1 ◦ σ2 : x1 7→ x3, x2 7→ x1, x3 7→ x2 (11.2.5)

which are not the same. Thus for sets S of cardinality greater than or equal to 3 the corresponding
Sym(S) is non-abelian. ■

Definition 16.8 (Same cycle structure)
Two permutations in Sn have the same cycle structure if their cycle forms contain the same
number of disjoint k-cycles for each k.

So for example (1 2 4)(3 8)(4 5) and (1 7)(2 8 3)(4 5) have the same cycle structure since they
each consist of a 3-cycle, two transposition (2-cycle) and a 1-cycle (which is not shown in cycle
form).

Proposition 16.9 (Order of a permutation)
The order of a permutation σ = ρ1ρ2...ρk where ρi are disjoint cycles of order li is:

ord(σ) = LCM(l1, l2...lk) (11.2.6)

so that the order of a k − cycle is k.

− 146 −



11.3. EVEN AND ODD SYMMETRIES

Proof. Let n = ord(σ). Then, since ρi are disjoint, we can use 16.1.21 to write:

σn = ρn
1ρ

n
2ρ

n
3 ...ρ

n
k = e (11.2.7)

Now since ρi are disjoint, they permute different sets, and consequently their product can only be
equal to e if each of them are equal to e:

ρn
i = e,∀i (11.2.8)

so that n|li. Since n must be the smallest such integer, it follows that n = LCM(l1, l2, ..., lk) as
desired. ■

We can use cycle form to denote symmetries of figures as well. For example the symmetry:(
1 2 3 4
1 4 3 2

)
(11.2.9)

can be written as (2 4) in cycle form, which is much more concise.

Example. Write all the symmetries of an octahedron.
The octahedron has six direct symmetries: we can rotate it about the vertical line through
the vertices 4,5 through 0, 2π/3, 4π/3, or turn the octahedron upside down and repeat the
same process. The octahedron also has at least one indirect symmetry, name a reflection in
the plane through vertices 1,2,3. Hence there are 6 indirect symmetries, and 12 symmetries
in total.
We first start by writing all direct symmetries of the equilateral triangle with vertices 1,2,3:

e, (1 2 3), (1 3 2), (1 2), (1 3), (2 3) (11.2.10)

We can then compose with the reflection (4 5) to find:

(4 5), (1 2 3)(4 5), (1 3 2)(4 5), (1 3)(4 5), (2 3)(4 5) (11.2.11)

These are twelve distinct symmetries, and therefore we have found all the symmetries. ◀

11.3 Even and Odd symmetries

Strategy. (Expressing cycles as composite of transpositions)
Consider a cycle (a1 a2 a3...ar), then we can express:

(a1 a2 a3...ar) = (a1 ar) ◦ (a1 ar−1) ◦ ... ◦ (a1 a2) (11.3.1)

Proof. Firstly, consider a1. It gets mapped to a2. a2 then gets mapped to itself, since it does not
appear in any other transposition (they are disjoint). So overall a1 gets mapped to a2.

Now consider the as where 2 ≤ s ≤ r − 1. We then see that (a1 a2), ...(a1 as−1) all map as to itself.
The next transposition (a1 as) maps as to a1. Then the next transposition (a1 as+1) maps a1 to as+1.
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Figure 11.2. Octahedron

Finally, all the successive transpositions (a1 as+2)...(a1 ar)map as+1 to itself. Sowe find that overall
as gets mapped to as+1.

Next we consider ar. By the same argument as before all transpositions (a1 a2), ...(a1 ar−1) map ar

to itself. The final transpositions (a1 ar) map ar to a1 as required.

So we find that as 7→ as+1 for all 1 ≤ s < r and ar 7→ a1, which defines the cycle (a1 a2 a3...ar) as
in definition 16.2. ■

Example. We can express (2 4 3 5) = (2 5) ◦ (2 3) ◦ (2 4). ◀

Notice that there are several ways we can express a permutation as a composite of transposition.
Indeed in the previous example we could have written:

(2 4 3 5) = (4 3 5 2) = (4 2) ◦ (4 5) ◦ (4 3) (11.3.2)
= (2 4) ◦ (5 4) ◦ (3 4) (11.3.3)

Notice however that the number of transpositions is always even. Indeed it turns out that if a
permutation can be expressed as a composition of an even number of transpositions, then it can
only be expressed as a composite of even transpositions.

Definition 16.9 (Parity of permutation)
A permutation is even if it can be expressed as a composite of an even number of transpo-
sitions.
A permutation is odd if it can be expressed as a composite of an odd number of transposi-
tions.

We have that:

Theorem 16.10 (Parity Theorem)
Apermutation cannot be expressed as both a composite of an even number of transpositions
and a composite of an odd number of transpositions.
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Proof. Let x1, . . . , xn and consider the Vandermonde polynomial 1

P =
∏

1≤i<j≤n

(xj − xi) (11.3.4)

We now choose a permutation σ ∈ Sn, and define the function fσ as:

fσ(P ) =
∏

1≤i<j≤n

(xσ(j) − xσ(i)) (11.3.5)

which reshuffles the terms in the normal Vandermonde polynomial.

Lemma. Let τ be a transposition, then fτ (P ) = −P .

Proof. Let’s consider the action of a transposition τ = (a b) on P .

For j, i 6= a, b in any order, the factor (xj − xi) is left unchanged.

Now let us consider a pair with exactly one index equal to a or b (we assume WLOG that a < b).

Then if the other index j is between a and b, (xj − xa) 7→ −(xb − xj) and (xb − xj) 7→ −(xj − xa).
However these two signs cancel each other out, so no net change.

If the other index i is not between a and b, then it can be smaller than a or larger than b. In the first
case, (xa − xi) 7→ (xb − xi). In the former case, (xi − xa) 7→ (xi − xb). In both cases the sign does
not change.

Finally, if both indices are in {a, b} then xb − xa 7→ −(xb − xa).

So overall there is only one sign change due to when both indices correspond to a and b. So if τ is
a transposition, then fτ (P ) = −P and consequently fτ (−P ) = P . ■

Now take an arbitrary permutation σ, and express it as a product of transpositions τi and ρi in two
different ways:

σ = τ1 · · · τr = ρ1 · · · ρs (11.3.6)

Then

fσ(P ) = fτ1···τr
(P ) = (fτ1 ◦ · · · ◦ fτr

)(P ) = (−1)rP (11.3.7)
fσ(P ) = fρ1···ρs(P ) = (fρ1 ◦ · · · ◦ fρs)(P ) = (−1)sP (11.3.8)

Therefore, (−1)rP = (−1)sP , so r and s have the same parity: both odd, or both even. ■

Proposition 16.11 (Parity of k-cycles)
For σ ∈ Sn where σ is a k-cycle:

σ is
{

even permutation, if k is odd
odd permutation, if k is even

(11.3.9)

1For n = 4, we would have P = (x2 − x1)(x3 − x1)(x4 − x1)(x3 − x2)(x4 − x2)(x4 − x3).
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Proof. This follows immediately from equation 16.3.1 ■

We note immediately then that the parity of the composite of two permutations can be found by
simply summing their parity.

Strategy. (Finding the parity of any permutation)
1. Express the permutation as a composite of cycles
2. find the parity of each k-cycle following{

even permutation, if k is odd
odd permutation, if k is even

(11.3.10)

3. Combine the parities of each cycle following the Cayley table below:

+ even odd
even even odd
odd odd even

Proposition 16.12 (Parity of inverse)
The inverse of a permutation has the same parity as the permutation.

Proof. We see that e is an even permutation, so if f ◦ f−1 = e then we must have that f and f−1

have the same parity. ■

Proposition 16.13 (Alternating group of order n)
The groupAn of all even permutations of {1, 2, ...n} is called the alternating group of order
n and An ≤ Sn.

Proof. We check the subgroup properties:

(i) Closure: the composite of two even permutations is even, so closure is satisfied.

(ii) Identity: the identity permutation e is even, and thus belongs to An.

(iii) Inverses: by theorem 16.10, the inverse of an even permutation is even.

■

For example, let us try to find all elements of A4. Their structures must be:

e, (_ _)(_ _), (_ _ _ _) (11.3.11)

and we must fill the gaps with {1, 2, 3, 4}.

Note that there are only 3 cycle structures of the form (_ _)(_ _). Indeed, WLOG place 1 in the
first place, then we can place 3 elements in the second place. The other transposition is then given
immediately. So there are three different ways.
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Instead, there are 8 cycle structures of the form (_ _ _ _). For these, we place WLOG 1 in the first
place so that there are 3 possible elements in the second place, and 2 possible in the third, the fourth
is then immediate. So there are eight different ways.

In total there are then 12 different elements in A4, which is exactly half the order of S4 interest-
ingly.

This turns out not to be a coincidence. Indeed, we have the following general result:

Theorem 16.14 (Order of An)
The order of the alternating group is |An| = 1

2n! for n ≥ 2.

Proof. Suppose Sn has r even permutations and s odd permutations.

We first prove that r ≤ s. Let f1, ..., fr ∈ An then consider:

(1 2) ◦ f1, (1 2) ◦ f2, ... , (1 2) ◦ fr (11.3.12)

these are all distinct odd permutations. So there are at least r odd permutations in Sn.

A similar argument uses g1...gr odd permutations composed with (1 2) to prove that s ≤ r.

Since s ≤ r and r ≤ s, we have that s = r. So exactly half of the permutations in Sn are in An, thus
|An| = 1

2n!. ■

11.4 Conjugacy of Sn

Consider the permutation x of some set S with i, j ∈ S. Then consider another permutation g
which relabels S. Our question is to know what the permutation x looks like with the relabelled
set S′.

Looking at the diagram below:

we clearly see that (y ◦ g)(i) = (g ◦ x ◦ g−1)(i) and by the cancellation rule we find that y = g ◦ x ◦
g−1.

Definition 16.15 (Conjugate permutations)
The permutation σ is the conjugate of ρ in Sn if there exists a permutation τ such that:

σ = τ ◦ ρ ◦ τ−1 (11.4.1)

We then say that τ is a conjugating permutation of ρ to σ, and that σ is the conjugate of ρ
by τ .
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Strategy. (Finding a conjugating permutation)
1. Align the cycles of σ and ρ so that cycles of same order correspond:

x = (∗ ∗ ... ∗)(∗ ∗ ... ∗)...(∗)(∗)
y = (∗ ∗ ... ∗)(∗ ∗ ... ∗)...(∗)(∗)

τ
(11.4.2)

2. Read off the two line form of the permutation τ .

Example. Let σ = (1 2 4)(3 5) and ρ = (1 4)(2 5 3) in S5. Find three permutations g ∈ S5
conjugating σ to ρ.
We can write that:

x = (1 2 4)(3 5)
y = (2 5 3)(1 4)

τ
(11.4.3)

and read off the conjugating permutation τ = (1 2 5 4 3).
Alternatively, we can rewrite (2 5 3) as (3 2 5) and find:

x = (1 2 4)(3 5)
y = (3 2 5)(1 4)

τ
(11.4.4)

whose corresponding conjugate permutation is τ = (1 3)(4 5).
Finally we can rewrite (2 5 3) as (3 5 2) and find:

x = (1 2 4)(3 5)
y = (3 5 2)(1 4)

τ
(11.4.5)

whose corresponding conjugate permutation is τ = (1 3)(2 5 4) ◀

Now consider the action of a conjugating permutation not on a single permutation, but on every
permutation in a subgroup.

Let H ≤ Sn and let g ∈ Sb, then we will denote:

g ◦H ◦ g−1 = {g ◦ h ◦ g−1 : h ∈ H} (11.4.6)

So it suffices to substitute every element in H using g.

If we let for exampleH = 〈(1 2 4 5)〉 then:

H = {e, (1 2 4 5), (1 2 4 5)2, (1 2 4 5)3} (11.4.7)
= {e, (1 2 4 5), (1 4)(2 5), (1 5 4 2)} (11.4.8)

Then, if we let g = (3 5) we find that:

g ◦H ◦ g−1 = {e, (1 2 4 3), (1 4)(2 3), (1 3 4 2)} (11.4.9)

Theorem 16.16 (Conjugate subgroups)
Let H ≤ Sn and let g ∈ Sn. Then g ◦H ◦ g−1 is also a subgroup of Sn.
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Proof. sdfdf

Closure: consider any two elements h, k ∈ g ◦ H ◦ g−1. Then, ∃h′, k′ such that h = g ◦ h′ ◦ g−1 and
k = g ◦ k′ ◦ g−1. Thus:

h ◦ k = (g ◦ h′ ◦ g−1) ◦ (g ◦ k′ ◦ g−1) (11.4.10)
= g ◦ h′ ◦ g−1 ◦ g ◦ k′ ◦ g−1 (11.4.11)
= g ◦ (h′ ◦ k) ◦ g−1 (11.4.12)
= g ◦ l ◦ g−1 (11.4.13)

where l = h′ ◦ k ∈ H since subgroups are closed. Hence h ◦ k ∈ g ◦H ◦ g−1 as required.

Identity: let the identity element in H be eH . Then:

eH = g ◦ g−1 = g ◦ eH ◦ g−1 ∈ g ◦H ◦ g−1] (11.4.14)

as required.

Inverses Let h ◦ h−1 = eH for all h ∈ H . Then, the inverse of g ◦ h ◦ g−1 is g ◦ h−1 ◦ g−1. Indeed:

g ◦ h ◦ g−1 ◦ g ◦ h−1 ◦ g−1 = g ◦ h ◦ h−1 ◦ g−1 = g ◦ g−1 = eH (11.4.15)

Let us now check that the inverse belongs to g ◦H ◦ g−1. This is clearly true, since h−1 ∈ H
due to the inverse property of subgroups.

■

11.5 Subgroups of S4

We will now tackle the problem of finding all subgroups of S4. To do so we will find cyclic and all
non-cyclic subgroups of S4.

Cyclic subgroups
The cyclic elements of S4 must have the structures shown in Figure 16.3. We see that each element
in S4 has order 1,2,3,4 so the order of each subgroup must also be 1,2,3 or 4.

The cyclic subgroup of order 1 is obviously {e}.

The cyclic subgroups of order 2 are the identity permutationwith onepermutation of order 2:

{e, (1 2)}, {e, (1 3)}, {e, (1 4)}, {e, (2 3)}, {e, (2 4)}, {e, (3 4)} (11.5.1)

and:
{e, (1 2)(3 4)}, {e, (1 3)(2 4)}, {e, (1 4)(2 3)} (11.5.2)

which are 9 in total.

To find all cyclic subgroups of order 3, note that (1 2 3) and (1 3 2) all generate the same subgroup
{e, (1 2 3), (1 3 2)}. Similarly, the other six 3− cycles each couple up in a similar way. So the cyclic
groups are:

{〈(1 2 3)〉 , 〈(1 3 4)〉 , 〈(1 4 2)〉 , 〈(2 3 4)〉} (11.5.3)
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Figure 11.3. Cycle structures of elements in S4

The cyclic subgroups of order 4 can be found similarly. (1 2 3 4) generates the following set:

〈(1 2 3 4)〉 = {e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)} (11.5.4)

We now choose a permutation of order 4 that is not in this list, and finds its generator:

〈(1 2 4 3)〉 = {e, (1 2 4 3), (1 4)(2 3), (1 3 4 2)} (11.5.5)

Repeat this process one final time:

〈(1 3 2 4)〉 = {e, (1 3 2 4), (1 2)(3 4), (1 4 2 3)} (11.5.6)

We see that all six permutations of order 4 have been found, so we found all the cyclic subgroups
of S4 of order 4.

So in conclusion:

Order Number of cyclic subgroups
1 1
2 9
3 4
4 3

with 16 total cyclic subgroups.

Non-cyclic subgroups
We now try to find non-cyclic subgroups of S4. We can do so by drawing a figure labels 1, 2...n.
We can then find the symmetry group of the figure, which is a subgroup of Sn.

For example, if we draw and label the rectangle as shown below:
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Then the symmetry group is:

{e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} (11.5.7)

which is not cyclic. Indeed it has 4 elements, but its elements are of order 2.

We can now find other non-cyclic subgroup from the old subgroup by relabelling it through con-
jugating permutations.

11.6 Cayley’s Theorem
We saw that the symmetry groups of most figures can be represented as permutation groups, and
are therefore isomorphic.

It turns out this is true for any finite group.

Theorem 16.17 (Cayley’s theorem)
Let (G, ∗) be a finite group. For each x ∈ G, let px be the permutationwhose two-line symbol
has as its first line the column heading of the Cayley table of G, and as its second line the
row labelled x in the group table.
If we let P = {px : x ∈ G} then (P, ◦) is a permutation group isomorphic to (G, ∗).

Proof. Let G = {g1, ..., gn} so that for each element gi the table shows:

so that:
px =

(
g1 g2 . . . gn

x ∗ g1 x ∗ g2 . . . x ∗ gn

)
(11.6.1)

which is a permutation since every element ofG is repeated only once in the column headings and
in the row labelled x.
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One can then easily verify using associativity that:

px ◦ py =
(

g1 g2 . . . gn

x ∗ y ∗ g1 x ∗ y ∗ g2 . . . x ∗ y ∗ gn

)
= px∗y (11.6.2)

so that:

The two cayley tables therefore are identical in structure, and thus (P, ◦) is a group. Not only that,
it is a group isomorphic to (G, ∗), since the map:

p : G→ P (11.6.3)
x 7→ px (11.6.4)

Indeed, we have already verified that p(x∗y) = p(x)◦p(y). Also, p is injective, since p(x) = p(y) =⇒
x ∗ gi = y ∗ gi for all gi ∈ G, and by the right cancellation law x = y. Surjectivity is trivial. ■

For example, consider the group (Z6,+6). For each x ∈ Z6, we associate a permutation px whose

Figure 11.4. Cayley table for (Z6, +6)

two line form has its first line as the column heading and its second line as the row labelled x.
So:

p2 =
(

0 1 2 3 4 5
2 3 4 5 0 1

)
= (0 2 4)(1 3 5) (11.6.5)
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This gives us the permutations p0, p1...p6 for each element of Z6, obtaining:

p0 = e (11.6.6)
p1 = (0 1 2 3 4 5) (11.6.7)
p2 = (0 2 4)(1 3 5) (11.6.8)
p3 = (0 3)(1 4)(2 5) (11.6.9)
p4 = (0 4 2)(1 5 3) (11.6.10)
p5 = (0 5 4 3 2 1) (11.6.11)

Let P = {p0, p1, p2...p5}. If we draw the Cayley table for (P, ◦) we find:

which is structurally identical to the table for (Z6,+6). So we can conclude that the map:

ϕ : Z6 → P (11.6.12)
x 7→ px (11.6.13)

is an isomorphism.
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12GT4 Lagrange’s Theorem and
small groups

12.1 Lagrange’s Theorem

Theorem 17.1 (Lagrange’s Theorem)
Let G be a finite group, and letH ≤ G. Then ord(H)|ord(G), that is, the order ofH divides
the order of G.

Proof. Let (G, ◦) be a finite group and let H ≤ G so that ord(G) = s and ord(H) = r.

We begin by writing down all the elements of H :(
h1 h2 . . . hr

)
(12.1.1)

Next we choose any element of G that is not included in the above array, such as g2, and compose
it to the left with the first row. (

h1 h2 . . . hr

g2 ◦ h1 g2 ◦ h2 . . . g2 ◦ hr

)
(12.1.2)

If there are no other elements of G excluded from the array, then we are done. Otherwise, choose
another element, say g3 that is not included and compose it to the left with the first row to find: h1 h2 . . . hr

g2 ◦ h1 g2 ◦ h2 . . . g2 ◦ hr

g3 ◦ h1 g3 ◦ h2 . . . g3 ◦ hr

 (12.1.3)

We repeat this process until all the elements of G have been exhausted. This must happen since G
has finite order and each row introduces a new element gi ∈ G.
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At the end, we reach the following array:


h1 h2 . . . hr

g2 ◦ h1 g2 ◦ h2 . . . g2 ◦ hr

g3 ◦ h1 g3 ◦ h2 . . . g3 ◦ hr

...
...

...
gk ◦ h1 gk ◦ h2 . . . gk ◦ hr

 (12.1.4)

Next, we have to show that all the elements in the array are distinct. We start by showing that all
the elements in a row are distinct. This is clearly true for the first row, since they are all distinct
elements of H . For the kth row, we have that if for some hi, hj ∈ H distinct:

gk ◦ hi = gk ◦ hj (12.1.5)

then by the left cancellation law hi = hj which is a contradiction.

Secondly, we show that elements in a row are not repeated in any other row. Again, we go by
contradiction, and suppose that in some row l, the element gl ◦hi is repeated as gk ◦hj another row
k:

gl ◦ hi = gk ◦ hj =⇒ gl = gk ◦ hj ◦ h−1
i (12.1.6)

By the closure property of H , hj ◦ h−1
i ∈ H , which would imply that gl = gk ◦ hm for somem and

that therefore gl belongs to the kth row. This is a contradiction, since we assumed that the rows l
and k are different.

Figure 12.1. Visualization of Lagrange’s proof

Thus none of the elements in each row are repeated in other rows. We can therefore conclude that
the order of G is the size of the complete matrix, that is, ord(G) = k · r = k · ord(H). It follows
immediately that ord(H)|ord(G). ■

Corollary.

(i) let g ∈ G, then the ord(g)|ord(G).

(ii) let G be a group of prime order. Then G is cyclic, with every non-identity element being a
generator.

(iii) let G be a group of prime order p, then (G, ◦) ∼= (Zp,+p).
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Proof. dgdg

(i) we have that 〈g〉 ≤ G and ord(g) = ord(〈g〉) so that ord(g)|ord(G).

(ii) ifG has prime order p, then for every element g ∈ G, 〈g〉 can have order 1 or p. However, only
〈e〉 has order 1, therefore 〈x〉must have order p, and therefore generate G.

(iii) we have that (G, ◦) is a cyclic group of order p, and that (Zp,+p) too is a cyclic group of order
p. From proposition 15.21, the two groups must therefore be isomorphic.

■

12.2 Groups of small order
The goal of this section will be to justify the following classification of isomorphism classes for
small groups:

Proposition 17.2 (Useful results)
Let G be a group of finite order:
(i) if each element except the identity has order 2, then G is abelian.
(ii) if ord(G) > 2 and each element except e has order 2, then 4|ord(G).
(iii) if ord(G) is even, then at least one element of G has order 2.
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Proof. Dgdg

(i) let x, y ∈ G, then xy is either the identity element or it has order 2 so that:

(xy)2 = e =⇒ xyxy = e =⇒ xey = x2yxy2 =⇒ xy = yx (12.2.1)

since x2 = y2 = e. The group G is therefore abelian.

(ii) Firstly, by the previous point Gmust be abelian. Also, G has at least 3 elements, e, x, y, with
x2 = y2 = e. Now consider z = xy, this must be distinct from x, y, e since

z = e =⇒ xy = e =⇒ y = x (12.2.2)
z = x =⇒ xy = x =⇒ y = e (12.2.3)
z = y =⇒ xy = y =⇒ x = e (12.2.4)

It now remains to prove that {e, x, y, z} ≤ G. We construct the following Cayley table:

e x y z
e e x y z
x x e z y
y y z e x
z z y x e

where for example yxy = yyx = x. The subgroup properties are then readily verified. Clo-
sure holds since every element in the body of the table is in {e, x, y, z}. The identity element
of G is e ∈ {e, x, y, z}. Finally, all elements are self-inverse, and consequently their inverses
belong to the same set.

We conclude that {e, x, y, z} ≤ G, and by Lagrange’s theorem, 4|ord(G).

(iii) the elements that are not-self inverse can be paired up with their inverses, so they must be
even. It follows that the number of self-inverse elements must also be even (for if they were
odd thenGwould have odd order). The identity element is one such self-inverse element, so
there must be at least one more self-inverse element, which of course has order 2.

■

Groups of order 1,2,3,5,7
Obviously, there is only one isomorphism class for groups of order 1, and that is C1.

For the other groups of prime order p, we have from the Corollary to Lagrange’s theorem that they
are isomorphic to (Zp,+p), and therefore belong to the same isomorphism class.

So the isomorphism class for each group of prime order p is the one containing Cp.

Groups of order 4
If G is a group od order 4, then by the Corollary to Lagrange’s theorem, we must have that each
element g ∈ Gmust have order 1,2 or 4.

G has an element of group 4
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If G has an element of order 4, then G is cyclic (generated by this element) and so isomorphic to
C4. They all belong to the same isomorphism class.

G has no element of group 4

Only the identity element has order 1, so the other three elementsmust have order 2. By proposition
17.2 then, G is abelian, and if we let G = {e, x, y, z}, then my the same logic as in the proof of (ii)
z = xy and we retrieve the following Cayley table: which is the table of the Klein four-group V , so

e x y z
e e x y z
x x e z y
y y z e x
z z y x e

that G ∼= V .

Therefore the two isomorphism classes for groups of order 4 are the one containing C4 and the one
containing V .

Groups of order 6
Suppose that G is a group of order 6, so that each element of G has order 1,2,3 or 6.

G has an element of group 6 In this case, G is a cyclic group, and is therefore isomorphic to C6. It
can be classified in the isomorphism class containing C6.

Ghas no element of group 6 In this case, each non-identity element has order 2 or 3. We can assert
that it must have at least one element of order 2 by proposition 17.2, and similarly there must be
at least one element of order 3, for if they were all of order 2 then 4|ord(G) which clearly isn’t the
case.

So let g, h ∈ G be some elements of order 2 and 3 respectively. We define:

H = 〈h〉 = {e, h, h2} (12.2.5)

Obviously g 6= H , since all elements of H must have order 1 or 3 by the Corollary to Lagrange’s
theorem. We can then adopt the proof we used for Lagrange’s theorem and write the following
matrix: (

e h h2

g gh gh2

)
(12.2.6)

which contains six distinct elements, and must therefore include all elements of G.

Hence, we know that G = {e, h, h2, g, g2, gh, gh2}. We construct the following incomplete Cayley
table:

To evaluate the missing entries, we need to calculate hg, which must be equal to gh or gh2 (not g
since it already appears in the same column). However, if hg = gh then:

hg = gh 6= e =⇒ (hg)3 = (hg)(gh)(hg) = g 6= e (12.2.7)

so that hg has order greater than 3. The only possible value for ord(hg) is then 6, a contradic-
tion.
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Therefore we must have that hg = gh2. We then obtain (using the fact that each element must
repeat only once in each row and column):

This Cayley table is identical in structure to the tables of the groups S3 and S(∆). This means that
the second isomorphism class is that containing S(∆).

Therefore, the two isomorphism classes for groups of order 6 are the one containing C6 and the
one containing S3.
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13.1 Matrix groups
Wewill introduce some important sets ofmatriceswhich form groups and subgroups undermatrix
multiplication. They are especially important in physics, we will study them in much more detail
when studying representation theory and Lie groups.

Definition 18.1 (General linear group GL(n,R))
LetM(n,R) be the set of all real invertible n×nmatrices. These form a group under matrix
multiplication, called the general linear group denoted GL(n,R).

Proof. We need to show that the group axioms are satisfied.

Closure Let A,B ∈ GL(n,R), and let A−1 and B−1 be their inverses. Then, since det A 6= 0 and B 6= 0,
we find that:

det(AB) = det A · det B 6= 0 =⇒ AB ∈ GL(n,R) (13.1.1)

Associativity matrix multiplication is associative.

Identity The identity matrix I is the identity of GL(n,R). Indeed ∀A ∈ GL(n,R):

IA = AI = A (13.1.2)

as desired. Moreover, I ∈ GL(n,R), since det I = 1 6= 0.

Inverses Let A ∈ GL(n,R), then it must have an inverse A−1, such that:

AA−1 = A−1A = I (13.1.3)

Moreover, A−1 is invertible (its inverse if A, so A−1 ∈ GL(n,R).

Therefore all the group axioms are satisfied, and GL(n,R) form a group under matrix multiplica-
tion. ■

Clearly, dimGL(n,R) = n2. Indeed, the restriction that det A 6= 0 only restrict the values that the
matrix elements cannot take, but it doe snot force some matrix elements to take a specific value.
Hence they are spanned by the standard basis of Matn(R).
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Definition 18.2 (Special linear group SL(n,R))
The subset of GL(n,R) comprising of all invertible n × n matrices with unit determinant
forms a subgroup of the general linear group, called the special linear group, and denoted
SL(n,R).

Proof. We need to show that the subgroup axioms are satisfied.

Closure Let A,B ∈ SL(n,R), and let A−1 and B−1 be their inverses. Then, since det A = 1 and det B =
1, we find that:

det(AB) = det A · det B = 1 =⇒ AB ∈ SL(n,R) (13.1.4)

Identity The identity matrix I ∈ SL(n,R) since det I = 1.

Inverses Let A ∈ SL(n,R), then it must have an inverse A−1, and:

det A−1 = 1
det A = 1 (13.1.5)

so A−1 ∈ SL(n,R).

Therefore all the subgroup axioms are satisfied, and SL(n,R) forms a sgroup under matrix multi-
plication. ■

Perhapsmore difficult to see is the fact that dim SL(n,R). Indeed, the most general form of a matrix
A ∈ SL(n,R):

A =


a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

a31 a32 a33 . . . a2n

...
...

...
...

an1 an2 an3 . . . ann

 (13.1.6)

The condition det A = 1 can be expanded as:

det A =
∑

σ∈Sn

sgn(σ)aσ(1),1aσ(2),2aσ(3),3...aσ(n),n (13.1.7)

We can solve this equation for ann in terms of the other n2 − 1 components, so there are in total
n2 − 1 independent elements in A, giving:

dim SL(n,R) = n2 − 1 (13.1.8)

The extension of these results for SL(n,C) is immediate:

dim SL(n,C) = 2 · dim SL(n,R) = 2n2 − 2 (13.1.9)

Definition 18.3 (Orthogonal group O(n,R))
The subset of GL(n,R) comprising of all invertible n × n orthogonal matrices (AT A = I)
forms a subgroup of the general linear group, called the orthogonal group, and denoted
nR.
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Proof. Firstly note that if A ∈ O(n,R), then:

det AAT = (det{A})2 = det I = 1 =⇒ det{A} = ±1 (13.1.10)

so A must also be invertible.

We need to show that the subgroup axioms are satisfied.

Closure Let A,B ∈ O(n,R). Then we find that:

(AB)(AB)T = ABBT AT = I (13.1.11)

so AB ∈ O(n,R).

Identity The identity matrix I ∈ O(n,R) since IIT = I.

Inverses Let A ∈ O(n,R). Then its inverse A−1 in GL(n,R) satisfies

(A−1)(A−1)T = (A−1)(AT )−1 = (AT A)−1 = I−1 = I (13.1.12)

so that A ∈ O(n,R) as desired. So A−1 ∈ SL(n,R).

Therefore all the subgroup axioms are satisfied, andO(n,R) forms a group under matrix multipli-
cation. ■

Again, finding the dimension of the orthogonal group of order n is slightly more involved. Con-
sider the equation:

AAT − I = 0 (13.1.13)

Note that (AAT )T = (AT )T AT = AAT , soAAT only has 1
2n(n+1) independent components, namely

the n diagonal components, and then the lower/upper triangular components 1
2 (n2 − n). Hence

can be expressed as: 
b11 . . . . . . B
... b22

...
...

...
B . . . bnn

 = 0 (13.1.14)

where we absorbed I into the diagonal bkk components. As we said earlier the above matrix equa-
tion has 1

2n(n+ 1) independent equations in aij , fixing 1
2n(n+ 1) elements of A. Hence:

dimO(n,R) = n2 − 1
2
n(n+ 1) = 1

2
n(n− 1) (13.1.15)

Definition 18.4 (Special orthogonal group SU(n,R))
The subset of O(n,R) comprising of all invertible n × n orthogonal matrices with unit de-
terminant forms a subgroup of the orthogonal group, called the special orthogonal group,
and denoted SU(n,R).

The proof is a combination of the proofs in definitions 18.2 and 18.3.

The dimension of SU(n,R) is surprisingly equal to the dimension ofO(n,R), despite the additional
constraint that det A = +1. Note that for A = O(n,R), we have A = ±1, so we’re only removing
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the matrices with det A = −1. The constraints however remain the same, so we still have 1
2n(n− 1)

constraints.

Definition 18.4 (Unitary group U(n,R))
The subset of GL(n,C) comprising of all unitary n× nmatrices (AA† = I forms a subgroup
of the general linear group, called the unitary group, and denoted U(n,R).

Proof. We need to show that the subgroup axioms are satisfied.

Closure Let A,B ∈ U(n,C). Then we find that:

(AB)(AB)† = ABB†A† = I (13.1.16)

so AB ∈ O(n,C).

Identity The identity matrix I ∈ U(n,C) since II† = I.

Inverses Let A ∈ U(n,C). Then its inverse A−1 in GL(n,C) satisfies

(A−1)(A−1)† = (A−1)(A†)−1 = (A†A)−1 = I−1 = I (13.1.17)

so that A−1 ∈ U(n,C) as desired.

Therefore all the subgroup axioms are satisfied, and U(n,C) forms a group under matrix multipli-
cation. ■

What is the dimension of U(n,C)? Note that Matn(C) has dimension 2n2, n2 free real parame-
ters, and n2 free complex parameters. Now let’s see how many constraints unitarity (AA† = I)
imposes.

Note that AA† is hermitian, since (AA†)† = (A†)†A† = AA†. A hermitian matrix has a total of n2 free
parameters, n diagonal (the diagonal components have to be real, since if they had an imaginary
part, the hermitian conjugate would turn it negative, thus violating hermiticity), and n2 − n off-
diagonal ( 1

2 (n2−n) for the real part, and 1
2 (n2−n) for the imaginary part). Therefore the hermiticity

constraint consists of n2 independent equations, and thus fixes n2 elements. Hence:

dimU(n,C) = 2n2 − n2 = n2 (13.1.18)

Definition 18.4 (Special unitary group SU(n,C))
The subset of U(n,C) comprising of all invertible n × n hermitian matrices with unit de-
terminant forms a subgroup of the unitary group, called the special unitary group, and
denoted SU(n,C).

Note that the determinant of A ∈ U(n,R) is such that:

det AA† = (det A)(det A)∗ = | det A|2 = 1 =⇒ det A = eiθ, ∀θ ∈ [0, 2π) (13.1.19)

whereas we are restricting det A = 1 =⇒ θ = 0. Unlike in the orthogonal and special orthogonal
group case, where we were simply restricting the sign of the determinant, here we are restricting a
whole continuum of values that the determinant can take, hence we have an additional constraint.
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Therefore:
dim SU(n,C) = n2 − 1 (13.1.20)

We summarize the dimensionalities of these matrix groups below:

Theorem 18.5 (Dimensions of matrix groups)
We have that:
(i) dimGL(n,R) = n2

(ii) dim SL(n,R) = n2 − 1
(iii) dimO(n,R) = 1

2n(n− 1)
(iv) dim SU(n,R) = 1

2n(n− 1)
(v) dimU(n,C) = n2

(vi) dim SU(n,C) = n2 − 1

13.2 Cosets

Definition 18.6 (Left coset)
Let H < G be a subgroup of G, and let g ∈ G. Then, the left coset gH of H in g is given by:

gH = {gh : h ∈ H} (13.2.1)

and is the subset of G obtained by composing each element in H with g to the left.

Example. For example, let’s try to find all the left cosets of the subgroup H = {e, s} in
the group S(∆).
We can use the Cayley table for S(∆):

eH = e{e, s} = {e, s} (13.2.2)
aH = a{e, s} = {a, r} (13.2.3)
bH = b{e, s} = {b, t} (13.2.4)
rH = r{e, s} = {r, a} = aH (13.2.5)
sH = s{e, s} = {s, e} = eH (13.2.6)
tH = t{e, s} = {t, b} = bH (13.2.7)

so the distinct left cosets are {e, s}, {a, r}, {b, t}. ◀

Example. For example, let’s try to find all the left cosets of the subgroup H = {1, 2, 4} in
Z∗

7.
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We find that:

1H = 1{1, 2, 4} = {1, 2, 4} (13.2.8)
2H = 2{1, 2, 4} = {2, 4, 1} (13.2.9)
3H = 3{1, 2, 4} = {3, 6, 5} (13.2.10)
4H = 4{1, 2, 4} = {4, 1, 2} (13.2.11)
5H = 5{1, 2, 4} = {5, 3, 6} (13.2.12)
6H = 6{1, 2, 4} = {6, 5, 3} (13.2.13)

so we see that the distinct left cosets are {1, 2, 4} and {3, 5, 6}. ◀

It is interesting to note that the distinct left cosets of {e, s} in S(∆) and the distinct left cosets of
{1, 2, 4} in Z∗

7 partition their respective groups.

For example {e, s} ∪ {a, r} ∪ {b, t} = S(∆), and all three sets are disjoint.

This is not a coincidence, it turns out that all distinct left cosets are partitions.

Theorem 18.7 (Left coset partition)
Let H < G be a subgroup of a group G. Then the distinct left cosets of H in G form a
partition of G.

Proof. Recall that the equivalence classes of an equivalence relation on some setX form a partition
of the setX . Consequently, if we can show that a particular operation has left cosets of a subgroup
H in a group G, then immediately we find that the left cosets form a partition.

Lemma. Let ∼ be the relation defined on G by:

x ∼ yif x ∈ yH (13.2.14)

Then ∼ is an equivalence relation. Indeed:

(i) Reflexive property: let x ∈ G, we have to show that x ∼ x, that is, x ∈ xH . This is clearly
true since x = xe, and e ∈ H due to the subgroup axioms.

(ii) Symmetric property: let x, y ∈ G, and let x ∼ y, so that x ∈ yH . Therefore, ∃h ∈ H such that
x = yh =⇒ y = xh−1. Now, due to the inverses property of subgroups, h−1 ∈ H =⇒ y ∈
xH so y ∼ x.

(iii) Transitive property: let x, y, z ∈ G, and suppose x ∼ y, y ∼ z, so x ∈ yH and y = zH .
Therefore, ∃h1, h2 ∈ H such that:

x = yh1 and y = zh2 =⇒ x = zh1h2 (13.2.15)

Since h1h2 ∈ H , we find that x ∈ zH , and thus x ∼ z.

We have therefore shown that ∼ is an equivalence relation. Each element x ∈ G has equivalence
class:

[x] = {y ∈ G : y ∼ x} = {y ∈ G : y ∈ xH} = xH (13.2.16)
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which are the left cosets of H in G. It follows then that the left cosets (which are the equivalence
classes) form a partition of G. ■

Proposition 18.9 (Properties of left cosets) Let H < G, then:
(i) ∀g ∈ G, g ∈ gH
(ii) one of the left cosets of H in G is H
(iii) Any two left cosets g1H and g2H are either the same or disjoint
(iv) If |H| <∞, then each left coset gH has the same number of elements.

Proof. (i) Trivial, since e ∈ H due to subgroup axioms.

(ii) H = {h : h ∈ H} = {eh : h ∈ H} = eH so H is indeed a left coset.

(iii) Immediate from theorem 18.8.

(iv) Let |H| = m so that H = {h1, h2, ...h,m }, and let g ∈ G. Then:

gH = {gh1, gh2, ..., ghm} (13.2.17)

Suppose ghi = ghj , then by the left cancellation law h1 = hj , so it follows that |gH| = |H| =
m.

■

Example. Let’s try to find all the left cosets of H = {e, a, b, c} in S(□). The remaining
elements are r, s, t, u, and the remaining left cosets all contain 4 elements. So the only way
tomake them disjoint is if we have {r, s, t, u} as the other coset. Hence the distinct left cosets
are {e, a, b, c} and {r, s, t, u}.
To partition a finite group G into left cosets of some subgroup H < G:
(i) H is the first cosets
(ii) find an element in G that is not in H , and determine gH .
(iii) repeat until all elements in G have been exhausted.

◀

Example. Consider the group U20 = {1, 3, 7, 9, 11, 13, 17} and H = {1, 19}.
Firstly,H is one of the left cosets ofH in U20, so {1, 19}. One remaining element is 3, and its
corresponding left coset is:

3H = 3{1, 19} = {3, 17} (13.2.18)

An element missing from both H and 3H is 7, and its corresponding left coset is:

7H = 7{1, 19} = {7, 13} (13.2.19)

The final missing element from all these left cosets is 9:

9H = 9{1, 19} = {9, 11} (13.2.20)

So we have found that the distinct left cosets are {1, 19}, {3, 17}, {7, 13} and {9, 11}. ◀
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Example. Let’s try to partition the alternating group of order 4:

A4 = {e, (1 2)(3 4),(1 3)(2 4), (1 4)(2 3), (1 2 3), (1 3 2), (1 2 4), (1 4 2), (13.2.21)
(1 3 4), (1 4 3), (2 3 4), (2 4 3)} (13.2.22)

into left cosets of the subgroup H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
Firstly, we note that H itself is a left coset in A4. A remaining element not included is for
example (1 2 3), and its associated left coset is:

(1 2 3)H = {(1 2 3), (1 3 4), (2 4 3), (1 4 2)} (13.2.23)

Therefore, the only remaining permutations are (1 3 2), (1 2 4), (1 4 3), (2 3 4). Since the left
cosets must contain as many elements asH , that is 4, and theymust be disjoint, there is only
one remaining left coset {(1 3 2), (1 2 4), (1 4 3), (2 3 4)}.
Hence the partition of A4 into the left cosets of H is:

H ∪ {(1 3 2), (1 2 4), (1 4 3), (2 3 4)} = A4 (13.2.24)

◀

We can use the left cosets to provide a more efficient prove of Lagrange’s theorem.

Theorem 17.1 (Lagrange’s Theorem)
Let G be a finite group, and letH ≤ G. Then ord(H)|ord(G), that is, the order ofH divides
the order of G.

Proof. Let |G| = n and |H| = m, and let the number of left cosets of H in G be k. Since each left
coset has m elements, and they partition G into disjoint sets, it follows that n = m · k, that is, |H|
divides |G|. ■

13.3 Right cosets

Definition 18.10 (Right cosets)
Let H < G be a subgroup of G, and let g ∈ G. Then, the right coset Hg of H in g is given
by:

Hg = {hg : h ∈ H} (13.3.1)

and is the subset of G obtained by composing each element of H with g to the right.

Example. Let’s find all the right cosets of H = {e, r} in S(□).
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We find that:

He = {e, r}e = {e, r} (13.3.2)
Ha = {e, r}a = {a, u} (13.3.3)
Hb = {e, r}b = {b, t} (13.3.4)
Hc = {e, r}c = {c, s} (13.3.5)
Hr = {e, r}r = {r, e} (13.3.6)
Hs = {e, r}s = {s, c} (13.3.7)
Ht = {e, r}t = {t, b} (13.3.8)
Hu = {e, r}u = {u, a} (13.3.9)

so the distinct right cosets are: {e, r}, {a, u}, {b, t}, {c, s}. ◀

It is interesting to note that the right coset of H in some element g is not necessarily equal to the
left coset of H in g.

All the results proven for left cosets are easily proven for right cosets as well.

Theorem 18.11 (Right coset partition)
LetH < G be a subgroup ofG, then the distinct right cosets ofH inG form a partition ofG.

Proposition 18.12 (Properties of right coset)
Let H < G, then:
(i) g ∈ Hg, for all g ∈ G
(ii) H is a right coset of H in G
(iii) two right cosets Hg1 and Hg2 are either the same set or disjoint
(iv) if |H| <∞ then ∀g ∈ G|Hg| = |H|.

Example. Let’s try to partition S(∆) into right cosets of H = {e, s}.
Firstly, we note that all right cosets must have 2 elements, and one of these right cosets isH
itself. An element in G that does not belong toH is a, and its right coset is:

Ha = {e, s}a = {a, t} (13.3.10)

Now another element in G that does not belong to these two cosets is b, so:

Hb = {e, s}b = {b, r} (13.3.11)

We have exhausted all elements of S(∆), so we may write the partition of the latter as:

S(∆) = {e, s} ∪ {a, t} ∪ {b, r} (13.3.12)

◀
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Note that if G is abelian and H < G, then H is also abelian and thus:

Hg = {hg : ∀h ∈ H} = {gh : ∀h ∈ H} = gH (13.3.13)

so the left and right cosets are the same.

Theorem 18.13 (Transforming left coset to right coset)
LetH < G. Then if every element in the partition ofG into left cosets ofH is replaced by its
inverse, the result is the partition of G into right cosets of H (and viceversa).

Proof. Consider a pair of elements x, y in the same left coset of H . Therefore,

Suppose x ∈ gH for some g ∈ G. Then, we need to prove that x−1 ∈ Hg′ for some g′ ∈ G. Indeed:

gH = {gh : h ∈ H} and {(gh)−1 : h ∈ H} = {h−1g−1 : h ∈ H} = {hg−1 : h ∈ H} = Hg−1

(13.3.14)
due to the inverse axiom of subgroups1. It follows that if we replace every element in gH by its
inverse, we get a right coset Hg−1. ■

Immediately, we find that since the act of replacing each element by its inverse is bijective, the
number of distinct left and right cosets is the same.

Proposition 18.14 (Number of left and right cosets) LetH < G, then the number of
distinct left cosets of H in G is equal to the number of distinct right cosets of H in G.

Definition 18.15 (Index) Let H < G. The index of H in G is the number of distinct left
cosets (or equivalently distinct right cosets) of H in G.

For finite groups, we have a nice expression for the index.

Proposition 18.16 (Finite index)
Let H < G, then the index of H in G is |G|

|H| .

Proof. The left cosets of H partition G, and since each left coset has |H| elements, the number of
left cosets (the index) must be |G|

|H| . ■

Example. Let’s partition (2Z,+) into cosets of 6Z.
Note that 2Z = {...,−6,−4,−2, 0, 2, 4, 6, ...}, and 6Z = {...,−18,−12,−6, 0, 6, 12, 18, ...}. We
know that 6Z < 2Z since 6Z is generated by 6 ∈ 2Z, and is therefore a cyclic subgroup of
2Z.

1indeed suppose
H = {h1, h2, ..., hn, h−1

1 , h−1
2 , ..., h−1

n }
then

{h−1 : h ∈ H} = {h−1
1 , h−1

2 , ..., h−1
n , h1, h2, ..., hn} = H
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Now note that 6Z is itself a coset so:

0 + 6Z = {6k : k ∈ Z} (13.3.15)

An element that was not included is 2:

2 + 6Z = {...,−16,−10,−4, 2, 8, 14, 20, ...} = {2 + 6k : k ∈ Z} (13.3.16)

An element that was not included is 4, so:

4 + 6Z = {...,−14,−8,−2, 4, 10, 16, 22, ...} = {4 + 6k : k ∈ Z} (13.3.17)

Note that:

{2(3k + 2) : k ∈ Z} ∪ {2(3k + 1) : k ∈ Z} ∪ {2(3k) : k ∈ Z} = {2k : k ∈ Z} = 2Z (13.3.18)

so we do indeed have a partition. Moreover the index of 6Z in 2Z is 3, something that we
could not have found using proposition 18.16. ◀

13.4 Normal subgroups
Although this doesn’t generally happen, for certain special groups the left coset partition and right
coset partition can be exactly the same.

Definition 18.17 (Normal subgroup)
Let G be a group and let H < G. We say that H is a normal subgroup if the left coset
partition of G in H and the right coset partition of G in H are the same. We say that H is
normal in G as well, denoted as N ⊴ G.

Proposition 18.18 (Standard normal subgroups) For any group G:
(i) the trivial subgroup {e}
(ii) G

are both normal subgroups.

Proof. In the first case the left coset partition contains one-element subsets of G, and so does the
right coset partition. In the second case the left coset partition is simplyG, and so is the right coset
partition. ■

Example. Consider A4 and H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. The partition of A4
into the left cosets of H was found previously to be:

{e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ∪ {(1 3 2), (1 2 4), (1 4 3), (2 3 4)} = A4 (13.4.1)
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Now let’s try to find the right coset partition. We can do this by simply replacing each
element in the left coset partition by its inverse:

{e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ∪ {(1 2 3), (1 4 2), (1 3 4), (2 4 3)} = A4 (13.4.2)

Note that the left and right coset partition are identical, hence H is indeed a normal sub-
group of G. ◀

Theorem 18.19 (Normal subgroups of abelian groups) Every subgroup H of an
abelian group G is normal.

Proof. Let H < G, and let g ∈ G. Note that:

gH = {gh : h ∈ H} = {hg : h ∈ H} = Hg (13.4.3)

thus H is normal. ■

Proposition 18.20 (Subgroups of index 2) Every subgroup of index 2 in a group is a
normal subgroup

Proof. Let H < G so that it has exactly two left cosets and exactly two right cosets in G. One of
these cosets is H itself, so the other coset must be G \H both for the left and right coset partition.
The two partitions are therefore identical, proving that H is a normal subgroup of H . ■

Example. If n ≥ 2, it follows that An is a normal subgroup of Sn, since |Sn|
|An| = 2, so An is

normal to SnI. f instead n = 1, then An = Sn, and from proposition 18.18 we see that A1 is
normal to S1. ◀

Example. Consider S(□) and S+(□). Since the number of direct symmetries is equal to
the indirect symmetries, we find that the index of S+(□) in S(□) is |S(□)|

|S(□)| = 2, and thus
S+(□) is a normal subgroup of S(□). ◀

Proposition 18.21 (Equivalent condition for normality)
Let H < g, then H is normal in G iff gH = Hg, ∀g ∈ G.

Proof. =⇒ Suppose that H is normal in G, and let g ∈ G. Then g ∈ gH and g ∈ Hg. Now since
the left and right coset partitions are identical, and the cosets are disjoint, we must have that
since g belongs to both Hg and gH , Hg = gH as desired.

⇐= Suppose gH = Hg, then it follows that the left coset and right coset partitions are the same.

■
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14GT6 Quotient groups and
conjugacy

14.1 Quotient groups

Definition 19.1 (Set composition) Let G be a group, then the operation ·, called a set
composition in G, is defined as:

X · Y = {xy : x ∈ X, y ∈ Y } (14.1.1)

where X,Y ⊆ G.

Note that for an arbitrary group, set composition is not necessarily commutative. Only for Abelian
groups is set composition is commutative.

Consider the following Cayley table for the cosets of the normal subgroup {e, b} in S(□):

· {e, b} {a, c} {r, t} {s, u}
{e, b} {e, b} {a, c} {r, t} {s, u}
{a, c} {a, c} {e, b} {s, u} {r, t}
{r, t} {r, t} {u, s} {e, b} {a, c}
{s, u} {s, u} {r, t} {a, c} {e, b}

Interestingly all the sets in the body of the table are also cosets of {e, b}. Therefore the set of these
cosets are closed under set compositon. It turns out that we can extend this result more generally
for any cosets of a normal subgroup N of a group G.

Theorem 19.2 (Closure of cosets under set composition) Let N ⊴ G, then:

xN · yN = (xy)N, ∀x, y ∈ G (14.1.2)

Proof. Let us firstly show that xN · yN ⊆ (xy)N . Indeed, let z ∈ xN · yN , so that there are some
n1, n2 ∈ N such that:

z = xn1yn2 (14.1.3)

Since N is a normal subgroup, n1y ∈ Ny =⇒ n1y ∈ yN so

n1y = yn3, n3 ∈ N (14.1.4)
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Then:
z = xyn3n2 = xyn, n = n3n2 ∈ N (14.1.5)

implying that z ∈ xyN , as desired.

Let us now show that (xy)N ⊆ xN · yN . Suppose that z ∈ (xy)N , so that there is some n1 ∈ N
such that:

z = xyn1 (14.1.6)

Since x ∈ xN and yn1 ∈ yN , we find that z ∈ xN · yN , as desired. ■

Due to this theorem, we see that if we perform set composition on the cosets of some normal sub-
group N ⊴ G in G, then the result will be another coset.

If we examine the Cayley table for the cosets of {e, b} in S(□), we find that not only is closure under
· satisfied, all the other group properties are also satisfied! Associativity of set composition follows
from associativity of composition in S(□). Moreover, the identity element can be verified to be
{e, b} so that all cosets are self-inverse.

Let us prove that the cosets of a normal subgroup form a group under set composition in the most
general case.

Theorem 19.3 (Group of cosets) Let N ⊴ G, then the set of cosets of N in G forms a
group under set composition. This group is called the quotient group of G by N , denoted
G \N , and often read Gmod N for brevity.

Proof. sdgdg

Closure We have proven closure in Theorem 19.2

Associativity Let xN, yN, zN be cosets of N in G. Then:

xN · (yN · zN) = xN · (yz)N = (x(yz))N = (xyz)N (14.1.7)

since G is a group, and therefore its operation is associative. Similarly

(xN · yN) · zN = ((xy)z)N = (xyz)N (14.1.8)

Identity We prove that eN is the identity element. Indeed:

eN · xN = (ex)N = xN, ∀x ∈ G (14.1.9)

and similarly:
xN · eN = (xe)N = xN, ∀x ∈ G (14.1.10)

as desired.

Inverses Suppose xN is a coset of N in G. Then:

x−1N · xN = (x−1x)N = eN, ∀x ∈ G (14.1.11)

and similarly:
xN · x−1N = (xx−1)N = eN, ∀x ∈ G (14.1.12)
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Therefore, x−1N is the inverse of xN , and must belong to the set of cosets since x ∈ G =⇒
x−1 ∈ G

■

Note that if G is finite, then |G \N | = |G|
|N | is the number of cosets of N in G.

We can use our knowledge of normal subgroups and quotient groups to explain the "block" effect
in the Cayley table of S(F).

Indeed, note that since S+(F) is a normal subgroup, we can construct its cosets in S(F). Since
S+(F) has index 2, there will be two such cosets, with it being one of them. The remaining coset
must therefore be the set of indirect symmetries S−(F). Consequently:

· S+(F) S−(F)
S+(F) S+(F) S−(F)
S−(F) S−(F) S+(F)

If we now expand S+(F) and S−(F) into its various components, then we find the blocks:

Figure 14.1. Block effect in S(□)

Example. Consider the subgroup H = 〈6〉 of Z12. The elements of H are:

〈6〉 = {0, 6} =⇒ ord(6) = 2 (14.1.13)

Since Z12 is an abelian group, all of its subgroups are normal, including 〈6〉, which is its
cyclic subgroup of order 3.
The cosets of H in Z12 must be:

H = {0, 6} (14.1.14)
1 +H = {1, 7} (14.1.15)
2 +H = {2, 8} (14.1.16)
3 +H = {3, 9} 4 +H = {4, 10} (14.1.17)
5 +H = {5, 11} (14.1.18)

The quotient group, formed by the above cosets, must then have Cayley table:
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+ H 1 +H 2 +H 3 +H 4 +H 5 +H

H H 1 +H 2 +H 3 +H 4 +H 5 +H

1 +H 1 +H 2 +H 3 +H 4 +H 5 +H H

2 +H 2 +H 3 +H 4 +H 5 +H H 1 +H

3 +H 3 +H 4 +H 5 +H H 1 +H 2 +H

4 +H 4 +H 5 +H H 1 +H 2 +H 3 +H

5 +H 5 +H H 1 +H 2 +H 3 +H 4 +H
For example, (4 +H) + (3 +H) = (4 +12 3)H = 7 +H = 1 +H . We clearly see thatH is the
identity element, and that H , 3 +H are self inverse, whereas 2 +H and 4 +H are inverses
of each other and so are 1 +H and 5 +H .
We see that this Cayley table has the same structure as the sixth order cyclic group C6. ◀

14.2 Quotient group of infinite groups
Consider the group Z \ 4Z, that is, the set of cosets of 4Z = {4n : n ∈ Z} in Z. Its elements
are:

4Z (14.2.1)
1 + 4Z = {1 + 4n : n ∈ Z} (14.2.2)
2 + 4Z = {2 + 4n : n ∈ Z} (14.2.3)
3 + 4Z = {3 + 4n : n ∈ Z} (14.2.4)

(14.2.5)

We know that these are all the cosets since they partition Z. We may construct the Cayley table for
Z \ 4Z as:

+ 4Z 1 + 4Z 2 + 4Z 3 + 4Z
4Z 4Z 1 + 4Z 2 + 4Z 3 + 4Z

1 + 4Z 2 + 4Z 3 + 4Z 4Z
2 + 4Z 2 + 4Z 3 + 4Z 4Z 1 + 4Z
3 + 4Z 3 + 4Z 4Z 1 + 4Z 2 + 4Z

Note that this has the exact same structure as the Cayley table for Z4, so Z4 ∼= Z \ 4Z through the
isomorphism:

ϕ :Z/4Z→ Z4 (14.2.6)
a+ 4Z 7→ a∀a ∈ Z4 (14.2.7)

We can prove this result more generally.

Proposition 19.4 (Z \ nZ ∼= Zn)
For n ≥ 2, then Z \ nZ ∼= Zn. One isomorphism between them is:

ϕ :Z/nZ→ Zn (14.2.8)
a+ nZ 7→ a, ∀a ∈ Zn (14.2.9)
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Proof. Let us firstly find the distinct cosets of nZ. We have that:

a+ nZ = b+ nZ ⇐⇒ a ∈ b+ nZ ⇐⇒ a ≡ b(modn) (14.2.10)

so the distinct cosets must be:
nZ, 1 + nZ, ..., (n− 1) + nZ (14.2.11)

It then follows that ϕ is bijective. Indeed, it is injective since

ϕ(a+ nZ) = ϕ(b+ nZ) =⇒ a ≡ b(modn) =⇒ a+ nZ = b+ nZ (14.2.12)

It is also surjective since:

a ∈ Zn =⇒ a ≤ n− 1 =⇒ ϕ(a+ nZ) = a (14.2.13)

Finally, for a, b ∈ Zn we find that:

ϕ((a+ nZ) + (b+ nZ)) = ϕ((a+n b) + nZ) (14.2.14)
= ϕ(c+ nZ) (14.2.15)
= c (14.2.16)

where c ≡ a+ b(modn). Moreover:

ϕ(a+ nZ) +n ϕ(b+ nZ) = a+n b = c (14.2.17)

so that:
ϕ((a+ nZ) + (b+ nZ)) = ϕ(a+ nZ) +n ϕ(b+ nZ) (14.2.18)

as desired. ■

Example. Consider the group Z/6Z. We have established that:

ϕ :Z/6Z→ Z6 (14.2.19)
a+ nZ 7→ a, ∀a ∈ Z6 (14.2.20)

is an isomorphism. Since Z6 is cyclic, it follows that if ϕ(g) is a generator of Z6 then g must
be a generator ofZ/6Z. Now the generators ofZ6 are 1 and 5 (integers coprime to 6), which
are the images of 1 + 6Z and 5 +Z6. The latter two must therefore be generators ofZ/6Z. ◀

14.3 Conjugacy

Definition 19.5 (Conjugacy)
Let x, y ∈ G. Then y is a conjugate of x in G if there exists some g ∈ G such that:

y = gxg−1 (14.3.1)
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Proposition 19.6 (Powers of conjugate elements) Let x, y, g ∈ G such that y = gxg−1.
Then yn = gxng−1 for all positive integers n.

Proof. We proceed by mathematical induction. Let P (n) : yn = gxng−1, then P(1) is clearly true.
Moreover, suppose that P (k) is true for some positive integer k. Then:

yk = gxkg−1 =⇒ yk+1 = gxkg−1y (14.3.2)
= gxkg−1gxg−1 (14.3.3)
= gxkxg−1 = gxk+1g−1 (14.3.4)

so P (k + 1) must be true. Hence, by the principle of mathematical induction, we have that P (n) is
true for any positive integer n. ■

Theorem 19.7 (Order of conjugate elements)
Let x, y ∈ G be conjugate elements. Then either x, y have the same finite order or they both
have infinite order.

Proof. There exists some g ∈ G such that y = gxg−1. Suppose xn = e, then:

yn = gxng−1 = geg−1 = e (14.3.5)

Similarly, suppose that yn = e, then:

xn = g−1yng = g−1eg = e (14.3.6)

It follows that if there are positive integers n such that xn = e, then yn = e and vice versa. So either
x, y have the same finite order or they have infinite order. ■

Definition 19.8 (Conjugacy class)
Let x ∈ G, then the conjugacy class of x inG is the set of all elements inG that are conjugate
to x:

{gxg−1 : g ∈ G} (14.3.7)

Theorem 19.9 (Conjugacy class partition)
Let G be a group, then the conjugation relation is an equivalence relation on G. Conse-
quently, the distinct conjugacy classes form a partition of G.

Proof.Reflexive: let x ∈ G, then x = exe−1, so x is conjugate to itself.

Symmetric: let x, y ∈ G, and suppose x is conjugate to y. That is, there exists some element g ∈ G:

x = gyg−1 =⇒ y = g−1xg = g−1x(g−1)−1 (14.3.8)

so it follows that y is conjugate to x.
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Transitive: let x, y, z ∈ G, and suppose x is conjugate to y, and y is conjugate to z, so that:

x = g1yg
−1
1 , y = g2zg

−1
2 (14.3.9)

for some g1, g2 ∈ G. It follows that:

x = g1g2zg
−1
2 g−1

1 = g3zg
−1
3 (14.3.10)

where g3 = g1g2 ∈ G. Hence x is conjugate to z.

Since the equivalence classes of an equivalence class on some set partition the set, we find that the
conjugacy classes of G form a partition of the group. ■

It is important to remember that two elements of different order cannot be conjugate to each other.
This was proven in Theorem 19.7, and gives us a useful strategy when trying to partition a group
into its conjugacy classes. We show this strategy in the example below.

Example. Consider the group S(∆). Since the conjugacy classes of this group must
contain elements of the same order, we can start by partitioningS(∆) into sets of all elements
of the same order:

{e}, {r, s, t}, {a, b} (14.3.11)

where e has order 1, r, s, t have order 2 and a, b have order 3.
Clearly, {e}must be a conjugacy class, since there are no other elements of the same order.
We can also see that this must be the case by noting that if y is in the conjugacy class of e,
y = geg−1 = e.
Next, let’s see if by conjugating r with other elements in S(∆) we retrieve s, t. We get that:

ara−1 = arb = at = s (14.3.12)
brb−1 = bra = bs = t (14.3.13)

so we see that {r, s, t} is indeed a conjugacy class. Since ther eare no other elements of order
2 we know that there are no other elements in this class.
Finally, let’s see if {a, b} is a conjugacy class by the same method. We get that:

rar−1 = rar = rt = b (14.3.14)

so we see that {a, b} is indeed another conjugacy class. ◀

For some other groups, such as Abelian groups, there are simpler ways to find the conjugacy par-
tition.

Example. Consider the group Z∗
7 = {1, 2, 3, 4, 5, 6}.

Since Z∗
7 is an abelian group, it follows that if x is conjugate to y, then y = x:

g ∈ G, y = gxg−1 = gg−1x = x (14.3.15)

Hence, each conjugacy class can only contain one element:

{1}, {2}, {3}, {4}, {5}, {6} (14.3.16)
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◀

This example leads us to believe that for any abelian group, the conjugacy classesmust only contain
one element.

Proposition 19.10 (Conjugacy classes of abelian groups)
The conjugacy classes of an Abelian group contain only one element each.

Proof. Suppose G is an abelian group, and let x ∈ G. Then, for g ∈ G:

gxg−1 = gg−1x = ex = x (14.3.17)

Therefore, x is only conjugate to itself. Hence the conjugacy class of x is {x}, as desired. ■

It is important when talking abou conjugacy to express what group the elements are conjugate in
i.e. the elements x and y are conjugate in the groupG. Indeed, supposeH < G is a subgroup, then
it is not necessarily true that x, y are conjugate in H . We know that ∃g ∈ G such that y = gxg−1,
but we cannot state that g ∈ H . However, the converse is true, that is if x, y are conjugate inH , then
x, y must also be conjugate in G.

Proposition 19.11 (Conjugacy in subgroups) LetH < G be a subgroup of some group
G, and let x, y ∈ H . Then:
(i) if x, y are conjugate in H then they are also conjugate in G
(ii) if x, y are conjugate in G then they are not necessarily conjugate in H

Example. Consider the subgroup H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} of S4.
Since H has order 4 it must be Abelian, and hence its conjugacy classes can only contain
one element. So no two elements of H can be conjugate to each other in H . Yet, because all
non-identity elements have the same cyclic structure, they are conjugate to each other in Sn.

◀

14.4 Normal subgroups and conjugacy

Theorem 19.12 (Normality criteria) Let H < G be a subgroup, then H is normal in G
iff :
(a) gH = Hg for all g ∈ G
(b) ghg−1 ∈ H for each h ∈ H , g ∈ G
(c) gHg−1 = H for each g ∈ G
(d) H is a union of conjugacy classes of G

Proof. The goal of this proof will be to show that the following equivalences and implications hold:

(a) ⇐⇒ (c), (b) =⇒ (c), (c) =⇒ (d), (d) =⇒ (b) (14.4.1)
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(a) =⇒ (c) Suppose that gH = Hg, ∀g ∈ G. Now suppose x ∈ gHg−1, then ∃h ∈ H such that:

x ∈ gHg−1 (14.4.2)
⇐⇒ x = ghg−1 (14.4.3)
⇐⇒ x = h′gg−1 = h′, h′ ∈ H =⇒ x ∈ H (14.4.4)

since gH = Hg. Therefore we have proven that gHg−1 = H , as desired.

(c) =⇒ (a) Suppose that gHg−1 = H, ∀g ∈ G, and let g ∈ G. Then ∃h ∈ H such that:

x ∈ gH (14.4.5)
⇐⇒ x = gh (14.4.6)
⇐⇒ x = ghg−1g (14.4.7)
⇐⇒ x = h1g =⇒ x ∈ Hg (14.4.8)

Therefore gH = Hg as desired.

(b) =⇒ (c) Suppose that ghg−1 ∈ H , for each h ∈ H, g ∈ G. Then:

h = gg−1hgg−1 = g (g−1h(gg−1)−1)︸ ︷︷ ︸
∈H

g−1 (14.4.9)

Now (g−1h(gg−1)−1) ∈ H by assumption, so that h ∈ gHg−1 as desired. HenceH ⊆ gHg−1.

Moreover, since we assumed that gHg−1 ⊆ H it follows that gHg−1 = H as desired.

(c) =⇒ (d) Suppose that gHg−1 = H for all g ∈ G, and let h ∈ H . Then ghg−1 ∈ H implying that H
contains all the conjugates in G of its elements.

(d) =⇒ (b) Suppose that H is a union of conjugacy classes. Suppose that h ∈ H, g ∈ G. Then, ghg−1 is
conjugate to h, and must therefore belong toH . Hence, ghg−1 ∈ H .

■

Example. Suppose that H,K are normal subgroups of G. We have proven in Lagrange’s
theorem that sinceH,K are subgroups ofG,H∩K < G, so let us also prove thatH∩K ⊴ G.
That is, we need to prove that ghg−1 ∈ H ∩K for all h ∈ H ∩K, g ∈ G.
Since H ⊴ G, we have that gH = Hg, ∀g ∈ G, and similarly gK = Kg, ∀g ∈ G. Therefore,
if we let x ∈ H ∩K then:

gxg−1 = ghg−1 = h′gg−1 = h (14.4.10)

for some h, h′ ∈ H . Similarly:

gxg−1 = gkg−1 = k′gg−1 = k′ (14.4.11)

for some k, k′ ∈ K. It follows then that gxg−1 ∈ H ∩K. ◀

Example. Consider the group X = {(a, b) ∈ R2 : a 6= 0} equipped with the binary
operation:

(a, b) ∗ (c, d) = (ac, ad+ b) (14.4.12)
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Consider the subsetK = {(1, n) : n ∈ Z}. We firstly prove that this is a subgroup of X .
Closure: suppose k1 = (1, n1), k2 = (1, n2) ∈ K, then:

k1 ∗ k2 = (1, n1) ∗ (1, n2) = (1, n1 + n2) ∈ K (14.4.13)

due to the closure of Z.
Identity: the identity of X was shown to be (1, 0). This clearly belongs to X , since
0 ∈ Z.
Inverses: the inverse of some element k = (1, n) ∈ X is (1,−n). This clearly also
belongs toK, since −n ∈ Z provided n ∈ Z.

Since the subgroup axioms are satisfied, we have thatK < X . Now let’s see ifK is a normal
subgroup of X , that is xkx−1 ∈ K for x ∈ X, k ∈ K. Indeed:

xkx−1 = (a, b) ∗ (1, n) ∗
(

1
a
,− b

a

)
= (a, b) ∗

(
1
a
, n− b

a

)
(14.4.14)

= (1, an) (14.4.15)

This element does not necessarily belong toK. Indeed, if a ∈ R and n ∈ Z then an need not
to be necessarily an integer. HenceK is not a normal subgroup of X . ◀

Theorem 19.13 (Conjugate subgroup) Let H < G and let g ∈ G. Then gHg−1 < G.

Proof. Let’s check the subgroup axioms.

Closure: let ghg−1, gkg−1 ∈ gHg−1, then:

(ghg−1)(gkg−1) = ghkg−1 = gxg−1 (14.4.16)

where x = hk ∈ H due to the closure property of subgroups.

Identity: the identity element e in G also belongs to gHg−1, since e = geg−1 and e ∈ H .

Inverses: let ghg−1 ∈ gHg−1. The inverse of this element in G is gh−1g−1, which must also belong to
gHg−1 since h−1 ∈ H .

■

Example. Consider the subgroupH = 〈s〉 of S(□). Then, the conjugate subgroup in a is:

aHa−1 = aHc = a{e, s}c = a{c, t} = {e, u} (14.4.17)

◀

We can use the definition of conjugate subgroups for two subgroups. Indeed, if some element g
conjugatesH toK, then we say that H,K are conjugate subgroups in G.

Proposition 19.14 (Isomorphism of conjugate subgroups)
If H,K are conjugate subgroups in G, then H,K are also isomorphic.
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Proof. SupposeH,K are conjugate subgroups inG. Then, ∃g ∈ G such thatK = gHg−1. We prove
that the following is an isomorphism:

ϕ :H → K (14.4.18)
h 7→ ghg−1 (14.4.19)

This mapping is injective since ϕ(x) = ϕ(y) implies that gh1g
−1 = gh2g

−1 =⇒ h1 = h2. Moreover,
it is surjective since every element ofK must be of the form ghg−1 where h ∈ H .

Finally:
ϕ(xy) = gxyg−1 = (gxg−1)(gyg−1) = ϕ(x)ϕ(y) (14.4.20)

as desired. ■

Example. Consider the following subgroup of A4:

K = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} (14.4.21)

Let’s find the following conjugate subgroups:

(1 2 4)K(1 2 4)−1 = (1 2 4)K(1 4 2), and (2 4 3)K(2 4 3)−1 = (2 4 3)K(2 3 4) (14.4.22)

Firstly, using the fact that conjugacy does not affect the cycle structure:

(1 2 4)e(1 4 2) = (1 2 4)(1 4 2) = e (14.4.23)
(1 2 4)(1 2)(3 4)(1 4 2) = (1 3)(2 4) (14.4.24)
(1 2 4)(1 3)(2 4)(1 4 2) = (1 4)(2 3) (14.4.25)
(1 2 4)(1 4)(2 3)(1 4 2) = (1 2)(3 4) (14.4.26)

Similarly:

(2 4 3)e(2 3 4) = (2 4 3)(2 3 4) = e (14.4.27)
(2 4 3)(1 2)(3 4)(2 3 4) = (1 4)(2 3) (14.4.28)
(2 4 3)(1 3)(2 4)(2 3 4) = (1 2)(3 4) (14.4.29)
(2 4 3)(1 4)(2 3)(2 3 4) = (1 3)(2 4) (14.4.30)

Therefore, (1 2 4)K(1 2 4)−1 = (2 4 3)K(2 4 3)−1 = K.
Since conjugating subgroups must leave the cycle structure invariant, and since there are
only three permutations of structure (− −)(− −) in A4, it follows that the only conjugating
subgroup ofK is itself. ◀

Example. Consider the subgroups of S(∆):
Order Subgroups

1 {e}
2 {e, r}, {e, s}, {e, t}
3 {e, a, b}
6 S(∆)
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and its conjugacy classes which we found earlier:

{e}, {a, b}, {r, s, t} (14.4.31)

Let’s try to find all the normal subgroups of S(∆). Recall that H ⊴ S(∆)iff H is a union
of conjugacy classes of G. We then see that the only subgroups which can be expressed as
such unions are:

{e} = {e} (14.4.32)
{e, a, b} = {e} ∪ {a, b} (14.4.33)
S(∆) = {e} ∪ {a, b} ∪ {r, s, t} (14.4.34)

◀

Unfortunately, often times we do not have a list of all the subgroups of a group. In such cases,
it is easier to find which unions of conjugacy classes are normal subgroups. These must contain
the conjugacy class {e} and they must have order which divides the group’s order, by Lagrange’s
theorem.

Strategy (Determining normal subgroups from conjugacy classes)
(i) partition G into conjugacy classes
(ii) Find all the unions of conjugacy classes which include {e} and whose order divides
|G| as required by Lagrange’s theorem.

(iii) Determine which of these unions are subgroups, and hence normal subgroups.

We illustrate this method below:

Example. These are the conjugacy classes of A5:
Conjugacy class Description Order

A {e} 1
B (- - -) 20
C (- -)(- -) 15
D conjugate to (1 2 3 4 5) 12
E conjugate to (1 2 3 5 4) 12

We need to find all possible unions which contain A, whose order divides |A5| = 60, so
1,2,3,4,5,6,10,12,15,20,30,60.
Firstly, the only union which has only one element is A = {e}.
Secondly, the unions which have 2,3,4,5,6,10 elements do not exist.
Thirdly, the unionswhich have 12 elements are two,D andE. However this does not contain
e, so we scrap it.
Similarly, the only union which has 15 elements is C. However this does not contain e, so
we scrap it.
Also, the only union which has 20 elements is B. However this does not contain e, so we
scrap it.
There are no unions which contain 30 elements.
Finally, the only union which contains 60 elements is A ∪B ∪ C ∪D ∪ E = A5.
So we see that the only candidates for normal subgroups are A and A4. These are clearly
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subgroups, and thus also normal subgroups. ◀

14.5 Conjugacy in S(F)
In the case of the symmetry groups, we can define conjugacy more concretely by looking at the
action of conjugating some symmetry by another symmetry.

Figure 14.2. Application of rar−1

Consider for example the effect of rar−1 = c. We can view this symmetry as applying a on the
square that has been reflected about the vertical line of symmetry.

In other words, since we are rotating through π
2 anti-clockwise on the reflected square, when we

reflect back to the original square we see that the overall action of rar−1 was to rotate clockwise.
Thus, the conjugate symmetry is equivalent to the symmetry we obtain by applying r to the action
of a, that is, reflect the action of a so that it goes from anti-clockwise to clockwise.

Figure 14.3. Effect of conjugacy on symmetries

More generally, given two symmetries x, g ∈ S(F), then gxg−1 is the symmetry obtained by acting
g on the visual effect of x.

It follows that two symmetries are conjugate iff there is a symmetry whose action on the visual
effect of one of the symmetries is to give the visual effect of the other symmetry.

In other words, if there is a way to relabel the figure in such a way for the effect of the two symme-
tries to be identical, then they are conjugate.

For example, in the case of r and s, these two symmetries are not conjugate, since there is no possible
symmetry of S(□) that can map the effect of r to the effect of s. We cannot rename the vertices of
the square in any possible way for the effect of r and s to coincide.

If instead we considered S(octagon) then we would indeed have that r and s are conjugate sym-
metries, for example through the rotation by π

4 anti-clockwise.
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Similarly, it is easy to see that r and t are conjugate symmetries. For example, t = ara−1, since ap-
plying r, a vertical reflection, on a square which has been rotated by π

2 anti-clockwise, is equivalent
to applying t, a horizontal reflection.

Definition 19.15 (Fixed point set)
Let f ∈ S(F), then the fixed point set of f is defined as:

Fix f = {P ∈ F : f(P ) = P} (14.5.1)

that is, the subset of F that is invariant under f .

In two dimensions, for a rotation, the fixed point set consists of the center of rotation. Similarly, for
a reflection, the fixed point set consists of the line of reflection.

Since applying g to the visual effect ofx gives the action of gxg−1, we expect that if Fix f are invariant
under x, then g(Fix f) must be the fixed point set of gxg−1.

Theorem 19.16 (Fixed point set of conjugate symmetries)
Let f, g ∈ S(F), then Fix gfg−1 = g(Fix f).

Proof. Firstly we prove that g(Fix f) ⊆ Fix gfg−1. Indeed, suppose that P ∈ g(Fix f). Then:

g( − 1)(P ) ∈ Fix f =⇒ (fg−1)(P ) = g−1(P ) =⇒ (gfg−1)(P ) = (P ) (14.5.2)

In other words, P ∈ Fix gfg1.

Now, suppose that P ∈ Fix gfg1. Then:

(gfg−1)(P ) = P =⇒ (fg−1)(P ) = g−1(P ) =⇒ f(g−1)(P ) = (g−1(P )) (14.5.3)

proving that g−1(P ) ∈ Fix f , and thus that P ∈ g(Fix f), as desired.

Thus, since g(Fix f) ⊆ Fix gfg−1 and Fix gfg−1 ⊆ g(Fix f), we find that g(Fix f) = Fix gfg−1. ■

This theorem is extremely useful when trying to tell whether or not two symmetries are conjugate.
Indeed, the only candidate conjugating symmetries are those that map the fixed point set of one
symmetry to the other.

For example, consider the following two symmetries of a tetrahedron:

Figure 14.4. Two non-conjugate symmetries of a tetrahedron
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The fixed point set of the rotation is simply the axis of rotation, so it is 1-dimensional. The fixed
point set of the reflection instead is the plane of reflection, which is 2-dimensional. It follows im-
mediately that no symmetry can map these two fixed point sets to one another.

More generally, direct symmetries cannot be conjugate to indirect symmetries.

19.17 (Conjugacy direct and indirect symmetries)
A direct symmetry cannot be conjugate to an indirect symmetry.

Proof. Let x be a direct symmetry and y be any symmetry. If g is direct, then gxg−1 is also direct.
If g is indirect, then gxg−1 is direct. Therefore x can only be conjugate to direct symmetries. ■

Strategy (Finding conjugacy classes of finite symmetry groups)
(i) Represent S(F) as a subgroup of a symmetric group.
(ii) Partition S(F) by cycle structure.
(iii) For each cycle structure class, determinewhich of the symmetries are conjugate to each

other. R
Recall that the number of elements in each conjugacy class divides |S(F)|, and cannot
contain both a direct and indirect symmetry.
Also,remember that two symmetries whose fixed point sets cannot be mapped to each
other are not conjugate.

Example. Consider the double tetrahedron below:

Firstly, since |S(F)| = 12, we see that the conjugacy classes can only contain 1,2,3,4,6, or 12
elements.
We can see that its symmetriesmay be categorized in terms of their cycle structure as follows:

{e} (14.5.4)
{(1 2), (1 3), (2 3), (4 5)} (14.5.5)
{(1 2 3), (1 3 2)} (14.5.6)
{(1 2)(4 5), (1 3)(4 5), (2 3)(4 5)} (14.5.7)
{(1 2 3)(4 5), (1 3 2)(4 5)} (14.5.8)

Clearly, {e} is a conjugacy class.
Next, we see that (1 2), (1 3), (2 3) are all conjugate through rotations by π

3 clockwise or
anticlockwise, but are not conjugate to (4 5).
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To check this note that using the renaming method:

(2 3)(1 2)(2 3)−1 = (1 3) (14.5.9)
(1 2)(1 3)(1 2)−1 = (2 3) (14.5.10)

and since conjugacy is an equivalence relation, transitivty implies that if (1 2) is conjugate
to (1 3), and (1 3) is conjugate to (2 3), then these must all be conjugate to each other.
To prove that (4 5) is not conjugate to the other three, we note that conjugacy does not affect
cycle structure. Therefore, if there exists a conjugating symmetry g ∈ S(F) between (4 5)
and, say, (1 2) then we would need g = (− −) such that:

(− −)(4 5)(− −) = (1 2) (14.5.11)

Such a symmetry g does not belong toS(F) (we can check individually all four permutations
of structure (− −).
So, we have found two other conjugacy classes, {(1 2), (1 3), (2 3)} and {(4 5)}.
Nextwe see immediately that (1 2 3)(4 5) and (1 3 2)(4 5) are conjugate through (2 3) ∈ S(F):

(2 3)(1 2 3)(2 3)−1 = (1 3 2) (14.5.12)

Similarly, we also find that (1 2 3)(4 5) and (1 3 2)(4 5) are conjugate through (2 3) ∈ S(F):

(2 3)(1 2 3)(4 5)(2 3)−1 = (1 3 2)(4 5) (14.5.13)

Hence we find the conjugacy classes {(1 2 3), (1 3 2)} and {(1 2 3)(4 5), (1 3 2)(4 5)}
Finally, {(1 2)(4 5), (1 3)(4 5), (2 3)(4 5)} is another conjugacy class. We see this intuitively
since these are all rotations about axes in the plane of the triangular base, passing through
a vertex and the midpoint of the opposite edge. Therefore, we can conjugate them through
rotations by π

3 clockwise and anti-clockwise.

More rigorously:

(2 3)(1 2)(4 5)(2 3)−1 = (1 3)(4 5) (14.5.14)
(1 2)(1 3)(4 5)(1 2)−1 = (2 3)(4 5) (14.5.15)
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as desired. Hence the conjugacy classes of S(F) are:

{e} (14.5.16)
{(1 2), (1 3), (2 3)} (14.5.17)
{(4 5)} (14.5.18)
{(1 2 3), (1 3 2)} (14.5.19)
{(1 2)(4 5), (1 3)(4 5), (2 3)(4 5)} (14.5.20)
{(1 2 3)(4 5), (1 3 2)(4 5)} (14.5.21)

◀

Example. We label the hexagon as shown:

Consider the symmetries of a hexagon:

{e} (14.5.22)
{(1 3)(4 6), (2 6)(3 5), (1 5)(2 4)} (14.5.23)
{(1 4)(2 5)(3 6), (1 6)(2 5)(3 4), (1 2)(3 6)(4 5), (1 4)(2 3)(5 6)} (14.5.24)
{(1 3 5)(2 4 6), (1 5 3)(2 6 4)} (14.5.25)
{(1 2 3 4 5 6), (1 6 5 4 3 2)} (14.5.26)

Clearly, {e} is a conjugacy class.
Instead, {(1 4)(2 5)(3 6), (1 6)(2 5)(3 4), (1 2)(3 6)(4 5), (1 4)(2 3)(5 6)} contains one direct
symmetry (the first is a rotation by π) and three indirect symmetries which are reflections in
axes passing through the midpoints of opposite edges. Hence, we must have the conjugacy
class {(1 4)(2 5)(3 6)}.
Also, {1 6)(2 5)(3 4), (1 2)(3 6)(4 5), (1 4)(2 3)(5 6)} are conjugate through rotations by π

3
clockwise and anti-clockwise, and the proof is quite similar to the previous example.
Similarly, {(1 2 3 4 5 6), (1 6 5 4 3 2)} are conjugate through a vertical reflection (2 6)(3 5).
Repeating this logical process we quickly see that the conjugacy classes are:

{e} (14.5.27)
{(1 4)(2 5)(3 6)} (14.5.28)
{(1 3)(4 6), (2 6)(3 5), (1 5)(2 4)} (14.5.29)
{(1 6)(2 5)(3 4), (1 2)(3 6)(4 5), (1 4)(2 3)(5 6)} (14.5.30)
{(1 3 5)(2 4 6), (1 5 3)(2 6 4)} (14.5.31)
{(1 2 3 4 5 6), (1 6 5 4 3 2)} (14.5.32)
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If we now modify the hexagon as shown below:

The symmetries of the new modified picture form a subgroup of the symmetries of a
hexagon. This subgroup can be partitioned into permutations of the same cyclic structure
as:

{e} (14.5.33)
{(1 3)(4 6)} (14.5.34)
{(1 6)(2 5)(3 4)} (14.5.35)

◀

Recall that if G is a group with subgroup H , then H is a normal subgroup of Giff H is a union
of conjugacy classes of G. In our case, the symmetry of the modified hexagon definitely does not
form a normal subgroup, since it is not the union of conjugacy classes of the normal hexagon’s
symmetry group.
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15GT7 Homomorphisms

Definition 20.1 (Homomorphism)
Let (G, ◦) and (H, ∗) be groups. A mapping ϕ : (G, ◦) → (H, ∗) is a homomorphism if it
satisfied the property:

ϕ(x ◦ y) = ϕ(x) ∗ ϕ(y), ∀x, y ∈ G (15.0.1)

It follows that isomorphisms are homomorphisms that are also bijective.

Figure 15.1. Why the homomorphism property must be satisfied for "sensible" maps

Example. Consider the following mapping:

ϕ : (Sn, ◦) −→ (Z2,+2) (15.0.2)

σ 7→

{
0 if σ is an even permutation
1if σ is an odd permutation

(15.0.3)

Lets show that it is a homomorphism, thus satisfying ϕ(x ◦ y) = ϕ(x) +2 ϕ(y), ∀x, y ∈ Sn.
Suppose x, y are both of even permutations, then x ◦ y is also an even permutation, so that:

ϕ(x ◦ y) = 0 = 0 +2 0 = ϕ(x) +2 ϕ(y) (15.0.4)

If instead x, y are both odd permutations, then x ◦ y must instead be an even permutation,
so that:

ϕ(x ◦ y) = 0 = 1 +2 1 = ϕ(x) +2 ϕ(y) (15.0.5)
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Finally, if x, y have opposite parity, then x ◦ y is an odd permutation, so that:

ϕ(x ◦ y) = 1 = 0 +2 1 = ϕ(x) +2 ϕ(y) (15.0.6)

Therefore, ϕ is a homomorphism. ◀

Example. Let us show that the following mapping is not a homomorphism:

ϕ : (GL(n,R),×) −→ (GL(n,R),×) (15.0.7)
A 7−→ A−1 (15.0.8)

Consider A,B ∈ GL(n,R) then:

ϕ(A)× ϕ(B) = A−1 × B−1 (15.0.9)

whereas
ϕ(A× B) = (A× B)−1 = B−1 × A−1 (15.0.10)

However note that B−1 × A−1 6= A−1 × B−1 generally. ◀

Proposition 20.2 (Z homomorphic to Zn)
For n ≥ 2, the following is a homomorphism to:

ϕ : (Z,+) −→ (Zn,+n) (15.0.11)
k 7−→ k(mod n) (15.0.12)

where k(mod n) is the least residue of k modulo n (remained of k when divided by n).

Proof. Suppose n ≥ 2 and let r, s ∈ Z. Then:

ϕ(r + s) = (r + s)(mod n) (15.0.13)
≡ r + s (mod n) (15.0.14)
≡ r(mod n) + s(mod n)n (mod n) (15.0.15)
≡ r(mod n) +n s(mod n)n (mod n) (15.0.16)
= ϕ(r) +n ϕ(s) (15.0.17)

and since ϕ(r + s) and ϕ(r) +n ϕ(s) both belong to Zn, we have that the two must be equal. Thus
ϕ is a homomorphism. ■

Example. Let us prove that:

ϕ : (G, ◦) −→ (G, ◦) (15.0.18)
x 7−→ x ◦ x (15.0.19)

is a homomorphism iff (G, ◦) is abelian.
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Suppose ϕ is indeed a homomorphism, so that:

ϕ(x ◦ y) = (x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (y ◦ y) = ϕ(x) ◦ ϕ(y) (15.0.20)
⇐⇒ x ◦ y ◦ x ◦ y = x ◦ x ◦ y ◦ y (15.0.21)

⇐⇒ y ◦ x = x ◦ y (15.0.22)

This implies that (G, ◦) is indeed an abelian group, as desired. ◀

Proposition 20.3 (Trivial homomorphism)
Let (G, ◦) and (H, ∗) be groups, and let eG, eH be their respective identity elements. Then
the following is a homomorphism:

ϕ : (G, ◦) −→ (H, ∗) (15.0.23)
x 7−→ eH (15.0.24)

Proof. Let x, y ∈ G, then:
ϕ(x ◦ y) = eH = eH ∗ eH = ϕ(x) ∗ ϕ(y) (15.0.25)

as desired. ■

Proposition 20.4 (Properties of homomorphisms)
Let ϕ : (G, ◦) −→ (H,�) be a homomorphism, then
(i) let x1, x2, ..., xn ∈ G, then ϕ

( n

©
k=1

xk

)
=

n⊙
k=1

ϕ(xk)

(ii) ϕ(eG) = eH where eG, eH are the identity elements of G,H respectively.
(iii) for x ∈ G, ϕ(x−1) = (ϕ(x))−1

(iv) for x ∈ G, ϕ(xn) = (ϕ(x))n

Proof. sdgdg

(i) For the case n = 1, it is clear that ϕ(x1) = ϕ(x1). Suppose that for n ∈ N, we have that:

ϕ(
n

©
k=1

xk) =
n⊙

k=1

ϕ(xk) (15.0.26)

Then:

ϕ
( n+1
©

k=1
xk

)
= ϕ

(( n

©
k=1

xk

)
◦ xn+1

)
(15.0.27)

=
(
ϕ(

n

©
k=1

xk)
)
� ϕ(xn+1) (15.0.28)

=
n⊙

k=1

ϕ(xk)� ϕ(xn+1) (15.0.29)

=
n+1⊙
k=1

ϕ(xk) (15.0.30)
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as desired. Hence by the principle of mathematical induction, we have that ϕ
( n

©
k=1

xk

)
=

n⊙
k=1

ϕ(xk).

(ii) We have that eG ◦ eG = eG, then:

ϕ(eG ◦ eG) = ϕ(eG) (15.0.31)

giving:
ϕ(eG)� ϕ(eG) = ϕ(eG) = ϕ(eG)� eH (15.0.32)

from which we find that ϕ(eG) = eH .

(ii) Let x ∈ G. Then:
x ◦ x−1 = x−1 ◦ x = eG (15.0.33)

Then, applying ϕ:
ϕ(x ◦ x−1) = ϕ(x−1 ◦ x) = ϕ(eG) = eH (15.0.34)

Therefore:
ϕ(x)� ϕ(x−1) = ϕ(x)� ϕ(x−1) = eG (15.0.35)

implying that ϕ(x−1) = (ϕ(x))−1, as desired.

(iv) We consider two different cases, n ≥ 0 and n < 0.

If n ≥ 0, then the case n = 0 is trivial since:

ϕ(x0) = ϕ(eG) = (ϕ(x))0 = eH (15.0.36)

which was proven previously. Now suppose that for some integer k ≥ 0

ϕ(xk) = (ϕ(x))k (15.0.37)

Then:

ϕ(xk+1) = ϕ(xk ◦ x) = ϕ(xk)� ϕ(x) (15.0.38)
= (ϕ(x))k � ϕ(x) (15.0.39)
= (ϕ(x))k+1 (15.0.40)

as desired.

Now suppose n < 0, and let x ∈ G. We can write n = −mwherem > 0. Them:

ϕ(xn) = ϕ(x−m) (15.0.41)
= ϕ((x−1)m) (15.0.42)
= (ϕ(x−1))m (15.0.43)
= (ϕ(x))−m (15.0.44)
= (ϕ(x))n (15.0.45)

Therefore, both from cases 1 and 2, we find that:

ϕ(xn) = (ϕ(x))n (15.0.46)
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as desired.

■

Theorem 20.5 (Order of element and homomorphism image)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism and let x ∈ G be an element of finite order.
Then the order of ϕ(x) is also finite and divides the order of x.

Proof. We begin by proving the following lemma.

Lemma. Let x ∈ G. If r > 0 is a positive integer such that xr = e, then the order of x divides r.

Suppose that xr = e, and suppose that ord(x) = s. Then, we must have that r = as + b for some
integers a, b with 0 ≤ b < s.

Hence:

e = xr (15.0.47)
= xas+b (15.0.48)
= (xs)a ◦ xb (15.0.49)
= ea ◦ xb (15.0.50)
= xb (15.0.51)

Since b < s, we find that b = 0, or else we would have a contradiction. Therefore, r = as, in other
words s divides r.

Now since the order of x is s:
(ϕ(x))s = ϕ(xs) = ϕ(eG) = eH (15.0.52)

hence the order of ϕmust, by the above lemma, have order that divides s. In other words, the order
of ϕ(x) must be finite and divide the order of x. ■

Theorem 20.6 (Conjugacy of element and homomorphism image)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism, and let x, y ∈ G. If x, y are conjugate then
ϕ(x), ϕ(y) are conjugate too.

Proof. Suppose x, y are conjugate, so that ∃g ∈ G such that:

y = g ◦ x ◦ g−1 (15.0.53)

Therefore:

ϕ(y) = ϕ(g ◦ x ◦ g−1) = ϕ(g) ∗ ϕ(x) ∗ ϕ(g−1) = ϕ(g) ∗ ϕ(x) ∗ (ϕ(g))−1 (15.0.54)

so that ϕ(x), ϕ(y) are also conjugate. ■
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15.1. IMAGE AND KERNELS

15.1 Image and kernels

Definition 20.7 (Image and kernel of homomorphism)
Let ϕ(G, ◦) −→ (H, ∗) be a homomorphism. Then the image of ϕ is:

Imϕ = {ϕ(g) : g ∈ G} (15.1.1)

and the kernel of ϕ is:
kerϕ = {g ∈ G : ϕ(g) = eH} (15.1.2)

Theorem 20.8 (Image subgroup of homomorphism)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism. Then Imϕ ≤ (H, ∗).

Proof. We check the three subgroup axioms:

Closure: let h1, h2 ∈ Imϕ, so that ∃g1, g2 ∈ G satisfying ϕ(g1) = h1 and ϕ(g2) = h2. We find that:

h1 ∗ h2 = ϕ(g1) ∗ ϕ(g2) = ϕ(g1 ◦ g2) (15.1.3)

Therefore, h1 ∗ h2 is the image of g1 ◦ g2, and thus h1 ∗ h2 ∈ Imϕ.

Identity: the identity of H is eH , and also belongs to Imϕ since ϕ(eG) = eH , in other words it is the
image of the identity of G.

Inverses: suppose h ∈ Imϕ. Then, there exists g ∈ G such that:

h = ϕ(g) =⇒ h−1 = (ϕ(g))−1 = ϕ(g−1) (15.1.4)

so that h−1 ∈ Imϕ.

Hence all three subgroup axioms are satisfied, and thus Imϕ ≤ (H, ∗). ■

Proposition 20.9 ((G, ◦) ∼= Im ϕ)
Let ϕ : (G, ◦) −→ (H, ∗) be an injective homomorphism and let φ be the map obtained by
shrinking the codomain of ϕ to Imϕ. Then φ is an isomorphism, so that (G, ◦) ∼= Imϕ.

Proof. φ is still an injective homomorphism, since shrinking the codomain to Imϕ does not affect
the homomorphism property.

However, φ is also surjective, since Imϕ = Imφ is the odomain of this mapping. Consequently, φ
is an isomorphism (G, ◦) −→ Imϕ, as desired. ■

Theorem 20.10 (Preserved structures under homomorphism)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism:
(i) if G is abelian then (Imϕ, ∗) is abelian.
(ii) If G is cyclic then (Imϕ, ∗) is cyclic.

Moreover, if G is generated by a, then (Imϕ, ∗) is generated by ϕ(a).
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Proof. (i) Suppose that G is abelian, and let h1, h2 ∈ Imϕ, so that ∃g1, g2 such that h1 = ϕ(g1)
and h2 = ϕ(g2). Therefore:

ϕ(g1 ◦ g2) = h1 ∗ h2 = ϕ(g2 ◦ g1) = h2 ∗ h2 (15.1.5)

proving that H is also abelian.

(ii) Suppose that 〈a〉 = G, and let h ∈ Imϕ, so that h = ϕ(g) for some g ∈ G. Now since G is
generated by awe find that:

g = ak =⇒ ϕ(g) = ϕ(ak) = (ϕ(a))k (15.1.6)

Consequently:
h = (ϕ(a))k (15.1.7)

proving that Imϕ is generated by ϕ(a), and thus also cyclic.

■

Theorem 20.11 (Kernel normal subgroup)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism. Then Ker(ϕ) ⊴ (G, ◦).

Proof. We firstly need to prove that Ker(ϕ) is a subgroup of (G, ◦) by checking the subgroup prop-
erties.

Closure: let k1, k2 ∈ Ker(ϕ). Then ϕ(k1) = eH and ϕ(k2) = eH , so that:

ϕ(k1 ◦ k2) = ϕ(k1) ∗ ϕ(k2) = eH ∗ eH = eH (15.1.8)

Hence k1 ◦ k2 ∈ Ker(ϕ).

Identity: we have ϕ(eG) = eH , so that eG ∈ Ker(ϕ).

Inverses: let k ∈ Ker(ϕ), then ϕ(k) = eH so that:

ϕ(k−1) = (ϕ(k))−1 = e−1
H = eH (15.1.9)

so that k−1 ∈ Ker(ϕ).

So, we have that (Ker(ϕ), ◦) ≤ (G, ◦).

To prove normality, we must prove that g ◦ k ◦ g−1 ∈ Ker(ϕ) for k ∈ Ker(ϕ) and g ∈ G. Indeed:

ϕ(g ◦ k ◦ g−1) = ϕ(g) ∗ ϕ(k) ∗ ϕ(g−1) (15.1.10)
= ϕ(g) ∗ eH ∗ (ϕ(g))−1 (15.1.11)
= eH (15.1.12)

as desired, we find that g ◦ k ◦ g−1 ∈ Ker(ϕ). Hence (Ker(ϕ), ◦) ⊴ (G, ◦) ■

Theorem 20.12 (Injectivity of homomorphism)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism. Then ϕ is injective iff Ker(ϕ) = {eG}.

− 200 −



15.2. FIRST ISOMORPHISM THEOREM

Proof. We begin by proving =⇒ . Suppose ϕ is injective, and suppose g1, g2 are such that ϕ(g1) =
ϕ(g2) = eH . Then, g1 = g2 due to injectivity, and since ϕ(eG) = eH it follows that Ker(ϕ) = {eG}.

Let us nowprove the ⇐= part. Suppose that Ker(ϕ) = {eG}, and let ϕ(x) = ϕ(y) for some x, y ∈ G.
Then:

eH = ϕ(x) ∗ (ϕ(y))−1 (15.1.13)
= ϕ(x) ∗ ϕ(y−1) (15.1.14)
= ϕ(x ◦ y−1) (15.1.15)

so that x ◦ y−1 ∈ Ker(ϕ) = {eG}. It follows that x ◦ y−1 = eG =⇒ x = y. Hence, ϕ is injective. ■

Theorem 20.13 (Normality ⇐⇒ kernel)
LetK ≤ G, thenK ⊴ G ⇐⇒ K = Ker(ϕ) for some homomorphism ϕwith domain G.

Proof. Webegin by proving =⇒ . Suppose ϕ is a homomorphismwith domainG, then by Theorem
20.11 Ker(ϕ) = K is a normal subgroup of G, as desired.

Now let us prove ⇐= . Suppose that K is a normal subgroup of G. Then it is the kernel of the
map ϕ defined by:

ϕ :(G, ◦) −→ (G \K, ·) (15.1.16)
x 7→ xK (15.1.17)

so with domainG, and codomainG \K, that is the set of cosets ofK inG. Indeed ϕ is a homomor-
phism since for all x, y ∈ G:

ϕ(x ◦ y) = (x ◦ y)K (15.1.18)
= (xK) · (yK) (15.1.19)
= ϕ(x) · ϕ(y) (15.1.20)

Also:
Ker(ϕ) = {x ∈ G : ϕ(x) = K} = {x ∈ G : xK = K} = K (15.1.21)

■

15.2 First isomorphism theorem

Theorem 20.14 (Kernel cosets)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism, and let x, y ∈ G. Then for some g ∈ G:

ϕ(x) = ϕ(y) ⇐⇒ x, y ∈ gKer(ϕ) (15.2.1)

Proof. Firstly, suppose that ϕ(x) = ϕ(y) for any x, y ∈ G. Then:

ϕ(x) ∗ ϕ(y−1) = ϕ(x ◦ y−1) = eH (15.2.2)
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so that x ◦ y−1 ∈ Ker(ϕ). Since y−1 ∈ G, it follows that x ∈ yKer(ϕ). However, we also have that
y ∈ yKer(ϕ), since eG ∈ Ker(ϕ). Hence x, y both belong to the same coset, with g = y. Similarly,
we could have also proven that y ∈ xKer(ϕ).

Now suppose that x, y lie in the same coset of Ker(ϕ) in G, so that for some g ∈ G and k1, k2 ∈
Ker(ϕ):

x, y ∈ gKer(ϕ) =⇒ x = g ◦ k1, y = g ◦ k2 =⇒ x = y ◦ k−1
2 ◦ k1 (15.2.3)

Then:
ϕ(x) = ϕ(y ◦ k−1

2 ◦ k1) = ϕ(y) ∗ (ϕ(k2))−1 ∗ ϕ(k1) = ϕ(y) (15.2.4)

as desired. ■

Figure 15.2. Set diagram of first isomorphism theorem

Theorem 20.15 (First isomorphism theorem)
Let ϕ(G, ◦) −→ (H, ∗) be a homomorphism. Then:

f :G \ Ker(ϕ) −→ Im(ϕ) (15.2.5)
xKer(ϕ) 7−→ ϕ(x) (15.2.6)

is an isomorphism, so that G \ Ker(ϕ) ∼= Im(ϕ).

Proof. For sake of brevity, letK = Ker(ϕ).

Since elements of different cosets ofK have different images under ϕ (converse of theorem 20.13),
we find that ϕmust be injective. Indeed, suppose that ϕ(x) = ϕ(y), so that:

x ∈ yKer(ϕ) = {yk1, yk2, ...} (15.2.7)
y ∈ xKer(ϕ) = {xk1, xk2, ...} (15.2.8)

from which it follows that x = yki and y = xk−1
i = xkj for some ki ∈ Ker(ϕ). Therefore, we have

that xKer(ϕ) ⊆ yKer(ϕ), since if xkn ∈ xKer(ϕ) then xkn = ykikn ∈ yKer(ϕ), using the closure of
Ker(ϕ). Similarly, yKer(ϕ) ⊆ xKer(ϕ), and thus xKer(ϕ) = yKer(ϕ) as desired.

Also, f is surjective, since any element ϕ(x) ∈ Im(ϕ) is the image under f of the coset xK.
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Finally, let us check the homomorphism property:

f(xK · yK) = f((x ◦ y)K) (15.2.9)
= ϕ(x ◦ y) (15.2.10)
= ϕ(x) ∗ ϕ(y) (15.2.11)
= f(xK) ∗ f(yK) (15.2.12)

as desired. It follows that f is a bijective homomorphism, hence an isomorphism, so that G \
Ker(ϕ) ∼= Im(ϕ). ■

Example. Consider the following mapping ϕ:

ϕ : (L,×) −→ (R∗,×) (15.2.13)(
a 0
b c

)
7−→ ac (15.2.14)

where L is the group of lower triangular 2× 2 matrices.
This is clearly a homomorphism, since for any A,B ∈ L:

A =
(
a1 0
b1 c1

)
, B =

(
a2 0
b2 c2

)
(15.2.15)

then:
AB =

(
a1a2 0

a2b1 + c1b2 c1c2

)
(15.2.16)

Hence:

ϕ(AB) = ϕ

(
a1a2 0

a2b1 + c1b2 c1c2

)
(15.2.17)

= (a1a2)(c1c2) (15.2.18)
= ϕ(A)ϕ(B) (15.2.19)

as desired.
The image of ϕ is:

Im(ϕ) = {ϕ(A) : A ∈ L} = {ac : a, c ∈ R∗} = R∗ (15.2.20)

The kernel of ϕ is:

Ker(ϕ) = {A ∈ L : det{A} = 1} =

{(
a 0
b 1

a

)
: a ∈ R∗, b ∈ R

}
(15.2.21)

By the first isomorphism theorem:

L \ Ker(ϕ) ∼= Im(ϕ) = (R∗,×) (15.2.22)

◀
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Example. Consider the following map:

ϕ : (L,×) −→ (L,×) (15.2.23)(
a 0
b c

)
7−→

( 1
a 0
0 1

)
(15.2.24)

This is clearly a homomorphism, since for any A,B ∈ L:

A =
(
a1 0
b1 c1

)
, B =

(
a2 0
b2 c2

)
(15.2.25)

then:
AB =

(
a1a2 0

a2b1 + c1b2 c1c2

)
(15.2.26)

Hence:

ϕ(AB) =

(
1

a1a2
0

0 1

)
(15.2.27)

=

(
1

a1
0

0 1

)(
1

a2
0

0 1

)
(15.2.28)

= ϕ(A)ϕ(B) (15.2.29)

Moreover it is easy to see that:

Im(ϕ) =

{( 1
a 0
0 1

)
: a ∈ R∗

}
(15.2.30)

and:
Ker(ϕ) = {

(
1 0
b c

)
: b ∈ R, c ∈ R∗} (15.2.31)

Now, by the first isomorphism theorem, we have that:

L \ Ker(ϕ) ∼=

{( 1
a 0
0 1

)
: a ∈ R∗

}
(15.2.32)

We now prove that Im(ϕ) ∈ (R∗,×). An example of an isomorphism between them is:

φ : Im(ϕ) −→ (R∗,×) (15.2.33)( 1
a 0
0 1

)
7→ a (15.2.34)

This is a homomorphism since for A,B ∈ Im(ϕ):

A =
( 1

a 0
0 1

)
, B =

( 1
b 0
0 1

)
(15.2.35)
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with a 6= 0, b 6= 0, we have that

φ(AB) = ab = φ(A)φ(B) (15.2.36)

Moreover, φ is injective, since φ(A) = φ(B) =⇒ a = b =⇒ A = B. Finally, φ is surjective,
since every x ∈ R∗ is the map of the matrix:

X =
( 1

x 0
0 1

)
(15.2.37)

Hence, we may conclude that L \ Ker(ϕ) ∼= (R∗,×). ◀

Proposition 20.16 (Order of kernel, image and group) Let ϕ : (G, ◦) −→ (H, ∗) be a
homomorphism with a finite group domain, then:

|Ker(ϕ)| · |Im(ϕ)| = |G| (15.2.38)

Proof. From the first isomorphism theorem, since ϕ is a homomorphism:

G \ Ker(ϕ) ∼= Im(ϕ) (15.2.39)

and since isomorphic finite groups must have same order:

|G \ Ker(ϕ)| = |Im(ϕ)| (15.2.40)

Now since G is finite dimensional, we must have that |G \ Ker(ϕ)| = |G|
|Ker(ϕ)| so that:

|Ker(ϕ)| · |Im(ϕ)| = |G| (15.2.41)

as desired. ■

To summarize, wehave that for finite groupsG,H , and anyhomomorphismϕ between them:

(i) |Ker(ϕ)| divides |G| by Lagrange’s theorem, since Ker(ϕ) ≤ G

(ii) |Im(ϕ)| divides |H| by Lagrange’s theorem, since Im(ϕ) ≤ H

(iii) |Im(ϕ)| divides |G| by Proposition 20.16

Example. Let us try to find all homomorphisms ϕ from S(∆) to (Z3,+3).
From the above considerations, we must have that |Ker(ϕ)| and |Im(ϕ)| divide |S(4)| = 6.
Hence they can have values of 1,2,3,6. Moreover, we must have that |Im(ϕ)| divides 3, hence
it can only take values 1,3, for which |Ker(ϕ)| takes the values of 6,2 respectively.
Now we know that |Ker(ϕ)| is a normal subgroup of S(∆), and we found no normal sub-
groups of order 2. Hence |Ker(ϕ)| = 6 = |S(∆)| and Im(ϕ) = 1. Consequently, since
Ker(ϕ) ≤ S(∆) and Im(ϕ) ≤ Z3, we have that Ker(ϕ) = |S(∆)| and Im(ϕ) = {0}. The only
possible ϕwith such structures is the trivial homomorphism. ◀
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16GT8 Group actions

16.1 What are group actions?
Several groups that we have considered consist of functions from a set to itself. For example, the
elements of the group S(□) are symmetries, or maps, of the set {1, 2, 3, 4} to itself.

We say that when a group element g maps an element x in some set to some other element in the
set, then g : x 7→ g ∧ x. In other words, we will denote the image of a set element x under g by
g ∧ x.

In the case of S(□), we have for example that r ∧ 2 = 3.

For some definitions of ∧, there are a set of interesting properties which promote it from a simple
mapping to a group action.

Figure 16.1. Visual illustration of group action axioms.

Definition 21.1 (Group action)
Let (G, ◦) be a group with identity e, and let X be a set. Furthermore, suppose that we
associate to each element g ∈ G and some element x ∈ X an object g ∧ x.
We then say that the effect of ∧ of (G, ◦) on X is a group action of (G, ◦) on X , provided
that the following properties:
GA1 Closure: for g ∈ G, x ∈ X we have that g ∧ x ∈ X
GA2 Identity: for x ∈ X , we have that e ∧ x = x

GA3 Composition]: for g, h ∈ G and x ∈ X we have that g ∧ (h ∧ x) = (g ◦ h) ∧ x.
known as the group action axioms are satisfied.

Example. LetG ≤ S5 be the subgroup consisting of all permutations inS5 that fix symbols
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4 or 5, or transpose them. Consider the set X = {1, 2, 3}, and let us define:

g ∧ x = g(x) (16.1.1)

for all g ∈ G, x ∈ X . In other words, G is the set of permutations which does not map 1, 2, 3
to 4 or 5.
We check that the group action axioms are satisfied:
GA1 for g ∈ G, x ∈ X we have that g ∧ x = g(x) ∈ X , since g must be a permutation of

{1, 2, 3, 4, 5}which does not map any of x ∈ X = {1, 2, 3} to 4or5.
GA2 the identity element ofGmust be id, the identity permutation, defined so that id(x) =

id ∧ x = x for all x ∈ X .
GA3 For g, h ∈ G and x ∈ X we have that:

g ∧ (h ∧ x) = g ∧ h(x) (16.1.2)
= g(h(x)) = (g ◦ h)(x) (16.1.3)
= (g ◦ x) ∧ x (16.1.4)

as desired.
It follows that ∧ is indeed a group action of (G, ◦) on X . ◀

Example. Consider now the mapping ∧ of (R∗,×) on R2 defined by:

g ∧ (x, y) = (x+ g, y + g) (16.1.5)

This is not a group action because it does not satisfy the composition axiom. Indeed ∀g, h ∈
(R∗,×),∀(x, y) ∈ R2 we find that:

g ∧ (h ∧ x) = g ∧ (x+ h, y + x) = (x+ h+ g, y + h+ g) (16.1.6)

whereas:

(g × h) ∧ x = (gh) ∧ x = (x+ gh, y + gh) 6= (x+ h+ g, y + h+ g) (16.1.7)

as expected. ◀

Theorem 21.2 (Properties of group actions) Let ∧ be an action of G onX , then ∧ is a
bijection, that is:
(i) ∀g ∈ G, if x, y ∈ X such that g ∧ x = g ∧ y then x = y.
(ii) ∀g ∈ G, if y ∈ X then ∃x ∈ X such that g(x) ∈ y

Proof. Let g ∈ G, and suppose we have x, y ∈ X such that g ∧ x = g ∧ y then x = y. Then we may
apply g−1 ∈ G:

g−1 ∧ (g ∧ x) = g−1 ∧ (g ∧ y) =⇒ x = y (16.1.8)

using the composition axiom.
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Next, let g ∈ G and y ∈ X . Then:

e ∧ y = y =⇒ g ∧ (g−1 ∧ y) = y (16.1.9)

and since g−1∧y ∈ X by the closure of group actions, we have that if x = g−1∧y ∈ X then g∧x = y

as desired. ■

Theorem 21.3 (Actions of group of symmetries)
LetG be the group of symmetries of some figure F ⊆ R2 and letX be a set of figures in R2.
Then, if we define ∧ by:

g ∧A = g(A),∀g ∈ G,A ∈ X (16.1.10)

then ∧ is a group action iff the closure axiom of group actions is satisfied.

Proof. We need to prove that GA2 and GA3 are satisfied.

Firstly let us prove that GA2 holds. Let e be the identity and letA ∈ X . Since g ∈ G are symmetries
of not only F , but also R2, it follows that e will satisfy e(P ) = P for any P ∈ R2. Consequently
e ∧A = e(A) = A as desired.

Let g, h ∈ G and let A ∈ X . Then:

g ∧ (h ∧A) = g(h(A)) = (g ◦ h)A (16.1.11)

by definition of the composition operation. ■

Example. Consider now the group S(□) and the set X whose elements are all the modi-
fied 2× 2 squares obtained by coloring each of the four small squares either blue, yellow or
red.
Then g ∧A = g(A) for all A ∈ X is clearly a group action since it satisfies the closure axiom.
Indeed, suppose we have a squareA ∈ X with some initial color configuration (c1, c2, c3, c4)
(in clockwise direction starting from top left small square). Then, the action of each element
in S(□) are:

Element g ∧A
e (c1, c2, c3, c4)
a (c2, c3, c4, c1)
b (c3, c4, c1, c2)
c (c4, c1, c2, c3)
r (c2, c1, c4, c3)
s (c1, c4, c3, c1)
t (c4, c3, c2, c1)
u (c3, c2, c1, c4)

It is trivial to verify that g ∧A ∈ X for all g ∈ S(□), thus proving that ∧ is a group action.

◀

An effective way to show the action of a symmetry group on some set is by using cycle notation, as
we investigate in the following example.
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Example. Consider the action of S(□) on the setX = {R,S, T, U} of figures shown below:

One can easily verify that this is indeed a group action, since the closure property is clearly
verified.
We may write down the effect of each element in S(□) on X using cycle notation:

Element Permutation
e i

a (R T )(S U)
b i

c (R T )(S U)
r (S U)
s (R T )
t (S U)
u (R T )

◀

16.2 Orbits and stabilisers

Definition 21.4 (Orbit)
Let ∧ be a group action of G on a set X , and let x ∈ X . Then, the orbit of x under ∧ is
defined as:

Orb x = {g ∧ x : g ∈ G} ⊆ X (16.2.1)

that is, the set of elements in X which are the image of x under g.

Figure 16.2. Visualization of the orbit of some x under ∧.

Example. We consider the action of S(□) on the set{1, 2, 3, 4} of labelled vertices of a
square. Then:
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Orb 1 = {a ∧ 1, b ∧ 1, c ∧ 1, r ∧ 1, s ∧ 1, t ∧ 1, u ∧ 1} (16.2.2)
= {2, 3, 4, 4, 1, 2, 3} = {1, 2, 3, 4} (16.2.3)

Similarly:

Orb 2 = {a ∧ 2, b ∧ 2, c ∧ 2, r ∧ 2, s ∧ 2, t ∧ 2, u ∧ 2} (16.2.4)
= {3, 4, 1, 3, 4, 1, 2} = {1, 2, 3, 4} (16.2.5)

It is easy to verify that Orb 3 = Orb 4 = {1, 2, 3, 4} also. ◀

Example. Consider the action of S(©) on the plane R2, where the disc© is placed with
its center on the origin.
Then, we find that Orb P definitely contains the circle CP centered at the origin passing
through P , which is created by acting members of S+(©) on P .
Instead, for the reflections, note that we can obtain all reflection symmetries of the disk by
reflecting about the y axis and composing with all direct symmetries. Consequently, we see
that the action of the indirect symmetries on P is to create again a circle centered at the
origin passing through P , which is created by acting members of S+(©) on P .
Consequently Orb P = CP . ◀

As in the case of conjugacy classes and coset classes, we can prove that orbit classes partition the
set X on which the group action acts.

Theorem 21.5 (Orbit partition)
Let ∧ be a group action of (G, ◦) on a set X .Then the distinct orbits of X under ∧ partition
X .

Proof. We define ∼ on X by:
x ∼ y if y ∈ Orb x (16.2.6)

and prove that it is an equivalence relation.

Indeed:

(i) Reflexivity: let x ∈ X , then we see that x ∈ Orb x since x = e ∧ x. Hence x ∼ x.

(ii) Symmetry: let x, y ∈ X such that x ∼ y. Then y ∈ Orb x, that is y = g ∧ x for some g ∈ G.
Then:

g−1 ∧ y = (g−1 ◦ g) ∧ x = x =⇒ x ∈ Orb y (16.2.7)

since g−1 ∈ G. Consequently y ∼ x.

(iii) Transitivity: let x, y, z ∈ X such that x ∼ y and y ∼ z, or equivalently y ∈ Orb x and
z ∈ Orb y. We can write these as:

y = g1 ∧ x, and z = g2 ∧ y (16.2.8)
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for some g1, g2 ∈ G. Then:

z = g2 ∧ (g1 ∧ x) = (g2 ◦ g1) ∧ x =⇒ z ∈ Orb x (16.2.9)

since g2 ◦ g1 ∈ G. Consequently x ∼ z as desired.

It follows that ∼ is an equivalence relation, and that its equivalence classes thus partition X . The
equivalence classes may be expressed as:

[x] = {y : y ∈ Orb x} = Orb x (16.2.10)

so it follows that the distinct orbits of an element x ∈ X under ∧ partition X . ■

Example. Consider the action of S(□) on the set X = {Ai : 1 ≤ i ≤ 9} of squares shown
below:

We begin by writing down Orb A1:

Orb A1 = {A1, A7, A9, A3} (16.2.11)

Next, choosing an element that was already included would have resulted in the same set.
Hence, we see that A2 was not included in the above orbit, so we find its orbit, :

Orb A2 = {A2, A4, A8, A6} (16.2.12)

The only remaining element of X is A5, so its orbit must only contain itself:

Orb A5 = {A5} (16.2.13)

Hence the orbit partition of X is:

X = {A1, A3, A7, A9} ∪ {A2, A4, A6, A8} ∪ {A5} (16.2.14)

◀

Example. Consider the matrix group

G =

{(
a 0
0 b

)
: a, b ∈ R+

}
(16.2.15)
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and the group action ∧ on R2 defined by:(
a 0
0 b

)
∧ (x, y) = (ax, by) (16.2.16)

for all (x, y) ∈ R2. It follows that:

Orb (x, y) = {(ax, by) : a, b ∈ R+} (16.2.17)

For example:

Orb (1, 0) = {(a, 0) : a ∈ R+} (16.2.18)

which is the positive x-axis excluding the origin. By symmetry, Orb (−1, 0) must be the
negative x-axis excluding the origin.
Similarly:

Orb (0,−1) = {(0,−b) : b ∈ R+} (16.2.19)

which is the negative y-axis excluding the origin. By symmetry, Orb (0, 1) must be the pos-
itive y-axis excluding the origin.
One element of R2 which we did not include is the origin. We can guess that it is the orbit
of the origin, indeed:

Orb (0, 0) = {(0, 0)} (16.2.20)

We are missing the four quadrants of R2. Note that

Orb (1, 1) = {(a, b) ∈ R+} (16.2.21)

which is the upper right quadrant excluding the origin and the axes. By symmetry,
Orb (1,−1) must be the lower right quadrant, Orb (−1, 1) must be the upper left quadrant
and Orb (−1,−1) must be the lower left quadrant. ◀

Definition 21.6 (Stabiliser)
Let ∧ be an action of a group G on a setX , and let x ∈ X . Then, the stabiliser of x under ∧
is defined as:

Stab x = {g ∈ G : g ∧ x = x} (16.2.22)

We may interpret the stabiliser geometrically as shown below:

Example. Let’s consider the action of S(©) on R2, where the disc © is centered at the
origin, and let P ∈ R2. We consider the following possibilities:
(i) P is the origin: then Stab P = S(©)
(ii) P is not the origin: then Stab P = {e, q} contains e and the reflection in the line con-

taining P and O, which we call q.

◀
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Figure 16.3. Geometrical interpretation of the stabiliser

Interestingly, the stabilisers we have found in the previous example can be verified to be subgroups
of S(©). This is no coincidence, as the following theorem shows.

Theorem 21.7 (Stabiliser subgroup)
Let ∧ be an action of (G, ◦) on X . Then, for any x ∈ X , Stab x ≤ G.

Proof. We show that the subgroup axioms are satisfied:

Closure: let g, h ∈ Stab x. Then (g ◦ h) ∧ x = g ∧ (h ∧ x) = g ∧ x = x so g ◦ h ∈ Stab x as desired.

Identity: let e be the identity of G. Then e ∧ x = x by the group action axioms, hence e ∈ Stab x.

Inverses: let g ∈ Stab x, then g ∧ x = x =⇒ x = g−1 ∧ x so that g−1 ∈ Stab x.

■

Example. Consider the action of S(□) on the set X = {Ai : 1 ≤ i ≤ 9} of squares shown
below:

Then:

Stab A1 = {e, s} = Stab A9 (16.2.23)
Stab A2 = {e, r} = Stab A8 (16.2.24)
Stab A3 = {e, u} = Stab A7 (16.2.25)
Stab A4 = {e, t} = Stab A6 (16.2.26)
Stab A5 = S(□) (16.2.27)
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These are all subgroups of S(□), since the first four lines contain e and a reflection (which
are self inverse). ◀

Example. Consider the action of G =
{(

a b

0 a

)
: a, b ∈ R, a 6= 0

}
on R2 defined by:

(
a b

0 a

)
∧ (x, y) = (ax, ay), ∀(x, y) ∈ R2 (16.2.28)

Then, we have that if (x, y) is not the origin:

Stab (x, y) =
{(

a b

0 a

)
∈ G : (ax, ay) = (x, y)

}
=
{(

1 b

0 1

)
: b ∈ R

}
(16.2.29)

If instead (x, y) = (0, 0) then:

Stab (0, 0) =
{(

a b

0 a

)
∈ G : (a · 0, a · 0) = (0, 0)

}
= G (16.2.30)

◀

16.3 The Orbit-Stabiliser theorem

Theorem 21.8 (Left coset of stabiliser) Let ∧ be an action of (G, ◦) on a set X , and let
x ∈ X, and g, h ∈ G, then:

g ∧ x = h ∧ x ⇐⇒ g, h lie in the same left coset of Stab x (16.3.1)

Proof. We firstly prove =⇒ . Indeed, suppose g, h lie in the same left coset of Stab x, so that
h ∈ Stab x. Then ∃k ∈ Stab x such that h = g ◦ k and thus:

h ∧ x = g ∧ k ∧ x = g ∧ x (16.3.2)

as desired.

Now suppose that h ∧ x = g ∧ x. Then:

(g−1 ◦ h) ∧ x = g−1 ∧ (h ∧ x) (16.3.3)
= g−1 ∧ (g ∧ x) (16.3.4)
= (g−1 ◦ g) ∧ x (16.3.5)
= e ∧ x (16.3.6)
= x (16.3.7)

so that g−1◦h ∈ Stab x, and consequently h ∈ gStab x, so that h, g both lie in the same left coset. ■

− 214 −



16.3. THE ORBIT-STABILISER THEOREM

Figure 16.4. Visual interpretation of the left coset gStab x and its action on X

Example. We consider the action of S3 on {1, 2, 3}, and find that:

Stab 1 = {σ ∈ S3 : σ(1) = 1} = {e, (2 3)} (16.3.8)

Then, the left cosets of this stabiliser are:

eStab 1 = Stab 1 (16.3.9)
(1 2)Stab 1 = {(1 2), (1 2 3)} (16.3.10)
(1 3)Stab 1 = {(1 3), (1 3 2)} (16.3.11)
(2 3)Stab 1 = Stab 1 (16.3.12)

(1 2 3)Stab 1 = {(1 2), (1 2 3)} (16.3.13)
(1 3 2)Stab 1 = {(1 3), (1 3 2)} (16.3.14)

Now we partition S3 according to where its elements map 1:

{e, (2 3)}map 1 to 1 (16.3.15)
{(1 2), (1 2 3)}map 1 to 2 (16.3.16)
{(1 3), (1 3 2)}map 1 to 3 (16.3.17)

which are precisely the left cosets we calculated earlier. ◀

Proposition 21.9 (Stabiliser coset to orbit map)
Let ∧ be an action of G on the set X and let x ∈ X . Then:

ϕ : GStab x −→ Orb x (16.3.18)
gStab x 7→ g ∧ x (16.3.19)

is a bijective map.

Proof. Since elements of different cosets of Stab x have different images under ϕ, we find that ϕ
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must be injective. Indeed, suppose that ϕ(gStab x) = ϕ(h ∧ x), so that g ∧ x = h ∧ x:

g ∈ hStab x = {hs1, hs2, ...} (16.3.20)
h ∈ gStab x = {gs1, gs2, ...} (16.3.21)

from which it follows that g = hsi and h = gs−1
i = gsj for some ki, kj ∈ Stab x. Therefore, we have

that gStab x ⊆ hStab x, since if gsn ∈ gStab x then gsn = hsisn ∈ hStab x, using the closure of
Stab x. Similarly, hStab x ⊆ gStab x, and thus gStab x = hStab x as desired.

Also, f is surjective, since any element g ∧ x ∈ Im(ϕ) is the image under f of the left coset xStab x.
■

Theorem 21.10 (Orbit-Stabiliser theorem)
Suppose that G is a finite group acting on the set X . Then:

∀x ∈ X, |Orb x| × |Stab x| = |G| (16.3.22)

Proof. Let x ∈ X , we know from Proposition 21.9 that the left cosets of Stab x in G have a bijective
correspondence with the elements of Orb x. It follows that |GStab x| = |Orb x|, the number of
distinct left cosets of Stab x is equal to the number of elements in Orb x. However, sinceG is a finite
group |GStab x| = |G|

|Stab x| so that:
|Orb x| · |Stab x| = |G| (16.3.23)

■

Interestingly, our choice of X is not limited to sets. Indeed, we can consider group actions on
groups themselves, in other words X can be a group.

One example of such a group action is conjugation.

Proposition 21.11 (Conjugation group action)
Let G be a group with g, x ∈ G and define ∧ by:

g ∧ x = gxg−1 (16.3.24)

Then ∧ is a group action.

Proof. We prove that the three group action axioms hold.

GA1 Closure: let g, x ∈ G. Then g ∧ x = gxg−1 ∈ G

GA2 Identity:let x ∈ G and let e ∈ G be the identity element. Then e ∧ x = exe−1 = x as desired.

GA3 Composition: let g, h, x ∈ G. Then:

g ∧ (h ∧ x) = g ∧ (hxh−1) (16.3.25)
= g(hxh−1)g−1 (16.3.26)
= (gh)x(gh)−1 (16.3.27)
= (gh) ∧ x (16.3.28)
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as desired.

■

Example. We prove that h ∧ g = hg is a group action, where h ∈ H, g ∈ G and H ≤ G.
Indeed:
GA1 Closure: let g ∈ G and h ∈ H =⇒ h ∈ G. Then g ∧ h = gh ∈ G as desired.
GA2 Identity: let g ∈ G and let e ∈ H be the identity element ofH , and thus ofG too. Then

e ∧ g = eg = g as desired.
GA3 Composition: let g, h, f ∈ G. Then:

f ∧ (h ∧ g) = f ∧ (hx) (16.3.29)
= fhx (16.3.30)
= (fh)x (16.3.31)
= (fh) ∧ x (16.3.32)

where we used the associativity in G.

◀

Proposition 21.12 (Cardinality of conjugacy class)
For a finite group G, the number of elements in each conjugacy class divides |G|.

Proof. Let G be a finite group and let ∧ be the conjugacy action g ∧ x = gxg−1 for g, x ∈ G. Then:

Orb x = {gxg−1 : g ∈ G} = [x] (16.3.33)

so the orbit of x is the conjugacy class of x. We also have that:

Orb x divides |G| (16.3.34)

giving the desired result. ■

Proposition 21.13 (Homomorphism group action)
Let ϕ : (G, ◦) −→ (H, ∗) be a homomorphism, and let ∧ be defined as:

g ∧ h = ϕ(g) ∗ h (16.3.35)

for g ∈ G,h ∈ H . Then we have that ∧ is a group action.

Proof. We show that the three group action axioms are satisfied:

GA1 Closure: let g ∈ G,h ∈ H , then g ∧ h = ϕ(g) ∗ h ∈ H since ϕ(g) ∈ H .

GA2 Identity: let eG ∈ G be the identity ofG and let h ∈ H . Then eG ∧h = ϕ(eG) ∗h = eH ∗h = h

as desired.
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GA3 Composition: let g, f ∈ G and h ∈ H . Then:

g ∧ (f ∧ h) = g ∧ (ϕ(f) ∗ h) (16.3.36)
= ϕ(g) ∗ (ϕ(f) ∗ h) (16.3.37)
= ϕ(g ◦ f) ∗ h (16.3.38)
= (g ◦ f) ∧ h (16.3.39)

as desired.

■

Notice that for the homomorphism group action of G on H :

Orb eH = {ϕ(g) ∗ eH : g ∈ G} = {ϕ(g) : g ∈ G} = Im(ϕ) (16.3.40)

and:
Stab eH = {g : ϕ(g) ∗ eH = eH} = {g : ϕ(g) = eH} = Ker(ϕ) (16.3.41)

Applying the orbit stabiliser theorem:

|Orb eH | · |Stab eH | = |Im(ϕ)| · |Ker(ϕ)| = |G| (16.3.42)

which is precisely the result proven in Proposition 20.16.

16.4 The Counting theorem
Consider a 2 × 2 square pattern, where each of the four smaller squares is colored either blue,
yellow, red, green or purple?

We see that since repetitions are allowed, each tile has 5 different possible colours. Therefore, we
should have 54 = 625 different patterns.

However, note that the following two patterns, which are rotations of each other, were counted
twice in our procedure:

Figure 16.5. Two identical patterns which were double counted.

Surprisingly, this problem has to do with group actions. Indeed, let X be the set of 54 colored
squares, where each small square is fixed in space. We can think of these squares as the vertices of
a larger square, with symemtry group S(□). Two patterns which are double counted are therefore
in the same orbit of the action of S(□) on X .

We can reformulate this square coloring problem as finding the number of orbits of the action of
S(□) on X .
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Definition 20.17 (Fixed set)
Let ∧ be a group action of G onX , and let g ∈ G. Then the fixed set of g under ∧ is defined
as:

Fix g = {x ∈ X : g ∧ x = x} (16.4.1)

that is, the subset of X whose elements are mapped to themselves by g.

Example. Consider the action of S(∆) on the set X = {A,B,C,D} of triangles shown

below:

Then, we see that:

Fix e = X (16.4.2)
Fix a = Fix b = {A} (16.4.3)
Fix r = {A,B} (16.4.4)
Fix s = {A,C} (16.4.5)
Fix t = {A,D} (16.4.6)

◀

Example. Let

G =

{(
a b

0 1

)
: a, b ∈ R, a 6= 0

}
(16.4.7)

and consider the action of G on R2 defined by:(
a b

0 1

)
∧ (x, y) = (ax, y) (16.4.8)

Then, since a 6= 0 it follows that

Fix
(
a b

0 1

)
= {(x, y) ∈ R2 : (x, y) = (ax, y)} = {(0, y) : y ∈ R} (16.4.9)

if a 6= 1 and

Fix
(

1 b

0 1

)
= R2 (16.4.10)

if a = 1. ◀

Let’s use the notion of fixed sets in the context of the 2× 2 square pattern problem.

Example. Let’s find the number of elements in the fixed sets of each symmetry in S(□).
Clearly, Fix e = X , so that |Fix e| = 54.
Moreover, Fix a is the set of squares where all squares are colored in the same way. To see
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why this must be the case, let us number the four squares in a pattern in Fix a by c1, c2, c3, c4
representing their colors. If we rotate this pattern, we find that:

so that c1 = c2, c4 = c1, c3 = c4, c2 = c3 implying that all colors must be the same. There are
5 such squares.
By similar arguments, we can see that Fix b must be the set of squares where the diago-
nal small squares are of the same color. Note that the color of small squares on different
diagonals need not to be the same, hence there are 52 such squares in this fixed set.
Similarly, Fix c contains 5 elements, |Fix r| = |Fix t| = 52. Finally, |Fix s| = |Fix u| = 53. We
summarize these results in the table below:

g ∈ S(□) |Fix g|
e 54

a 5
b 52

c 5
r 52

s 53

t 52

u 53

◀

Theorem 20.18 (Counting theorem)
Let ∧ be an action of a finite group G on the set X , then the number of orbits of ∧ is:

1
|G|

∑
g∈G

|Fix g| (16.4.11)

Proof. Let t be the number of orbits, and let B be one such orbit. Then:

∑
x∈B

|Stab x| =
∑
x∈B

|G|
|Orb x| (16.4.12)

= |G|
∑
x∈B

1
|Orb x| (16.4.13)

= |G|
∑
x∈B

1
|B|

(16.4.14)

= |G| · |B| · 1
|B|

(16.4.15)

= |G| (16.4.16)
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Therefore, since orbits partition X :∑
x∈X

|Stab x| = t|G| ⇐⇒ t = 1
|G|

∑
x∈X

|Stab x| (16.4.17)

However, we have that:
∑

x∈X |Stab x| =
∑

g∈G |Fix g|

Indeed, suppose we construct a table with a row heading containing x ∈ X and with a column
heading containing g ∈ G. We place a y at each position where g ∧ x = x. Then

∑
x∈X |Stab x|

corresponds in counting the number of ticks in each column labelled x, and summing them all up.
This surelymust be equivalent to counting the number of ticks in each row labelled g and summing
them all up, which corresponds to

∑
g∈G |Fix g|.

■

Example. Let us return to the problem of coloring a 2 × 2 square. We need to be careful
in defining what we mean by two squares being the same. In this particular example, we
consider two squares as being the same if one can be rotated or flipped to give the other. We
therefore need to find the number of orbits of the action of S(□):

1
8

(54 + 5 + 52 + 5 + 52 + 53 + 52 + 53) = 120 (16.4.18)

so there are 120 different patterns. ◀

Let us apply our results to one final coloring problem.

Example. Let’s see how many different ways there are to color a cube’s faces using three
colors. We consider two cubes identical if one can be rotated to give the other (but not
reflected, obviously).
First, we need to find the fixed sets of each element in S+(cube) (we do not consider reflec-
tions). The elements in S+(cube) are:
(a) identity symmetry
(b) rotations by ±π

2 about axes through centers of opposite faces
(c) rotations by π about axes through centers of opposite faces
(d) rotations by ± 2π

3 about axes through opposite vertices
(e) rotations by π about axes through midpoints of opposite edges.

We see that there is 1 symmetry of type a, 6 rotations of type b, 3 rotations of type c, 8
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rotations of type d and 6 rotations of type e.
For each, we find through the labelling method that:

type g ∈ S(□) |Fix g|
(a) 36

(b) 33

(c) 34

(d) 32

(e) 33

so that the number of orbits is:
1
24

(36 + 6 · 33 + 3 · 34 + 8 · 32 + 6 · 33) = 57 (16.4.19)

hence there are 57 different colored cubes. ◀
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17ODE1 Fundamentals

17.1 Definitions

Definition 23.1 (nth order ODE)
An nth order ordinary differential equation (ODE) in KN is an equation:

y(n) = f(t, y, y′...y(n−1)) (17.1.1)

for (t, y, y′...y(n−1)) ∈ Ω, t ∈ R, y ∈ Kn where Ω ⊆ R × (KN)n and f : Ω → Kn, with
n,N ∈ N∗.

We highlight the fundamental case where n = 1, in which case:

y′ = f(t, y), (t, y) ∈ Ω, t ∈ R, y ∈ KN (17.1.2)

Definition 23.2 (Solution)
A solution to an nth order ODE consists of a function y : I → KN n times differentiable such
that:
(i) ∀t ∈ I, (t, y, y′...y(n−1)) ∈ Ω
(ii) ∀t ∈ I, y(n) = f(t, y, y′...y(n−1))

Definition 23.3 (Linear and Homogeneous)
An ODE is said to be linear if f is a polynomial function, that is:

f(t, y, y′...y(n−1)) =
n∑

i=0
Ai(t)y(i) (17.1.3)

where Ai(t) ∈ MatN (K) for i = 1, 2..n and A0(t) ∈ KN . A linear ODE is further said
to be homogeneous if A0(t) = 0. Homogeneous solutions are invariant under scaling
(t, y, y′...y(n−1))→ (λt, λy, λy′...λy(n−1)) for λ ∈ K.

Proposition 23.4 (Smoothness of Solutions)
If f : Ω→ KN is of class Ck then all solutions y of (23.0.2) are of class Ck+1.

Proof. We provide a proof by induction. For k = 0, then f is continuous everywhere, and let y be
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a solution. Then, we have that y′ = f(t, y) and so y is continuous and differentiable everywhere,
hence of class C1.

Let us now suppose that proposition 23.4 is true for some k ∈ N, let f be of class Ck+1 and let y be
a solution. Then, since f is also of class Ck, then by hypothesis y must be of class Ck+1. However,
y′ = f(t, y) is of class Ck+1 and y is therefore of class Ck+2. ■

17.2 Integral formulation
There is a remarkable relationship between differential equations and integral equations. In this
course we will consider four main types of integral equations. Suppose that f : [a, b] → R and
K : [a, b]2 → K are continuous, with t ∈ [a, b] then:

Volterra non-homogeneous : y(t) = f(t) +
∫ t

a

K(t, s)y(s)ds (17.2.1)

Fredholm non-homogeneous : y(t) = f(t) + λ

∫ b

a

K(t, s)y(s)ds (17.2.2)

and the two corresponding homogeneous equations. We call K(t, s) the kernel of the integral
equation.

Note that for the Fredholm homogeneous equation:

y(t) = λ

∫ b

a

K(t, s)y(s)ds (17.2.3)

we may consider this as an eigenfunction equation, with λ as an eigenvalue and y as an eigenfunc-
tion.

Lemma 1 Suppose that f : [a, b]→ R is continuous. Then:∫ x

a

∫ x′

a

f(t)dtdx′ =
∫ x

a

(x− t)f(t)dt (17.2.4)

Proof. Define the integral transform G : [a, b]→ R by:

F (x) =
∫ x

a

(x− t)f(t)dt (17.2.5)

then because f(t) and x− t are continuous we may use the Leibniz integral rule to find:

F ′(x) =
��������:0
[(x− t)f(t)]t=x

d

dx
(x) +

∫ x

a

∂

∂x
[(x− t)f(t)]dt =

∫ x

a

f(t)dt (17.2.6)

We then deduce from the fundamental theorem of Calculus that:∫ x′

a

F ′(x)dx = F (x′)−���*
0

F (a) =
∫ x′

a

∫ x

a

f(t)dtdx (17.2.7)

Substituting x→ x′ then:

F (x) =
∫ x

a

∫ x′

a

f(t)dtdx′ (17.2.8)
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as we wished to show. ■

Consider the differential equation y′′+λy = g(t)with t ∈ [0, L]. The readerwill probably be familiar
already with the solution, but here we wish to find the equivalent integral equation.

The first step in doing so is integrating from 0 to x to find (using the fact that y, y′′ must both be
continuous):

y′(t)− y′(0) + λ

∫ t

0
y(s)ds =

∫ t

0
g(s)ds (17.2.9)

Further integration gives:

y(t)− y(0)− ty′(0) + λ

∫ t

0
(t− s)f(s)ds =

∫ t

0
(t− s)g(s)ds (17.2.10)

where we used Lemma 1 to simplify the two double integrals.

We must now set some conditions to solve the problem explicitly.

Definition 23.5 (Initial and Boundary conditions)
An initial condition is a specification of (t, y, y′...y(n)) for n initial values t = ti.
A boundary condition is a specification of y at the end-points of an interval.

1. Initial condition: suppose y(0) = 0 and y′(0) = A. Then:

y(t) = At+
∫ t

0
(t− s)g(s)ds− λ

∫ t

0
(t− s)y(s)ds (17.2.11)

which is a Volterra non-homogeneous integral equation with K(t, s) = λ(t − s) and f(t) =
At+

∫ x

0 (t− s)g(s)ds.

2. Boundary condition: suppose y(0) = 0 and y(L) = B. Then we find upon inserting t = L

that:
y′(0) = 1

L

(
λ

∫ L

0
(L− s)y(s)ds−

∫ L

0
(L− s)g(s)ds+B

)
(17.2.12)

and substituting back into the original integral equation we find:

y = Bt

L
−
∫ L

0

t

L
(L− s)g(s)ds+

∫ t

0
(t− s)g(s)ds+λ

(∫ L

0

t

L
(L− s)g(s)ds−

∫ t

0
(t− s)g(s)ds

)
(17.2.13)

If we now define a functionK(s, t) such that:∫ L

0
K(s, t)f(s)ds =

∫ L

0

t

L
(L− s)f(s)ds−

∫ t

0
(t− s)f(s)ds (17.2.14)

then we may write:

y = Bt

L
−
∫ L

0
K(s, t)g(s)ds︸ ︷︷ ︸
f(x)

+λ
(∫ L

0
K(s, t)y(s)ds

)
(17.2.15)
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It turns out that the kernel is1 :

K(s, t) =

{
s
L (L− t) when 0 ≤ s ≤ t ≤ L
t
L (L− s) when 0 ≤ t ≤ s ≤ L

(17.2.20)

We therefore have a non-homogeneous Fredholm equation.

It is clear that the set of conditions we impose also affects the form of the equivalent integral equa-
tion. An ODE by itself without initial/boundary conditions is not enough.

This is because an ODE by itself can’t be solved exactly, that is, we cannot find a particular so-
lution, just a general solution. An integral equation however has an exact solution, with no free
parameters, and can’t therefore be associated to an ODE alone.

17.3 Picard iteration
Consider the Volterra integral equation:

y(t) = f(t) +
∫ t

a

K(s, t)y(s)ds (17.3.1)

with f continuous on [a, b] andK, ∂xK continuous on [a, b]2. Our goal will be to define an iterative
sequence (yn) which improves as n increases. We should thereforemake an initial guess, and insert
that into the equation to find a better solution. We will define this sequence, known as a Picard
iteration as follows: {

y0 = f(t)
yk(t) = f(t) +

∫ t

a
K(s, t)yk−1(s)ds

(17.3.2)

Because f(t) is continuous byhypothesis, so are all yi for i = 0, 1, 2.... Wenowconjecture that:

Proposition 23.6 (Picard iteration convergence)
We have that:

|un(t)| = |yn(t)− yn−1(t)| ≤Mn (17.3.3)

with
∑∞

n=1 Mn converging.

Proof. SinceK, f are continuous over [a, b], they must be bounded:

|K(s, t)| ≤ L, |f(t)| ≤M ∀s, t ∈ [a, b] (17.3.4)
1Indeed:∫ L

0
K(s, t)f(s)ds =

∫ t

0
K(s, t)f(s)ds +

∫ L

t

K(s, t)f(s)ds (17.2.16)

=
∫ t

0

s

L
(L − t)f(s)ds +

∫ L

t

t

L
(L − s)f(s)ds (17.2.17)

=
∫ t

0

s

L
(L − t)f(s)ds +

∫ L

0

t

L
(L − s)f(s)ds −

∫ t

0

t

L
(L − s)f(s)ds (17.2.18)

=
∫ t

0
(s − t)f(s)ds +

∫ L

0

t

L
(L − s)f(s)ds (17.2.19)

as required.
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We can therefore write:

|y1(t)− y0(t)| =

∣∣∣∣∣
∫ t

a

K(s, t)y0(s)ds

∣∣∣∣∣ =
∫ x

a

|K(s, t)||f(s)|ds ≤ LM(x− a) (17.3.5)

Let us now suppose that for some n ≥ 2:

|yn−1(t)− yn−2(t)| ≤ Ln−1M
(t− a)n−1

(n− 1)!
(17.3.6)

We then find:

|yn(s)− yn−1(s)| =

∣∣∣∣∣
∫ t

a

K(s, t)(yn−1(s)− yn−2(s))ds

∣∣∣∣∣ (17.3.7)

≤
∫ t

a

|K(s, t)||yn−1(s)− yn−2(s)|ds (17.3.8)

≤
∫ t

a

LnM
(s− a)n−1

(n− 1)!
ds (17.3.9)

=≤ LnM
(t− a)n

n!
(17.3.10)

as required.

We can therefore defineMn as:

|yn(t)− yn−1(t)| ≤ LnM
(t− a)n

n!
≤ LnM

(b− a)n

n!
≡Mn (17.3.11)

Consequently:
∞∑

n=1
Mn = M(eL(b−a) − 1) (17.3.12)

and we then find that
∑∞

n=1(yn − yn−1) converges uniformly to u on [a, b] using the Weierstrass
test. ■

Notice however that this is a telescopic sum equal to y−y0 = uwhich implies that y = u+y0.

We can then assert that ∀ϵ > 0,∃N with:

|y(x)− yn(x)| < ϵ ∀n ≥ N (17.3.13)

This implies that:
|K(s, t)y(s)−K(s, t)yn(s)| < Lϵ ∀n ≥ N (17.3.14)

This is equivalent to saying that our iteration converges to the non-homogeneous Fredholm equa-
tion: ∫ t

a

K(s, t)yn(s)ds −→
∫ t

a

K(s, t)y(s)ds, as n→∞ (17.3.15)

Wehave therefore shown the existence of a continuous solution, butwhat about its uniqueness?
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Suppose there is another solution Y so that:

|y(t)− Y (t)| ≤ P (17.3.16)

Let us suppose inductively that:

|y(t)− Y (t)| ≤ Ln−1 (t− a)n−1

(n− 1)!
(17.3.17)

Then:

|y(t)− Y (t)| =

∣∣∣∣∣
∫ t

a

K(s, t)(y(s)− Y (s))ds

∣∣∣∣∣ (17.3.18)

≤ LnP
(t− a)n

n!
(17.3.19)

≤ LnP
(b− a)n

n!
(17.3.20)

As n → ∞ the RHS tends to zero, and we therefore find that y = Y thus proving the unique-
ness.

One can use a very similar process to the Fredholm equation using the iteration:{
y0 = f(t)
yk(t) = f(t) + λ

∫ t

a
K(s, t)yk−1(s)ds

(17.3.21)

In this case we find that:
|yn(t)− yn−1(t)| ≤ |λ|nLnM(b− a)n (17.3.22)

is uniformly convergent only if |λ| ≤ 1
L(b−a) . This is the sufficient condition that must be met for a

solution to exist.

17.4 Existence and uniqueness
Consider the Cauchy problem:

y′ = f(x, y), y(a) = c (17.4.1)

where f satisfies the following two conditions:

(i) f is continuous in a region U containing R = {(x, y) : |x− a| ≤ h, |y − c| ≤ k} ⊆ U .

(ii) f satisfies the Lipschitz condition:

|f(x, y1)− f(x, y2)| ≤ A|y1 − y2|, ∀(x, y1), (x, y2) ∈ U (17.4.2)

(iii) Defining:
M = sup{|f(x, y)| : (x, y) ∈ R} (17.4.3)

then we require:
Mh ≤ k (17.4.4)

If these three conditions are satisfied, a very important result, known as the Cauchy-Picard exis-
tence and uniqueness theorem, is established.
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Theorem (Cauchy-Picard Existence and Uniqueness theorem)
If (i), (ii), (iii) are all satisfied then there exists for |x − a| ≤ ℏ a solution to the Cauchy
problem:

y′ = f(x, y), y(a) = c (17.4.5)

and this solution is unique in U .

We will present the proof of a more general result later.
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18.1 Types of first order ODEs
In this chapter we will consider first order differential equations which can be written in standard
form:

dy

dx
= f(x, y) (18.1.1)

where f(x, y) is a function. Since f can always be written as the ratio of two functions M(x, y)
and −N(x, y), a first order ODE in standard form can also be written equivalently in differential
form:

M(x, y)dx+N(x, y)dy = 0 (18.1.2)

The main first order ODEs we will be concerned with are:

(i) Separable ODEs: ifM(x, y) = M(x) and N(x, y) = N(x), then we can separate the x and y
variables and integrate them individually.

(ii) Exact ODEs: if ∂M
∂y = ∂N

∂x then the differential form of a first order ODE can be written as the
total differential of a function.

(iii) Special inexact ODEs: there are some cases where even though an ODE may not be exact,
there are ways to bring it to a separable form by a change of variables.

(iv) Linear ODEs: if f(x, y) = −p(x)y + q(x) then we can find an integrating factor that will
separate variables.

(v) Bernoulli equations: linear ODEs but with q(x) containing a xr term for r ∈ R.

Before investigating how these first order ODEs may be solved, we state an important theoretical
result on the existence and uniqueness of solutions to first order ODEs.

Theorem (Existence and uniqueness)
Let f(t, y) and ∂f

∂y exist and be continuous on some domainD ⊂ R2. Then: ∀(t0, y0) ∈ D,∃Pt
such that the Cauchy problem: {

ẏ = f(t, y)
y(t0) = y0

(18.1.3)

has a unique solution in the interval I = [t0−Pt, t0+Pt]. If y1(t) and y2(t) are both solutions
on I1 and I2 respectively, then y1(t) = y2(t), that is, a the solution is unique.
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18.2 Separable Differential Equations
Suppose thatM(x, y) = M(x) and N(x, y) = N(y):

M(x)dx+N(y)dy = 0 ⇐⇒ dy

dx
= −M(x)

N(y)
(18.2.1)

These are perhaps the simplest to solve, and luckily crop up quite often in physics, especially in
classical mechanics when we relate the rate of change of some quantity with another observable.
To solve (18.2.1), we simply integrate:∫

M(x)dx+
∫
N(y)dy = 0 (18.2.2)

For example, consider an electron of charge −e, massm orbiting a proton of charge e at a radius r
satisfies the ODE:

dr

dt
= − µ0e

4

12π2ϵ0m2c

1
r2 (18.2.3)

This is clearly a separable equation withM(t) = − µ0e4

12π2ϵ0m2c and N(r) = 1
r2 . Integrating:∫

r2dr = −
∫

µ0e
4

12π2ϵ0m2c
dt =⇒ r(t)3 = − µ0e

4

4π2ϵ0m2c
t+ C (18.2.4)

where C is a constant we need to determine through suitable initial conditions. Suppose for ex-
ample that the electron is initially orbiting the proton at a radius r0 at t = 0. Then we find that
r3

0 = C. If we want to find the time T it takes for the electron to collapse into the proton, then we
must require r(T ) = 0 and thus:

T = 4π2ϵ0m
2c

µ0e4 r3
0 (18.2.5)

It turns out that for ri ≈ 5 × 10−11 m, it takes the electron just 10−11 seconds to collapse! Luckily
this paradox is not due to an error in our solution but rather a sign that classical physics cannot
provide a coherent description of atomic phenomena.

18.3 Exact Differential Equations
Consider an ODE in full differentials, with solutions Φ(x, y) such that:{

∀(x, y) ∈ D, Φx = P (x, y), Φy = Q(x, y)
dΦ = 0

(18.3.1)

We can then rewrite, using the chain rule, the equation as:

P (x, y)dx+Q(x, y)dy = 0 (18.3.2)

Theorem (Exactness condition)
If ∂P

∂y = ∂Q
∂x through a simply connected domain D, then Pdx + Qdy = 0 is an exact first

order ODE.

Proof. Consider the solution Φ(x, y) = C, for some constant C. It follows from the chain rule
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that:

∂Φ
∂x

= P,
∂Φ
∂y

= Q =⇒ ∂2Φ
∂x∂y

= ∂2Φ
∂y∂x

=⇒ ∂P

∂y
= ∂Q

∂x
■

Strategy (Exact) To solve:
1. Set the equation: Φx = P (x, y), and integrate directly with respect to x:

Φ =
∫
P (x, y)dx+ ϕ(y) (18.3.3)

2. Substitute this into Φy = Q(x, y):

d

dy

(∫
P (x, y)dx+ ϕ(y)

)
= Q(x, y) (18.3.4)

and rearrange to find:

ϕ(y) =
∫ (

Q(x, y)− d

dy

∫
P (x, y)dx

)
dy (18.3.5)

3. Set: ∫
P (x, y)dx+

∫ (
Q(x, y)− d

dy

∫
P (x, y)dx

)
dy = C (18.3.6)

for some constant C.

18.4 Inexact Differential Equations
Inexact differential equations are of the form:{

P (x, y)dx+Q(x, y)dy = 0
∂P
∂y 6=

∂Q
∂x

(18.4.1)

unlike exact differential equations. Firstly, consider an ODE of the following form:

dy

dx
= f(ax+ by). (18.4.2)

Strategy (Inexact)
To solve:

1. Apply the change of variables z(x) = ax+ by(x) to find:

dz

dx
= a+ b

dy

dx
(18.4.3)

2. Substitute the expression for y′:

dz

dx
= a+ bf(z) (18.4.4)
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3. Solve as a separable differential equation:∫
dz

a+ bf(z)
=
∫
dx (18.4.5)

Next, consider the case where (2.3) is homogeneous, that is:

P (λx, λy)
P (x, y)

= Q(λx, λy)
Q(x, y)

, ∀λ 6= 0 (18.4.6)

Then:
dy

dx
= −P (x, y)

Q(x, y)
= −P (λx, λy)

Q(λx, λy)
|λ= 1

x
= −

P (1, y
x )

Q(1, y
x )

= f

(
y

x

)
(18.4.7)

Strategy (Homogeneous)
To solve:

1. Apply the change of variables u(x)x = y(x):

x
du

dx
+ u = dy

dx
(18.4.8)

2. Substitute into original ODE:
f(u) = u+ x

du

dx
(18.4.9)

and separate variables: ∫
du

f(u)− u
=
∫
dx

x
. (18.4.10)

where f(u) 6= u.

18.5 Integrating Factor Method
Consider the non homogeneous ODE of the form:

ẏ(t) = a(t)y(t) + f(t) (18.5.1)

To solve, we wish to multiply the whole equation by a so called integrating factor Λ such that
Λ̇ = Λa(t). Then:

Λẏ(t)−
Λ̇︷ ︸︸ ︷

Λa(t) y(t) = Λf(t) =⇒ dΛy(t)
dt

= Λf(t) (18.5.2)

=⇒ y(t) = 1
Λ(t)

[
C +

∫ t

0
Λ(t′)f(t′)dt′

]
(18.5.3)

To find the integrating factor, we solve the separable equation:

dΛ
dt

= Λ(t)a(t) =⇒
∫
dΛ
Λ

=
∫
a(t)dt =⇒ Λ(t) = exp

(∫ t

0
a(t′)dt′

)
(18.5.4)
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We have proven the following, very useful result:

Theorem (Integrating factor)
Let ẏ(t) = a(t)y(t) + f(t) be a first order linear ODE. Its general solution is then given by:

y(t) = 1
Λ(t)

[
C +

∫ t

0
Λ(t′)f(t′)dt′

]
, Λ(t) = exp

(∫ t

0
a(t′)dt′

)
(18.5.5)

18.6 Bernoulli Equations
Finally, let us look at the Bernoulli Equations:

y′ + a(x)y = b(x)yn (18.6.1)

which due to the yn term, is non linear.

Strategy (Bernoulli equation)
To solve:

1. Divide through by yn to find:

dy

dx
y−n + a(x)y1−n = b(x) (18.6.2)

2. Apply a change of variables u = y1−n:

du

dx
+ (1− n)a(x)u = (1− n)b(x) (18.6.3)

3. Use integrating factor method.

18.7 Stability and Equilibrium points

Definition (Equilibrium points)
An equilibrium point of a differential equation is a constant solution y′ = 0, ∀t ∈ D.It is:

Stable: if y → c as t→∞, in other words the deviation decays.
Unstable: if y →∞ as t→∞, in other words the deviation grows.

Definition 2.1. We can linearize differential equations by doing a perturbative analysis. Suppose
y = a is an equilibrium point of y′ = f(x, y). We then induce an arbitrarily small perturbation
y = a+ ϵ(t), so that:

dϵ

dt
=dy

dt
= f(a, t) + ϵ

∂f

∂y
(a, t) +O(ϵ2) (18.7.1)

≈ϵ∂f
∂t

(a, t) (18.7.2)

If ϵ̇ > 0, we have unstable equilibrium, if ˙ϵ(t) < 0, we have stable equilibrium.
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19ODE3 Second Order ODEs

19.1 Homogeneous equation
We consider the second order homogeneous differential equation with initial conditions:

a(x)y′′ + b(x)y′ + c(x)y = 0, (x ∈ [a, b])
y(x0) = y0

y′(x0) = y′
0

(19.1.1)

where a(x) > 0,∀x ∈ [a, b].

Definition (Fundamental matrix and Wronskian) Suppose y1(x) and y2(x) are differ-
entiable functions on [a, b]. We then define their Fundamental matrix to be:

Y(y1, y2) =
(
y1(x) y2(x)
y′

1(x) y′
2(x)

)
(19.1.2)

and define their Wronskian to be the determinant of the fundamental matrix:

W (y1, y2)(x) =
∣∣∣∣y1(x) y2(x)
y′

1(x) y′
2(x)

∣∣∣∣ = y1(x)y′
2(x)− y′

1(x)y2(x) (19.1.3)

Proposition (Linear (in)dependence)
For two non-constant functions y1(x), y2(x) differentiable on [a, b]:

a) If the Wronskian W (y1, y2)(x0) 6= 0 for some x0 ∈ [a, b], the two functions y1(x) and
y2(x) are linearly independent on [a, b].

b) If they are linearly dependent thenW (y1, y2)(x) = 0,∀x ∈ [a, b].

Proof.

a. Assume that the Wronskian is non-zero for some x0 ∈ [a, b], then:

y1(x0)y′
2(x0)− y2(x0)y′

1(x0) 6= 0 =⇒ y1(x0) 6= y′
1(x0)
y′

2(x0)
y2(x0) = cy′

1(x0) (19.1.4)

where we set c = y′
1(x0)

y′
2(x0) . Therefore y1(x0) and y2(x0) are linearly independent. Using the

result b) we see that y1(x) and y2(x) must be linearly independent for all x ∈ [a, b], since
otherwise the Wronskian would vanish identically.
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b. Assume that the solutions are linearly dependent, so that: c1y1(x) + c2y2(x) = 0 for some
c1, c2 ∈ R not both zero. Then differentiating with respect to x one finds that:{

c1y1(x) + c2y2(x) = 0
c1y

′
1(x) + c2y

′
2(x) = 0

(19.1.5)

which we may consider as a system of equations in c1, c2. For a non-zero solution (c1, c2) to
exist the following determinant must vanish:∣∣∣∣y1(x) y2(x)

y′
1(x) y′

2(x)

∣∣∣∣ = 0 =⇒ W (y1, y2)(x) = 0, ∀x ∈ [a, b] (19.1.6)

thus proving the desired result. as required. ■

Suppose that by some stroke of luck we have already found two linearly independent solutions,
y1(x) and y2(x), of (19.1.1). Due to the linearity of (19.1.1), we may use the principle of superpo-
sition and state that:

y(x) = c1y1(x) + c2y2(x), ∀c1, c2 ∈ R (19.1.7)

will also be a solution. We now determine the constants:(
y(x0)
y′(x0)

)
=
(
y1(x0) y2(x0)
y′

1(x0) y′
2(x0)

)
·
(
c1
c2

)
= Y ·

(
c1
c2

)
(19.1.8)

Then, the coefficients are determined as:(
c1
c2

)
=
(
y0
y′

0

)
· Y−1 (19.1.9)

= 1
W (y1, y2)(x0)

(
y′

2(x0) −y2(x0)
−y′

1(x0) y1(x0)

)
·
(
y(x0)
y′(x0)

)
(19.1.10)

Note that had we chosen linearly dependent solutions then Y would not have been invertible, and
thus we would not be able to find c1, c2 directly through this method.

Theorem (Abel’s Identity for second order ODE)
If y1(x) and y2(x) are solutions to the homogeneous ODE:

y′′ + p(x)y′ + q(x)y = 0 (19.1.11)

then:
W (y1, y2)(x) = W (y1, y2)(x0) exp

[
−
∫ x

t0

p(s)ds
]

(19.1.12)

Proof. The derivative of a determinant is given by Jacobi’s formula:

d

dx
det{A(x)} = tr

(
adj A(x)dA(x)

dx

)
(19.1.13)

For a 2× 2 matrix A:
A =

(
a(x) b(x)
c(x) d(x)

)
=⇒ adj A =

(
d(x) −b(x)
−c(x) a(x)

)
(19.1.14)
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so that:

adj A(x)dA(x)
dx

=
(
d(x) −b(x)
−c(x) a(x)

)(
a′(x) b′(x)
c′(x) d′(x)

)
(19.1.15)

=
(
a′(x)d(x)− b(x)c′(x) b′(x)d(x)− b(x)d′(x)
a(x)c′(x)− a′(x)c(x) a(x)d′(x)− c(x)b′(x)

)
(19.1.16)

and hence:
d

dx
det{A} = a′(x)d(x)− b(x)c′(x) + a(x)d′(x)− c(x)b′(x) (19.1.17)

Therefore, substituting a(x) = y1(x), c(x) = y′
1(x), b(x) = y2(x), d(x) = y′

2(x) we find that:

W ′(y1, y2)(x) = y′
1(x)y′

2(x)− y2(x)y′′
1 (x) + y1(x)y′′

2 (x)− y′
1(x)y′

2(x) (19.1.18)
= y1(x)y′′

2 (x)− y2(x)y′′
1 (x) (19.1.19)

We may now substitute y′′
i (x) + pi(x)y′

i(x) + qi(x) = 0 for i = 1, 2 t find that

W ′(y1, y2)(x) = = y1(x)(−p(x)y′
2(t)− q(x)y2(x))− y2(x)(−p(x)y′

1(x)− q(x)y1(x)) (19.1.20)
= −(y1(x)y′

2(x)− y2(x)y′
1(x))p(x) (19.1.21)

= −W (y1, y2)(x)p(x) (19.1.22)

Separating variables, and integrating from x0 to x, one finally finds:

W (y1, y2)(x) = W (y1, y2)(x0) exp
[
−
∫ x

x0

p(s)ds
]

(19.1.23)

as required. ■ ■

19.2 Non-homogeneous
Definition 3.4. The second order non-homogeneous differential equation is:

a(t)y′′ + b(t)y′ + c(t)y = f(t)
y(t0) = y0

y′(t0) = y′
0

(19.2.1)

and its associated homogeneous equation is (3.1).

Theorem (Complementary Function and Particular Integral)
The general solution to the non-homogeneous differential equation may be written as the
sum:

y(t) = yCF (t) + yP I(t) (19.2.2)

where yCF is the complementary function, that is, the solution to the associated homoge-
neous equation, and yP I is a particular solution.

Proof.

Consider the difference between the general solution and the particular integral:y(t)− yP I(t). This
must be a solution to the associated homogeneous equation by the superposition principle. In-
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deed:

a(t)(y′′(t)− y′′
P I(t)) + b(t)(y′(t)− y′

P I(t) + c(t)(y(t)− yP I(t)) (19.2.3)
=a(t)y′′(t) + b(t)y′(t) + c(t)y(t)− (a(t)y′′

P I(t) + b(t)y′
P I(t) + c(t)yP I(t)) (19.2.4)

=f(t)− f(t) = 0 (19.2.5)

as required. Hence, since y1(t) and y2(t) form a fundamental set of solutions, we may write any
solution of the associated homogeneous equation, including y(t) − yP I(t), as a linear combina-
tion:

y(t)− yP I(t) = c1y1(t) + c2y2(t) =⇒ y(t) = yP I(t) + c1y1(t) + c2y2(t) (19.2.6)

as required. ■

It may seem like this theorem is of very little use, since a particular solution is ipso facto given by
the general solution. However, the following twomethodsmay be used to determine the particular
solution:

1. Undetermined Coefficients: guessing and checking, quick but works only in special cases.

2. Variation of parameters: more general, almost always works.

19.3 Undetermined Coefficients
This method consists in guessing the form of the particular integral leaving the coefficients inde-
terminate, and then plug them into the differential equation.

The following table summarizes possible particular integrals for different functions f(t):

g(t) yP I(t)
αeβt Aeβt

a cos(βt) + b sin(βt) A cos(βt) +B sin(βt)∑n
i=0 aix

i
∑n

i=0 Aix
i

19.4 Variation of Constants
Assume that we have found the complementary solution to the non-homogeneous equation:

yCF (t) = c1y1(y) + c2y2(t) (19.4.1)

and look for the particular integral of the form:

yP I(t) = ψ1y1 + ψ2y2 (19.4.2)

such that:
ψ′

1y1 + ψ′
2y2 = 0 (19.4.3)

Differentiating:

y′
P I = ψ1y

′
1 + ψ2y

′
2 (19.4.4)

y′′
P I(t) = ψ′

1y
′
1 + ψ′

2y
′
2 + ψ1y

′′
1 + ψ2y

′′
2 (19.4.5)
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Inserting these into the differential equation and simplifying:

ψ′
1y

′
1 + ψ′

2y
′
2 = f(t)

a(t)
(19.4.6)

Let us finally assume that a(t) = 1 (which corresponds to rearranging the equation so that the
coefficient of y′′ is 1), then: {

ψ′
1y

′
1 + ψ′

2y
′
2 = f(t)

ψ′
1y1 + ψ′

2y2 = 0
(19.4.7)

=⇒ ψ′
1 = −ψ

′
2y2

y1
=⇒ −ψ

′
2y2

y1
y′

1 + ψ′
2y

′
2 = f(t) (19.4.8)

=⇒ ψ′
2 = y1f(t)

y1y′
2 − y2y′

1
, ψ′

1 = − y2f(t)
y1y′

2 − y2y′
1

(19.4.9)

Since y1 and y2 are linearly independent, their Wronskian is non-zero, and thus:

ψ′
1 = − y2f(t)

W (y1, y2)
, ψ′

2 = y1f(t)
W (y1, y2)

, (19.4.10)

which can be integrated directly in (3.4) to get:

yP I(t) = −y1

∫
y1f(t)

y2y′
2 − y2y′

1
dt+ y2

∫
y1f(t)

W (y1, y2)
(19.4.11)

19.5 Reduction of Order
Finally, let us look at how we may simplify differential equations when one solution to the associ-
ated homogeneous equation, y1(t) is known.

Then, to solve:
1. We search for solutions of the form:

y(t) = ϕ(t)y1(t) (19.5.1)

and evaluate its first and second derivatives.
2. We substitute into the original differential equation.
3. Solve the resulting differential equation by substituting ψ = ϕ′.

19.6 Euler-Cauchy equations
19.7 Intro to Green’s functions
Up until now all our methods have relied on producing a general solution and subsequently fitting
it to given boundary conditions. Themethod of Green’s functions (whichwill prove to be powerful
for PDEs too) already takes the boundary conditions from the beginning, building a particular
solution directly.
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Theorem ()
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20ODE4MechanicalVibrations andRes-
onance Phenomena

Constant coefficient second-order linear ODEs are of particular interest in the area of mechanical
vibrations.

20.1 Homogeneous Equation
Consider the homogeneous equation:

ÿ + aẏ + by = 0 (20.1.1)

and we guess a solution in exponential form:

y(t) = Ceλt (20.1.2)

Plugging into (4.1) one finds:
λ2 + aλ+ b = 0 (20.1.3)

which is called the auxiliary equation. The quadratic formula then yields:

λ1,2 = −a±
√
a2 − 4b

2
(20.1.4)

which brings us to the following result.

Proposition 1

The solutions to the second order homogeneous ODE with constant coefficients is:

y(t) = C1e
λ1t + C2e

λ2t (20.1.5)

provided that the solutions λ1, λ2 are non-degenerate. In the case where:

a2 > 4b : we have two real, distinct solutions, and by the superposition principle:

y(t) = e−at/2(C1e
t
√

a2−4b/2 + C2e
−t

√
a2−4b/2) (20.1.6)
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a2 < 4b : we have two complex, distinct solutions, and by the superposition principle:

y(t) = e−at/2(C1e
it

√
4b−a2/2 + C2e

−it
√

4b−a2/2)
Euler’s identity then gives:

y(t) = e−at/2(A cos Ωt+B sin Ωt
)

= αe−at/2 cos(Ωt+ ϕ) (20.1.7)

where Ω =
√

4b−a2

2 .

If instead we have two degenerate solutions, so that a2 = 4b , then we have only found one solu-
tion:

y1(t) = Ce−at/2. (20.1.8)

We use the method of reduction of variables to find the general solution:

y(t) = ψ(t)e−at/2 =⇒ ψ′′ +
(
b− a2

4

)
ψ = 0 (20.1.9)

∴ ψ′′ = 0 =⇒ ψ = C1t+ C2 (20.1.10)

since b = a2

4 . Finally:
y(t) = (C1t+ C2)eat/2 (20.1.11)

20.2 Damped Harmonic Motion
For a damped harmonic system, there will be two forces in action, a restoring force Fres = −mω2

0y

and a damping force Fdamp = −mγẏ. Newton’s second law yields the second order ODE with
constant coefficients:

ÿ + γẏ + ω2
0y = 0 (20.2.1)

In this case, we may define:

Ω ≡

√
ω2

0 −
γ2

4

2
(20.2.2)

Figure 20.1. Plots of over damped (red), critically damped (black) and under damped (purple) solutions.

We may further impose the initial conditions y(0) = y0, ẏ(0) = 0. As in the previous section, we
consider three special cases:

− 244 −



20.2. DAMPED HARMONIC MOTION

ω0 > λ/2 , the oscillator is under damped. The solution is:

y(t) = y0e
−γt/2

(
cos Ωt+ γ

2Ω
sin Ωt

)
(20.2.3)

Note that this can be rewritten as:

y(t) = Ae−γt/2 cos(Ωt+ ϕ) (20.2.4)

which implies that the period of oscillations is:

τ = 2π
Ω

(20.2.5)

and over a cycle the amplitude is multiplied by:

e−γτ/2 = exp
(
− 2πγ

Ω

)
(20.2.6)

called the amplitude decay factor.

ω0 < λ/2 , the oscillator is over damped. The solution is:

y(t) = y0

2Ω
e−γt/2

[(
Ω + γ

2

)
eΩt +

(
Ω− γ

2

)
e−Ωt

]
(20.2.7)

ω0 = λ/2 ,the oscillator is critically damped, the solution is:

y(t) = y0e
−γt/2(1 + γ

2
t
)

(20.2.8)

Definition 4.1 For a lightly damped oscillator in the regime γ � ω0, with initial stored energy E0
and energy lost per period of oscillation PEτ , the quality factor is defined as:

Q = 2πE0

PEτ
(20.2.9)

Proposition 2. The quality factor for a damped oscillator is:

Q = ω0

γ
(20.2.10)

Proof. The energy stored in the oscillator is:

E0 = 1
2
ky2

0 = 1
2
mω2

0y
2
0 (20.2.11)

The under damped solution gives:y(t) = y0e
−γt/2 cos

(
ω0t− ϕ

)
ẏ(t) = −y0e

−γt/2
(

γ
2 cos

(
ω0t− ϕ

)
+ ω0 sin

(
ω0t− ϕ

)) (20.2.12)
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We then define the energy at t to be the sum of the kinetic and potential energy:

E(t) = 1
2
mẏ2 + 1

2
mω0y

2 (20.2.13)

=⇒ dE(t)
dt

= mÿẏ +mω0yẏ = mẏ (ÿ + ω0y)︸ ︷︷ ︸
−ωẏ

= −mγẏ2 (20.2.14)

∴ PEτ =
∫ t+P t

t

−mγẏ2dt (20.2.15)

=
∫ t+P t

t

mγy2
0e

−γt
(γ

2
cos
(
ω0t− ϕ

)
+ ω0 sin

(
ω0t− ϕ

))2
dt (20.2.16)

(20.2.17)

We can now apply the substitution t′ = ω0t − ϕ, so that the limits of integration become 0 and
2π:

PEτ = mγy2
0

∫ 2π

0
����:1
e−γ t′+ϕ

ω0
(γ

2
cos t′ + ω0 sin t′

)2 1
ω0
dt′ (20.2.18)

= mγy2
0

ω0

π

4
(4ω2

0 + γ2) (20.2.19)

= πmγy2
0ω0

(
1 +

�
�
�7

1
γ2

4ω2

)
(20.2.20)

= πmγy2
0ω0 (20.2.21)

hence:
Q = 2π

1
2mω

2
0y

2
0

πmγy2
0ω0

= ω0

γ
(20.2.22)

as required. ■

20.3 Forced Oscillations
Finally, let us consider the damped, forced oscillations equation:

ÿ + γẏ + ω2
0y = F cosωt (20.3.1)

We have already found the complementary function in the previous section, we must now find a
particular solution. This can be done using the method of undetermined coefficients. To do so, we
solve the complex version of (4.10):

z̈ + γż + ω2
0z = Feiωt (20.3.2)

and use as a trial solution z = Ceiωt. Then:

C = F

ω2
0 − ω2 + iωγ

= F (ω2
0 − ω2 − iωγ)

(ω2
0 − ω2)2 + ω2γ2 (20.3.3)

Next, we define:

cosϕ = ω2
0 − ω2√

(ω2
0 − ω2)2 + ω2γ2

, sinϕ = ωγ√
(ω2

0 − ω2)2 + ω2γ2
(20.3.4)
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so that:
C = Fe−iϕ√

(ω2
0 − ω2)2 + ω2γ2

(20.3.5)

This finally gives the solution:

z(t) = Fei(ω0t−ϕ)√
(ω2

0 − ω2)2 + ω2γ2
(20.3.6)

Taking the real part yields:

yP I(t) = A cos(ωt− ϕ), A = F√
(ω2

0 − ω2)2 + ω2γ2
(20.3.7)

Finally, the general solution is:

y(t) = A cos(ωt− ϕ)︸ ︷︷ ︸
steady state

+ e−γt/2[C1 cos Ωt+ C2 sin Ωt
]︸ ︷︷ ︸

transient

(20.3.8)

where the first term is the steady state solution, and the second term is the transient solution, and
quickly decays after t� γ−1.

Figure 20.2. Forced solutions for over damped, under damped and critically damped oscillators.

20.4 Resonance
Let us now consider the scenario in which γ � ω0, then A(ω) has a peak near ω0, that is, when
the frequency of the forced oscillations are close to the natural frequency of the oscillator. This
phenomenon is known as resonance. To find the peak, we set A′(ω) = 0:

4ωres(ω0 − ω2
res) + 2ωresγ

2 = 0 =⇒ ωres =
√
ω2

0 −
γ2

2
≈ ω0 (20.4.1)

The peak amplitude is then:
Ares ≈ A(ω0) = F

ω0γ
(20.4.2)
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21ODE5 General Linear ODEs

21.1 Existence and Uniqueness
We now consider the general theory of linear ODEs.

Theorem (Existence and uniqueness linear)
If all Aij(t) and fi(t) are continuous on I = (t1, t2), then ∀t0 ∈ I,∀y0 ∈ Rn, the Cauchy
problem: {

ẏ = A(t)y + f(t)
y(t0) = y0

(21.1.1)

has a unique solution in I

21.2 Fundamental set and Wronskians

Definition (Fundamental set of solutions) The fundamental system of solutions of the
homogeneous equation:

ẏ = A(t)y + f(t) (21.2.1)

is the set of linearly independent solutions {y1(t),y2(t), ...,yn(t)} to the associated homo-
geneous differential equation:

ẏ = A(t)y (21.2.2)

Proposition (Independent solutions)
The following are true for any Cauchy system of the form (3.1):

a. If ∃t0 ∈ I such that {yi(t0)} is linearly independent, then the fundamental set of solu-
tions is linearly independent.

b. If ∃t0 ∈ I such that {yi(t0)} is linearly dependent, then the fundamental set of solu-
tions is linearly dependent.

Proof.

a. Suppose that {yi(t0)} is linearly dependent. Then, ∃{Ci} not all equal to zero such that,
∀t ∈ I, Ciyi = 0. However, this is not satisfied for t = t0, thus we have a contradiction.
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b. Suppose that {yi(t0)} is linearly dependent. Then, ∀t ∈ I,∃{Ci} such that: y = Ciyi = 0.
This implies thaty(t0) = 0, and by the uniqueness theorem, y(t) = 0 identically, and therefore
Ciyi(t) = (0),∀t as required. ■

Definition (Wronskian)
The fundamental set of solutions can be packed into a matrix, called the fundamental ma-
trix:

Y(t) =
(
y1(t) y2(t) ...,yn(t)

)
(21.2.3)

TheWronskian is then defined as the determinant of the fundamental matrix:

W (t) = det Y(t) (21.2.4)

Theorem (Liouville’s formula)
To compute the Wronskian, one can use Liouville’s formula:

W (t) = W (t0) exp
[ ∫ t

t0

trA(t′)dt′
]

(21.2.5)

Proof. The derivative of the Wronskian is given by differentiating row by row and then sum-
ming:

Ẇ (t) =
n∑

i=1
det Y∗

i (t) (21.2.6)

where we define:

Y∗
i (t) =



y11 y12 . . . y1n

...
...

ẏi1 ẏi2 . . . ẏin

...
...

yn1 yn2 . . . ynn


(21.2.7)

Now note that since Ẏ = AY ⇐⇒ ẏik =
∑

j Aijyjk, we may write the above as:

Y∗
i (t) =



y11 y12 . . . y1n

...
...∑

j Aijyj1
∑

j Aijyj2 . . .
∑

j Aijyjn

...
...

yn1 yn2 . . . ynn


(21.2.8)

Now since the determinant is unchanged if we subtract from one row a linear combination of all the
others, we can subtract from the ith row the following linear combination of all other rows:

n∑
j 6=i

Aij

(
yj1 ... yjn

)
(21.2.9)
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which will leave only the aii coefficients in the matrix:

det(Y∗
i (t)) = det



y11 y12 . . . y1n

...
...

Aiiyj1 Aiiyj2 . . . Aiiyjn

...
...

yn1 yn2 . . . ynn


= Aii det Y (21.2.10)

Therefore, summing over all iwe get:

det Ẇ (t) = (trA) det Y(t) =⇒ Ẇ (t) = (trA)Y(t) (21.2.11)

which can be solved to yield the required formula. ■

21.3 Homogeneous ODE
Let us now look at how to solve the homogeneous ODE:{

ẏ(t) = A(t)y
y(t0) = y0

(21.3.1)

If we know a fundamental system of solutions yi(t), then by the principle of superposition, seeing
as the elements of this set form a basis for all solutions, one finds that:

y(t) = Y(t)C (21.3.2)

We impose the condition u(t0) = y0 to get:

C = Y−1(t0)y0 (21.3.3)

where ∃Y−1(t0) since the columns of theWronskian are all linearly independent (linearly indepen-
dent solutions). The solution to the Cauchy problem is thus:

y(t) = Y(t)Y−1(t0)y0 (21.3.4)

21.4 Variation of parameters
Oncewehave solved the homogeneous equation, wemaygeneralise our results to non-homogeneous
differential equations. Consider the following solution

y(t) = Y(t)C + yP I(t) (21.4.1)

which subject to the initial condition y(t0) = y0 yields:

C = Y−1(t0)[y0 − yP I(t0)] (21.4.2)

So how can we find the particular integral? It suffices to use the method of variation of constants,
Ci → ψi(t):

y(t) =
∑

i

yi(t)ψi(t) = Y(t)ψ (21.4.3)
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We substitute this into the non homogeneous equation:

ẏ(t) = Ẏψ + Yψ̇ = AYψ + f =⇒ Yψ̇ = f (21.4.4)

since Ẏ = AY. Noting that det Y(t) = W (t) 6= 0 then:

ψ̇ = Y−1f =⇒ ψ = C +
∫ t

t0

Y −1(t)f(t′) (21.4.5)

so that:
y(t) = Y(t)

[
C︸ ︷︷ ︸

CF

+
∫ t

t0

Y−1(t)f(t′)
]

(21.4.6)

We substitute back the expression for C and find:

y(t) = Y(t)

[
Y−1(t0)y0 +

∫ t

t0

Y−1(t)f(t′)dt′
]

(21.4.7)

21.5 Higher Order linear ODEs
Consider the general form of a linear ODE:

y(n) + pn−1(t)y(n−1) + ...+ p1(t)y′ + p0(t)y = f(t) (21.5.1)

and assume we have found a fundamental set of solutions {yi(t)} for the associated homoge-
neous differential equation. Then, by the principle of superposition, the complementary function
is:

yCF (t) =
n∑

i=1
ciyi(t) (21.5.2)

We now perform a variation of parameters and write the particular integral as

yP I(t) =
n∑

i=1
ψiyi (21.5.3)

and assuming that
∑n

i=1 ψ
′
iyi = 0, differentiating yields:

y′
P I(t) =

n∑
i=1

ψiy
′
i (21.5.4)

In general, we will set: {
y

(k)
P I (t) =

∑n
i=1 ψiy

(k)
i , k = 1, ..., n− 1∑n

i=1 ψ
′
iy

(k)
i = 0, k = 0, ..., n− 2

(21.5.5)

Finally, we evaluate thenthderivative as usualwithoutmaking any further special assumptions:

y
(n)
P I (t) =

n∑
i=1

(ψiy
(n)
i + ψ′

iy
(n−1)
i ) (21.5.6)
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We are now ready to substitute everything into (5.5):

n∑
i=1

(ψiy
(n)
i + ψ′

iy
(n−1)
i ) + pn−1(t)

n∑
i=1

ψiy
(n−1)
i + ...+ p1(t)

n∑
i=1

ψiy
′
i + p0(t)

n∑
i=1

ψiyi = f(t) (21.5.7)

which rearranging gives:

n∑
i=1

(
ψi

[ n∑
j=0

pjy
(j)
i

])
+

n∑
i=1

ψ′
iy

(n−1)
i = f(t) (21.5.8)

Note that since {yi(t)} are all solutions to the associated homogeneous equation, then
∑n

j=0 pjy
(j)
i =

0, so that:
n∑

i=1
ψ′

iy
(n−1)
i = f(t) (21.5.9)

We therefore have the following system of equations:{∑n
i=1 ψ

′
iy

(k)
i = 0, k = 0, ..., n− 2∑n

i=1 ψ
′
iy

(n−1)
i = f(t)

(21.5.10)

To solve this system of equations, we will use Cramer’s rule. As always, the Wronskian is:

W (t) =

∣∣∣∣∣∣∣∣∣∣
y1 y2 . . . yn

y′
1 y′

2 . . . y′
n

...
...

...
y

(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
(21.5.11)

TouseCramer’s rule, wemust successively substitute each columnof theWronskianwith
(
0 0 . . . f(t)

)T .
We will thus denote:

Wi =

∣∣∣∣∣∣∣∣∣∣
y1 . . . yi−1 0 . . . yn

y′
1 . . . y′

i−1 0 . . . y′
n

...
...

...
...

y
(n−1)
1 . . . y

(n)
i−1 f(t) . . . y(n−1)

n

∣∣∣∣∣∣∣∣∣∣
= f(t)

∣∣∣∣∣∣∣∣∣∣
y1 . . . yi−1 0 . . . yn

y′
1 . . . y′

i−1 0 . . . y′
n

...
...

...
...

y
(n−1)
1 . . . y

(n)
i−1 1 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣∣∣
(21.5.12)

where the ith column was altered. Cramer’s rule finally gives:

ψ′
i = f(t)Wi(t)

W (t)
=⇒ ui =

∫
f(t)Wi(t)
W (t)

dt (21.5.13)

which substituting back into (5.6) gives:

yP I(t) =
n∑

i=1

(
yi(t)

∫
f(t)Wi(t)
W (t)

dt

)
(21.5.14)
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22ODE6 Sturm-Liouville theory and
Green’s functions

22.1 Linear differential operators
We will try to study differential equations from a more general point of view. To do so we must
introduce the concept of differential operators.

Definition (Differential operator) A differential operator is a linear operator L on a
function space V , such that:

L[y] = f(y, y′, ..., y(n), ...), ∀y ∈ V (22.1.1)

where f is a linear function in its arguments, so that:
(i) L[y1 + y2] = L[y1] + L[y2]
(ii) L[αy1] = αL[y1]

This notation allowus towrite differential equationsmore succintly. For example, wemaywrite:

d2y

dx2 + x
dy

dx
+ x2y = 0 (22.1.2)

as
L[y] = 0, where L ≡ d2

dx2 + x
d

dx
+ x2 (22.1.3)

Definition (Boundary value problem)A boundary value problem is an equation L[y] =
f defined on an interval (a, b) together with a boundary constraints B[y] = g, which can be:
(i) Dirichlet: if y(a) = c, that is we define the value of the solution on a boundary
(ii) Neumann: if y′(a) = c, that is we define the value of the derivative of the solution on

a boundary.
(iii) Robin: if c1y(a) + y′(a) = c2, that is a combination of Dirichlet and Neumann condi-

tions.
(iv) Periodic: if y(a) = y(b), y′(a) = y′(b) if we require the solution and its derivative to

match at two boundaries.
If f is zero the BVP is said to be homogeneous, and if g is zero the BVP is said to have
homogeneous boundary constraints.
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In most cases solving a BVP is a very difficult, if not impossible task. Often one can exploit the
linearity of the differential operator to simplify matters. One way is to express the solution as a
superposition of a special set of functions and find the coefficients for this superposition by sub-
stitution. This procedure is particularly reminiscent of linear algebra, so it is important to look at
the properties of infinite dimensional vector spaces (more detailed discussions can be found in the
Functional analysis part).

Definition (Weight function)
Aweight function on [a, b] is a real, non-negative function on the interval with a finite num-
ber of zeros.

Definition (Inner product)
We define an inner product on the function space L2[a, b] by:

〈f, g〉w =
∫ b

a

f∗(x)g(x)ρ(x)dx (22.1.4)

where ρ(x) is a weight function. This defines aHilbert space. By convention 〈f, g〉1 ≡ 〈f, g〉.

Much like on normal vector spaces, we can construct a basis on Hilbert spaces too. Any set of
linearly independent functions {un(x)} that spans the Hilbert space is a basis. One can use the
Gram-Schmidt procedure to then produce an orthonormal basis {ϕn(x)}. Given any function f(x),
we can express it as a superposition of this orthonormal basis:

f(x) =
∞∑

n=0
cnϕn, cn = 〈ϕn, f〉 =

∫ b

a

ϕ∗(x)f(x)ρ(x)dx (22.1.5)

Returning to linear operators, we can define the adjoint of an operator as usual

Definition (Adjoint of a differential operator)
Let L be a linear operator on a Hilbert space. We define its adjoint L† so that:∫ b

a

(L[f ])∗(x)g(x)dx =
∫ b

a

f∗(x)(L†[g])(x)dx+ boundary terms (22.1.6)

If L† = L then the operator is self-adjoint, and if in addition the boundary terms vanish
then it is hermitian.

Example. Consider for example L[y] = y′′(x) + p(x)y′(x) on [0, 1]. We have that:∫ b

a

f∗(x)(L†[g])(x)dx =
∫ 1

0
(f ′′)∗gdx+

∫ 1

0
(pf ′)∗gdx (22.1.7)

= [f ′g]ba −
∫ 1

0
(f ′)∗g′dx+ [p∗fg]−

∫ 1

0
(pf)∗g′dx (22.1.8)

= [f ′g − fg′ + p∗fg]10 +
∫ 1

0
f∗(g′′ − p∗g′)dx (22.1.9)

− 254 −



22.2. EIGENFUNCTIONS

so we see that:
L†[y] = y′′(x)− p∗(x)y(x) (22.1.10)

If p(x) is purely imaginary then we see that L is self-adjoint. Furthermore, L is hermitian if
in addition

[f ′g − fg′ + p∗fg]10 = 0 (22.1.11)

◀

If we are also given a set of boundary conditions together with L, then we can find their adjoint by
looking at how one can make the boundary terms in (22.1.6) vanish (we need this or else retaking
the adjoint of L† would yield several boundary terms + L). Indeed for the boundary terms to
vanish for any suitable f , we need both the term at x = a and x = b to be zero.

Example. Suppose we add the BCs: 2y(0) − y′(0) = 0 and y′(1) = 0 to the previous
example’s linear operator. The boundary condition at x = 0 reads:

2f(0)g(0)− f(0)g′(0) + p∗(0)f(0)g(0) = 0 =⇒ g′(0) = (2 + p∗(0))g(0) (22.1.12)

Similarly, the boundary condition at x = 1 reads:

− f(1)g′(1) + p∗(1)f(1)g(1) =⇒ g′(1) = p∗(1)g(1) (22.1.13)

These are the adjoint boundary conditions. ◀

22.2 Eigenfunctions
Continuing with our analogy between finite and infinite dimensional vector spaces, we now seek
to find eigenfunctions and eigenvalues of L.

Definition (Eigenfunctions of differential operators)
Let L be a linear operator on a Hilbert space, and suppose there is a function ϕ such that:

L[ϕ](x) = λρ(x)ϕ(x) (22.2.1)

where λ is a non-zero constant. Then ϕ(x) is a eigenfunction of L with eigenvalue λ. We
can in addition require the function to satisfy a set of boundary conditions.

Example. Consider for example L[y] = −y′′ on [0, π] and the boundary conditions y(0) =
0, y′(π) = 0. Let us find the eigenfunctions and eigenvalues of L with unit weight ρ(x) = 1.
We need to solve

− ϕ′′(x) = λϕ(x) (22.2.2)

(i) if λ = 0 then the general solution is

ϕ(x) = c1x+ c2 (22.2.3)

and applying the boundary conditions we see that the only possible eigenfunction is
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the trivial one.
(ii) if λ > 0 then the general solution is

ϕ(x) = c1e
iωx + c2e

−iωx, ω =
√
λ (22.2.4)

and applying the boundary conditions:{
c1 + c2 = 0
iω(c1e

iωπ − c2e
−iωπ) = 0

=⇒
(

1 1
eiωπ −e−iωπ

)(
c1
c2

)
=
(

0
0

)
(22.2.5)

we see that the only non-trivial solutions arise when:

det
(

1 1
eiωπ −e−iωπ

)
= −e−iωπ − eiωπ = 0 =⇒ ω =

(
n+ 1

2

)
(22.2.6)

in which case c1 = −c2. Consequently, the eigenfunctions are:

ϕn(x) = A sin
(
n+ 1

2

)
x, n = 0, 1, ... (22.2.7)

with eigenvalues:

λn =
(
n+ 1

2

)2

, n = 0, 1, ... (22.2.8)

(iii) if λ < 0 then the general solution is

ϕ(x) = c1e
−ωx + c2e

ωx, ω =
√
λ (22.2.9)

and applying the boundary conditions:{
c1 + c2 = 0
ω(−c1e

−ωπ + c2e
ωπ) = 0

=⇒
(

1 1
−eωπ eωπ

)(
c1
c2

)
=
(

0
0

)
(22.2.10)

we see that the only non-trivial solutions arise when:

det
(

1 1
−e−ωπ eωπ

)
= eωπ − e−ωπ = 0 (22.2.11)

which has no solutions. Thus there are no non-trivial eigenfunctions with negative
eigenvalues.

Finally, we should normalize the eigenfunctions we have found for λ > 0:

〈ϕn, ϕn〉 =
∫ π

0
sin2

(
n+ 1

2

)
xdx = π

2
=⇒ ϕn(x) ≡ 2

π
sin
(
n+ 1

2

)
x (22.2.12)

which of course does not affect the corresponding eigenvalues. ◀

There are three properties regarding the eigenfunctions of Hermitian differential operator that are
particularly important.
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Theorem (Spectral properties of Hermitian differential operators)
LetL be a hermitian differential operator over an interval [a, b] coupledwith a set of BCs, and
let L2

w[a, b] be the space of square-integrable functions on [a, b] with weight w(x), satisfying
the relevant BCs. Then:
(i) Real-valued: L has real eigenvalues,
(ii) Orthonormality: for a givenweight function, eigenfunctions corresponding to distinct

eigenvalues are orthogonal.
(iii) Completeness: the normalized eigenfunctions form an orthonormal basis of the

Hilbert space L2
w[a, b].

Proof. We do not prove (iii) as it is rather involved, but it is a fundamental result that is important
to remember.

(i) let ϕ be an eigenfunction of Lwith eigenvalue λ and weight ρ:

L[ϕ](x) = λϕ(x)ρ(x) (22.2.13)

Then we get that: ∫ b

a

ϕ∗(x)L[ϕ](x)dx = λ

∫ b

a

ϕ∗(x)ϕ(x)ρ(x)dx (22.2.14)

=⇒
∫ b

a

ϕ(x)(L[ϕ](x))∗dx = λ∗
∫ b

a

ϕ∗(x)ϕ(x)ρ(x)dx (22.2.15)

(22.2.16)

Since L is hermitian, we may write that:∫ b

a

ϕ(x)(L[ϕ](x))∗dx =
∫
−abL†[ϕ](x)ϕ∗(x)dx =

∫
−abL[ϕ](x)ϕ∗(x)dx (22.2.17)

implying that:

(λ− λ∗)
∫ b

a

ϕ∗(x)ϕ(x)ρ(x)dx = 0 (22.2.18)

Since the inner product is positive semi-definite, and ϕ is non-trivial, (22.2.18) is only possible
if λ = λ∗, that is if λ is real.

(ii) We repeat the calculation above, but with two different eigenfunctions ϕi(x), ϕj(x) with dis-
tinct eigenvalues λi, λj

L[ϕi](x) = λiϕi(x)ρ(x) (22.2.19)
L[ϕj ](x) = λjϕj(x)ρ(x) (22.2.20)
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Then we get that: ∫ b

a

ϕ∗
j (x)L[ϕi](x)dx = λj

∫ b

a

ϕ∗
j (x)ϕi(x)ρ(x)dx (22.2.21)∫ b

a

ϕi(x)(L[ϕj ](x))∗dx = λi

∫ b

a

ϕ∗
j (x)ϕi(x)ρ(x)dx (22.2.22)

(22.2.23)

Since L is hermitian, we may write that:∫ b

a

ϕi(x)(L[ϕj ](x))∗dx =
∫ b

a

ϕ∗
j (x)L†[ϕi](x)dx =

∫ b

a

ϕ∗
j (x)L[ϕi](x)dx (22.2.24)

implying that:

(λj − λi)
∫ b

a

ϕ∗
j (x)ϕi(x)ρ(x)dx = 0 =⇒ 〈ϕi, ϕj〉ρ = 0 (22.2.25)

as desired.

■

22.3 Sturm-Liouville problems
We now examine a special type of differential operators that props up very frequently in mathe-
matical physics.

Definition (Sturm-Liouville operator) A Sturm-Liouville operator is a differential op-
erator of the form:

L[y] = d

dx

(
p(x)dy

dx

)
− q(x)y (22.3.1)

Theorem (Sturm-Louville is self-adjoint)
All Sturm-Liouville operators are self-adjoint, and can be made hermitian on an interval
[a, b] by requiring: [

p(x)
(
df∗

dx
g(x)− dg

dx
f(x)

)]b

a

= 0 (22.3.2)

Proof. We find that:∫ b

a

(L[f ])∗(x)g(x)dx =
∫ b

a

[
d

dx

(
p(x) df

dx

)
− q(x)f(x)

]∗

g(x)dx (22.3.3)

=
∫ b

a

(
p(x)df

∗

dx

dg

dx
− q(x)f∗(x)g(x)dx

)
(22.3.4)

−
[
p(x)df

∗(x)
dx

g(x)
]b

a

(22.3.5)
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and similarly ∫ b

a

f∗(x)(L[g])(x)dx =
∫ b

a

[
d

dx

(
p(x)dg

dx

)
− q(x)g(x)

]
f∗(x)dx (22.3.6)

=
∫ b

a

(
p(x)dg

dx

df∗

dx
− q(x)f∗(x)g(x)dx

)
(22.3.7)

−
[
p(x)dg

dx
f(x)

]b

a

(22.3.8)

Consequently we see that:∫ b

a

f∗(x)(L[g])(x)dx =
∫ b

a

(L[f ])∗(x)g(x)dx+
[
p(x)

(
df∗

dx
g(x)− dg

dx
f(x)

)]b

a

(22.3.9)

so L is indeed self-adjoint. Furthermore, if we impose the boundary condition:[
p(x)

(
df∗

dx
g(x)− dg

dx
f(x)

)]b

a

= 0 (22.3.10)

then we do indeed find that L is hermitian. ■

It may seem innatural to look at this special form of second order ODEs. However, much like how
we can find an integrating factor to write y′ + p(x)y = q into (p(x)λ(x))′ = q(x), we can write any
second order linear ODE into a Sturm-Louville ODE. To see why, consider:

p(x)y′′(x) + r(x)y′ + q(x)y = 0 (22.3.11)

We multiply by η so that:

η(x)p(x)y′′(x) + η(x)r(x)y′ + η(x)q(x)y = d

dx
(η(x)p(x)y′(x))− η(x)q(x)y (22.3.12)

implying

ηpy′′ + ηry′ = η′py′ + η[py′′ + p′y′] (22.3.13)
=⇒ η′py′ + η(p′y′ − ry′) = 0 (22.3.14)

=⇒ η′

η
= r − p′

p
=⇒ η(x) = exp

(∫ x r(s)− p′(s)
p(s)

ds

)
(22.3.15)

is the required integrating factor. We can simplify it to

η(x) = 1
p(x)

exp
(∫ x r(s)

p(s)
ds

)
(22.3.16)

Since η(x)L is a Sturm-Liouville operator, its eigenfunctions are orthogonal with respect to the unit
weight function, implying that the eigenfunctions of L are orthogonal with respect to the weight
function w(x) = η(x).

Proposition (Sturm-Liouville integrating factor)
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The second order ODE
p(x)y′′(x) + r(x)y′ + q(x)y = 0 (22.3.17)

may be turned into a Sturm-Louville problem by multiplying by the following integrating
factor:

η(x) = 1
p(x)

exp
(∫ x r(s)

p(s)
ds

)
(22.3.18)

This is equivalent to setting the weight function to be equal to the integrating factor w(x) =
η(x).

Now suppose we have an inhomogeneous Sturm-Liouville problem:

L[y](x) = ρ(x)F (x) ≡ f(x) (22.3.19)

SinceL is hermitian, its eigenfunctionswill form an orthonormal basis {ϕk(x)} of theHilbert space.
Thus the solution y(x) to (22.3.19) and F (x) may be expanded as:

y(x) =
∑

n

ynϕn(x), yn =
∫ b

a

ϕ∗
n(x)y(x)dx (22.3.20)

and
F (x) =

∑
n

Fnϕn(x), Fn =
∫ b

a

ϕ∗
n(x)F (x)dx (22.3.21)

Substituting this into (22.3.19) we get that:

L[y](x) =
∑

n

ynL[ϕn](x) =
∑

n

λnynϕn(x) =
∑

n

Fnϕn(x)ρ(x) (22.3.22)

=⇒ y(x) =
∑

n

Fn

λn
ϕn(x) (22.3.23)

where in the last step we used the linear independence of {ϕn(x)}. We can rewrite the above
as:

y(x) =
∑

n

〈ϕn, F 〉ρ
λn

ϕn(x) =
∑

n

(
ϕn(x)
λn

∫ b

a

ϕ∗
n(x′)F (x′)ρ(x′)︸ ︷︷ ︸

f(x′)

dx′
)

(22.3.24)

This motivates the following definition:

Definition (Green’s function)
Given a Sturm-Liouville operator L, we define its Green’s function to be:

G(x, x′) =
∑

n

1
λn

ϕ∗
n(x)ϕn(x) (22.3.25)

so that the solution to L[y](x) = f(x) becomes an integral:

y(x) =
∫ b

a

G(x, x′)f(x′)dx′ (22.3.26)
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Proposition (Parseval’s identity)
Let {ϕn} be an orthonormal basis for a Hilbert space with weight function ρ, and let f be
function with 〈ϕn, f〉ρ = fn. Then:

〈f, f〉ρ =
∑

n

|fn|2 (22.3.27)

Proof. ■

22.4 Green’s functions for BVPs
Green’s functions for homogeneous BCs
There is another approach to define Green’s functions, a distributional approach which makes use
of the delta function.

Definition (Green’s function)
Let L be a differential operator. Then we define a Green’s function G(x, x′) to satisfy:

L[G](x, x′) = δ(x− x′) (22.4.1)

We would like to verify that this definition is equivalent to the linear algebra approach. Indeed
let

G(x, x′) =
∑

n

1
λn
Yn(x)Y ∗

n (x′) (22.4.2)

then operating L (with variable x, not x′) on both sides

L[G](x, x′) =
∑

n

Yn(x)Y ∗
n (x′) (22.4.3)

=⇒
∫ b

a

L[G](x, x′)Ym(x′)w(x) dx =
∑

n

Yn(x) 〈Yn, Ym〉w (22.4.4)

=⇒ Ym(x) =
∫ b

a

L[G](x, x′)Ym(x′)w(x′) dx′ (22.4.5)

implying that δ(x− x′) as desired.

The utility of Green’s functions is best expressed in the following theorem.

Theorem (Green’s functions)
Let G(x, x′) be a Green’s function of the differential operator L satisfying homogeneous
boundary conditions G(a, x′) = G(b, x′) = 0. Then the particular solution of L[y] = f

satisfying y(a) = y(b) = 0 is given by

y(x) =
∫ b

a

G(x, x′)f(x′) dx′ (22.4.6)
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Proof. Indeed note that

L[y] =
∫ b

a

L[G](x, x′)f(x′) dx′ =
∫ b

a

δ(x− x′)f(x′) dx = f(x) (22.4.7)

and y(a) = y(b) = 0 since G(a, x′) = G(b, x′) = 0, as desired. ■

We now derive a general procedure to calculate Green’s functions with homogeneous boundary
conditions. We consider the case where L is a second order operator, and begin by noting that
L[G](x, x′) = 0 for x > x′ or x < x′ so in these two regions, G(x, x′) will simply be equal to the
complementary function of L. Therefore suppose we have found a fundamental set of solutions
{y1, y2}which also satisfy one of the BCs i.e. y1(a) = 0 and y2(b) = 0.

It follows that the Green’s function to the left of x′ is proportional to y1. and to the right of x′ it is
proportional to y2, in order to satisfy the boundary conditions:

G(x, x′) =

{
A(x′)y1(x), x ∈ [a, x′)
B(x′)y2(x), x ∈ (x′, b]

(22.4.8)

but what should happen at x′? Suppose Gwere discontinuous at x = x′, for simplicity we assume
a step discontinuity. Then

∂G

∂x
= δ(x− x′) =⇒ ∂2G

∂x2 = δ′(x− x′) (22.4.9)

which can’t be the case since L[G](x, x′) does not contain derivatives of δ. Therefore the Green’s
function must be continuous on [a, b], especially at x = x′:

A(x′)y1(x′) = B(x′)y2(x′) (22.4.10)

To further investigate the behaviour at x′ let’s integrate L[G] on (x′ − ϵ, x′ + ϵ):∫ x′+ϵ

x′−ϵ

(
α(x)∂

2G

∂x
+ β(x)∂G

∂x
+ γ(x)G

)
dx = 1 (22.4.11)

Since G is continuous only the second derivative can contribute to the integral as ϵ→ 0 so

lim
ϵ→0

∫ x′+ϵ

x′−ϵ

α(x)∂
2G

∂x
dx = α(x′)

(
∂G

∂x

∣∣∣∣
x′+
− ∂G

∂x

∣∣∣∣
x′−

)
= 1 (22.4.12)

implying that
A(x′)y′

1(x′)−B(x′)y′
2(x′) = 1

α(x′)
(22.4.13)

To summarize, we found the gluing conditions for G(x < x′) and G(x > x′):
G(x, x′)|x′+ = G(x, x′)|x′−

∂G

∂x

∣∣∣∣
x′+
− ∂G

∂x

∣∣∣∣
x′−

= 1
α(x′)

(22.4.14)

− 262 −



22.4. GREEN’S FUNCTIONS FOR BVPS

which are equivalent to 
A(x′)y1(x′) = B(x′)y2(x′)

A(x′)y′
1(x′)−B(x′)y′

2(x′) = 1
α(x′)

(22.4.15)

These can be solved to give

A(x′) = y2(x′)
α(x′)W (x′)

, B(x′) = y1(x′)
α(x′)W (x′)

(22.4.16)

whereW (x′) is the Wronskian. Finally we have that

G(x, x′) =


y1(x)y2(x′)
α(x′)W (x′)

, x ∈ [a, x′]

y1(x′)y2(x)
α(x′)W (x′)

, x ∈ [x′, b]
(22.4.17)

Example: Tension in a string
Suppose we have a string of density µ that is fixed at its ends x = 0, L. Letting y(x, t) represent the
vertical displacement of the string at (x, t), then one can derive (see Analytical mechanics lecture
notes):

T
∂2y

∂x2 − µg = µ
∂2y

∂t2
, x ∈ [0, L], y(0) = y(L) = 0 (22.4.18)

where T is the tension in the string. In the case of a stationary string we have that its profile will
satisfy the following ODE:

d2y

dx2 = µ(x)g
T

(22.4.19)

This equation can be solved using normal methods of for well-behaved µ(x). However, an interest-
ing discussion arises from letting

µ = mδ(x− x′) (22.4.20)

equivalent to having a massless string and adding a point massm at x′. The result is that we get a
homogeneous Sturm-Liouville problem

d2y

dx2
mg

T
δ(x− x′), y(0) = y(L) = 0 (22.4.21)

The procedure from the preceding section can thus be put to use, the fundamental set of solutions
can be chosen to be

{
x, 1− x

L

}
. Then the Green’s function can be decomposed as

G(x, x′) =


A(x′)x, 0 ≤ x < x′

B(x′)
(

1− x

L

)
, x′ < x ≤ L

(22.4.22)

The condition of continuity at x′ yields

A(x′)x′ = B(x′)
(

1− x′

L

)
=⇒ B(x′) = Lx′

L− x′A(x′) (22.4.23)
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while the jump condition for the first derivative yields

A(x′) + 1 = − 1
L
B(x′) =⇒ A(x′) + 1 = − x′

L− x′A(x′) (22.4.24)

Therefore we find that
A(x′) = x′

L
, B(x′) = −x′ (22.4.25)

giving the following Green’s function

G(x, x′) =


−
(

1− x′

L

)
x, 0 ≤ x ≤ x′

−
(

1− x

L

)
x′, x′ ≤ x ≤ L

(22.4.26)

Physically, this means that the string will form two straight lines, a negative slope on one side and
a positive slope to the right.

We can therefore interpret the Green’s function as the system’s response at x to a unit impulse at
x′. Moreover, the beauty of Green’s functions is that it gives us the particular integral y(x) for any
µ(x). Indeed the solution to (22.4.19) is

y(x) = g

T

[
x− L
L

∫ x

0
x′µ(x′) dx′ + x

∫ L

x

x′ − L
L

µ(x′) dx′
]

(22.4.27)

Physically, we are building up our solution by decomposing µ(x) into several impulses, calculating
the system’s response, and summing all the contributions to give the displacement at x.

Green’s functions for inhomogeneous BCs
Let us now turn to inhomogeneous boundary conditions. Suppose we have found a particular so-
lution yP of L[y] = 0. If we letG be the Green’s functions with homogeneous boundary conditions
then

y(x) = yP (x) +
∫ b

a

G(x, x′)f(x′) dx′ (22.4.28)

is the particular solution with inhomogeneous BCs.

22.5 Green’s functions for IVPs
Green’s functions can be used to solve IVPs, such as

L[y] = f(t), 1y(t0) = y′(t0) = 0 (22.5.1)

Then the Green’s function G(t, t′) will solve the following

L[y] = δ(t− t′), G(t0, t′) = G′(t0, t′) = 0 (22.5.2)

Suppose we have found a fundamental set of solutions {y1, y2}. For t0 ≤ t < t′, we find that

G−(t, t′) = A(t′)y1(t) +B(t′)y2(t), t0 ≤ t < t′ (22.5.3)
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and apply the initial value conditions(
y1(t0) y2(t0)
y1(t0) y′

2(t0)

)(
A

B

)
= 0 (22.5.4)

but since the Wronskian is non-zero, A = B = 0 so that the Green’s function G(t, t′) = 0 for t < t′.
Physically, this means that the system cannot respond in advance at t to an impulse occurring at a
later time t′, it implies causality.

For t0 ≤ t′ < t we construct

G+(t, t′) = C(t′)y1(t) +D(t′)y2(t), t > t′ (22.5.5)

and apply the Green’s function boundary conditions at t = t′:
C(t′)y1(t′) +D(t′)y2(t′) = 0

C(t′)y′
1(t) +D(t′)y′

2(t′) = 1
α(t′)

(22.5.6)

Note that we do not have to apply the initial conditions since t > t0. Solving this system will give
G(t, t′)

G(t, t′) =

{
0, t0 ≤ t < t′

G+(t, t′), t0 < t′ ≤ t
(22.5.7)

Example. Consider the equation for a driven harmonic oscillator

d2y

dt2
+ y = f(t), y(0) = y′(0) = 0 (22.5.8)

The fundamental set of solutions is {sin t, cos t}. We need only consider the casewhere t > t′,
where we need to solve {

C(t′) sin(t′) +D(t′) cos(t′) = 0
C(t′) cos(t)−D(t′) sin(t′) = 1

(22.5.9)

We find that
C = −D cot(t′) =⇒ D = − sin(t′), C = cos(t′) (22.5.10)

giving the following Green’s function

G(t, t′) =

{
0, t < t′

sin(t− t′), t > t′
(22.5.11)

and the following particular integral

y(t) =
∫ t

0
sin(t− t′)f(t′) dt′ (22.5.12)

◀
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In chapter 5, we learned how to solve the Cauchy problem for any system of linear ODEs, provided
we knew the fundamental system of solutions. We are now going to see, for the special case of
constant coefficients, how to find this fundamental set.

23.1 Non-degenerate Eigenvalues
Consider the system of ODEs:

ẏ = A · y + f(t) (23.1.1)

To find the eigenvalues of the matrix A, it suffices to solve the eigenvalue equation:

det(A− λI) = 0 (23.1.2)

and then find the corresponding eigenvectors using the eigenvector equation:

(A− λI) · vi = 0. (23.1.3)

Proposition 3.

If a matrix has non-degenerate eigenvalues λi, then the corresponding eigenvectors vi form a basis.

Proof. Consider (6.3), if {vi} are linearly dependent, then it must be possible to write one as:

vn =
∑

j

αjvj (23.1.4)

Then, on one hand we find:
A · vn = λnvn = λn

∑
j

αjvj (23.1.5)

and on the other hand:
A · vn =

∑
j

αjA · vj =
∑

j

λjαjvj . (23.1.6)

Equating the two gives: ∑
j

αjvj(λn − λj) = 0 =⇒ αj = 0 (23.1.7)

since by assumption, the eigenvectors are independent and the eigenvalues are non degenerate.
■
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Following the algebraic approach of theWronskians, we pack the eigenvectors and eigenvalues into
matrices as:

R ≡ (v1...vn), L ≡ diag{λi}
=⇒ A · R = R · L
=⇒ A = R · L · R−1

We may substitute this into the associated homogeneous equation to (6.1) and find:

y = R · L · R−1 · y

=⇒ d

dt
(R−1 · y) = L · R−1 · y

and hence we get:
ζ̇ = L · ζ =⇒ ζi(t) = Cie

λit (23.1.8)

We transform back into the original coordinates so that:

y =
∑

i

Civie
λit (23.1.9)

For simplicity, define the following matrix:

E(t) ≡ diageλit (23.1.10)

which recasts (6.4) as:
y = R · E(t)︸ ︷︷ ︸

Y(t)

·C (23.1.11)

Finally, let us set the Cauchy condition y(0) = y0

y0 = R · C =⇒ C = R−1 · y0 (23.1.12)

and hence:
y = R · E(t) · R−1 · y0 (23.1.13)

23.2 Matrix exponentiation
Consider now the more general Cauchy problem (6.1), which can be solved, as always, via the
method of variation of parameters:

y(t) = Y(t)
[
Y−1(t0) · y0 +

∫ t

t0

Y−1(t′) · f(t′)dt′
]

(23.2.1)

Here:

Y−1(t) = E−1(t) · R−1 =⇒ Y(t) · Y−1(t′) = R · E(t) · E−1(t) · R−1 = R · E(t− t′) · R−1

Y−1(0) = R−1

so that:
y(t) = Y(t0)

[
Y−1(t) · y0 +

∫ t

t0

R · E(t− t′) · R−1 · f(t′)dt′
]

(23.2.2)
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Wemay now compare this with the one-dimensional solution using the integrating factor method,
we realize that a new expression for matrix exponentiation can be found:

eAt = R · E(t) · R−1 (23.2.3)

23.3 Higher Order Linear Constant Coefficient Equations
Consider the nth order linear ODE with constant coefficients:

y(n) + an−1y
(n−1) + ...+ a1ẏ + a0y = f(t) (23.3.1)

which can be reduced into a first order linear system of ODEs:
ṗn−1 = −an−1pn−1 − ...− a1p1 − a0y + f(t)
ṗn−2 = pn−1

...

ṗ1 = p2ẏ = p1

(23.3.2)

or in matrix form:

d

dt


pn−1
...
p1
y

 =


−an−1 −an−2 . . . −a1 −a0

1 0 . . . 0 0
...

...
...

...
0 0 . . . 0 1

 ·

pn−1
...
p1
y

+


f

0
...
0

 (23.3.3)

It can then be shown that the eigenvalue equation and auxiliary equation are equivalent:

det(A− λI) = 0 ⇐⇒ λn + an−1λ
n−1 + ...+ λa1 + a0 = 0 (23.3.4)

If the matrix A turns out to be diagonalisable, then the solution is:

y(t) =
n∑

i=1
Cie

λit (23.3.5)

However, if the matrix is not diagonalisable, and the eigenvalues are thus degenerate and don’t
have distinct eigenvalues, then this approach will not work.

23.4 Triangulation
Theorem 4. (Schur’s Triangulation Theorem)

For any matrix A, there is a unitary transformation that converts it into triangular form:

U† · A · U = T =

λ1 stuff
...

0 λn

 (23.4.1)
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Proof. Consider one eigenvector of our matrix:

A · v1 = λ1v1 (23.4.2)

and consider an orthonormal basis {wi} with w1 = v1 and w∗
i · wj = δij . As a consequence of this

orthonormality, the matrix:
R =

(
v1 w2 ... wn

)
(23.4.3)

is unitary, that is, R−1 = R†. Therefore, it follows that:

R† · A ·R =


v1
w2
...
wn

 ·R =
(
λ1v1 A ·w2 ... A ·wn

)
=


λ1 v

∗
1 · A ·w2 . . . v∗

1 · A ·w2
0
... An−1
0

 (23.4.4)

where An−1 has elementsw∗
i ·A ·wj . We can keep on repeating this to An−1 until we reach an upper

triangular matrix as required. ■

Once we have found the unitary transformation made up of an eigenvector and an orthonormal
basis, we can then find a solution to the system of ODEs:

ẏ = A · y = U · T · U† =⇒ d

dt
(U† · y) = T ·U† · y︸ ︷︷ ︸

ζ

=⇒ ζ̇ = T · ζ (23.4.5)

where:

T =


λ1 T12 T13 . . . T1n

0 λ2 T23 . . . T2n

...
...

...
...

0 0 0 . . . λn

 (23.4.6)

This system can be solved component by component, since it is made up of first order ODEs. Oence
ζ has been found, simply revert back to y:

y = U · ζ (23.4.7)

23.5 Jordan Form
Finally, let us consider a simplermethod for solvingODEswith non-diagonalisablematrices.

Definition 6.1 Consider a degenerate eigenvalue λ1, called generator, that repeatsm times, with at
least one associated eigenvector v1. Then, {v1...vk} is called a Jordan Chain if they satisfy:

A · v1 = λ1v1

A · v2 = λ1v2 + v1

...

A · vk = λ1vk + vk−1

(23.5.1)

and are therefore linearly independent. We may do so for a set of eigenvalues {λi} and find the
Jordan form:

R−1 · A · R = J = diagJi (23.5.2)
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where for each eigenvalue λ1 corresponds a Jordan block:

Ji =


λi 1 0 . . . 0
0 λ1 0 . . . 0
...

...
0 0 0 . . . λi

 (23.5.3)

Theorem. (Jordan’s Theorem)

For any matrix A, there is always a basis in Cn consisting of Jordan chains.

As usual, we have:
ẏ = A · y = R · J · R−1 =⇒ ζ̇ = J · ζ (23.5.4)

where ζ = R−1 · y.

For example, consider the Jordan block J1:
ζ̇1 = λ1ζ1 + ζ2

...

ζ̇k−1 = λ1ζk−1 + ζk

ζ̇k = λ1ζk

=⇒


ζk = Cke

λ1t

ζk−1 = (Ck−1 + Ckt)eλ1t

...

ζ1 =
(
C1 + C2t+ ...+ Ck

tk1

(k−1)!

)
eλ1t

(23.5.5)

Finally, reverting back to y:
y(t) = ζ1v1 + ...+ ζkvk (23.5.6)
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24.1 Power Series
We summarise below a set of properties of power serieswe encountered in theAnalysis part:

1. The power series
∑∞

n=0 an(x− x0)n converges at a point x if the following limit exists:

lim
n→∞

∞∑
n=0

an(x− x0)n (24.1.1)

and converges absolutely at a point x if the associated power series:

∞∑
n=0
|an(x− x0)n| (24.1.2)

converges.

2. If a power series converges absolutely, it converges. The converse isn’t always true.

3. If an 6= 0 and for a fixed x:
L = lim

n→∞
|x− x0||

an+1

an
| (24.1.3)

then if L < 1, the series converges, if L > 1, the series diverges, and L = 1 is inconclusive.

4. For a power series, there exists 0 ≤ ρ ≤ ∞ called radius of convergence such that it will converge
for |x− x0| < ρ and diverge for |x− x0| > ρ.

5. Suppose
∑∞

n=0 an(x− x0)n converges to f(x). Then f is continous and is infinitely differen-
tiable over the interval of convergence |x− x0| < ρ.

6. The value of an is then given by:

an = f (n)(x0)
n!

(24.1.4)

and the series is then called the Taylorseries:

f(x) =
∞∑

n=0

f (n)(x0)
n!

(x− x0)n (24.1.5)

A function with Taylor series with non-zero radius of convergence is said to be analytic.

7. If
∑∞

n=0 an(x− x0)n =
∑∞

n=0 bn(x− x0)n, then an = bn for all n.
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24.2 Series Solutions near ordinary points
Let us consider the second order linear homogeneous ODE:

P (x)y′′ +Q(x)y′ +R(x)y = 0 (24.2.1)

Definition (Ordinary point)
Consider the ODE P (x)y′′ + Q(x)y′ + R(x)y = 0, then any point x0 such that P (x0) = 0 is
an ordinary point.

Since P is continuous, we may always find an interval containing x0, and divide the ODE by P (x)
obtaining the more approachable equation

y′′ + p(x)y′ + q(x)y = 0 (24.2.2)

where p(x) = Q(x)
P (x) , q(x) = R(x)

P (x) . We now look for series solutions of the form:

y =
∞∑

n=0
an(x− x0)n (24.2.3)

with some radius of convergence ρ > 0. One can then substitute this expression into the ODE and
use the aforementioned properties of power series to deduce the coefficients.

To illustrate this method, let us solve Airy’s equation

y′′ − xy = 0, −∞ < x <∞. (24.2.4)

We note that P (x) = 1, Q(x) = 0, R(x) = −x, hence any point is ordinary. We assume that:

y =
∞∑

n=0
an(x)n (24.2.5)

converges in some interval |x| < ρ. Then:

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

an(x)n+1 = 0 (24.2.6)

and using a shift of index we may rewrite:

2a2 +
∞∑

n=1
(n+ 2)(n+ 1)an+2x

n −
∞∑

n=1
an−1(x)n = 0. (24.2.7)

This is only possible for all x if the coefficients of like powers of x cancel each other out:

(n+ 2)(n+ 1)an+2 − an−1 = 0, for n = 1, 2, 3... (24.2.8)

This is a second order recurrence relation, so the coefficients will be determined in steps of 3. Note
that:

a2 = 0 =⇒ a3n+2 = 0 (24.2.9)
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Furthermore:

a3 = a0

2 · 3
, a6 = a3

5 · 6
= a0

2 · 3 · 5 · 6
, a9 = a6

8 · 9
= a0

2 · 3 · 5 · 6 · 8 · 9
(24.2.10)

which suggests (as can be proven by induction):

a3n = a0

2 · 3 · 5 · 6...(3n− 1)(3n)
(24.2.11)

Finally, we also find:

a4 = a1

3 · 4
, a7 = a4

6 · 7
= a1

3 · 4 · 6 · 7
, a10 = a7

9 · 10
= a0

3 · 4 · 6 · 7 · 9 · 10
(24.2.12)

which suggests:
a3n+1 = a1

3 · 4 · 6 · 7...(3n)(3n+ 1)
(24.2.13)

Finally, we arrive at the general solution to Airy’s equation:

y(x) = a0

(
1 +

∞∑
n=1

x3n

2 · 3 · 5...(3n)

)
+ a1

(
x+

∞∑
n=1

x3n+1

3 · 4 · 6...(3n+ 1)

)
(24.2.14)

Also, notice that the first sum satisfies y(0) = 0, y′(0) = 0 and the second sum satisfies y(0) =
0, y′(0) = 1, which implies that W (0) = 1 6= 0, and hence we have truly found the general solu-
tion.

It remains to be justified that given an ODE of the form:

P (x)y′′(x) +Q(x)y′(x) +R(x)y(x) = 0 (24.2.15)

we can find a series solution. Consider for example that we have found a solution y = ϕ(x) which
can be expanded as a Taylor series:

ϕ(x) =
∞∑

n=0
an(x− x0)n (24.2.16)

which converges in the interval |x − x0| < ρ, ρ > 0. We can differentiate (24.2.16) m times to
find:

m! · am = ϕ(m)(x0) (24.2.17)

so the coefficients in the series expansion are determined by evaluating derivatives of ϕ at the
ordinary point x0. Can this always be done? Suppose we have W.L.O.G the initial conditions
ϕ(x0) = y0, ϕ

′(x0) = y′
0 implying that a0 = y0, a1 = y′

0. Now note that there exists interval around
x0 for which P (x) 6= 0. Consequently we can determine a2:

a2 = 1
2
ϕ′′(x0) = −1

2
(p(x0)ϕ′(x0) + q(x0)p(x0)) (24.2.18)

where p(x0) = Q(x0)/P (x0), q(x0) = R(x0)/P (x0). Similarly we can find a3 by differentiating
(24.2.15) and evaluating at x0, and continue for all other an. Note that sinceP,Q,R are polynomials
they can be differentiated infinitelymany times andP (x0) 6= 0 sowe can keep repeating this process
indefinitely.
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It seems like we only need to assume that the functions p(x) = Q(x)
P (x) and q(x) = R(x)

P (x) are smooth
near x0. This condition is unfortunately too weak, the better condition is that they be analytic at
x0. We should therefore re-define our definition of ordinary point to the following:

Definition (Ordinary point redefined)
The point x0 is an ordinary point of P (x)y′′ + Q(x)y′ + R(x)y = 0 if p(x) = Q(x)

P (x) and
q(x) = R(x)

P (x) are analytic at x0.

Regarding the convergence of our series solution, it is expected that it will be bounded below by the
convergence of the Taylor series for p and q, as the following theorem (which we shall not prove)
states.

Theorem (Convergence radius of series solutions)
Let x0 be an ordinary point of:

P (x)y′′ +Q(x)y′ +R(x)y = 0, (24.2.19)

Then the general solution may be expressed as a power series about x0:

y =
∞∑

n=0
an(x− x0)n = a0y1 + a1y2 (24.2.20)

where y1 and y2 form a fundamental set of solutions, and the radius of convergence for each
of them is greater than or equal to the minimum of the radii of convergence ρp, ρq of the
Taylor series for p = Q(x)

P (x) and q = R(x)
P (x) respectively:

ρy ≥ min{ρp, ρq}. (24.2.21)

Note that if P (x), Q(x), R(x) are polynomials with common factors cancelled out, then it follows
from a theorem in complex analysis that the Taylor series for p(x) and q(x) have a radius of conver-
gence equal to the distance between x0 and the closest zero of P (x). This gives us a very powerful
tool to determine the convergence properties of series solutions quickly and efficiently. In the case
of Airy functions, for example, it is clear that P (x) = 1 has no zeros so the radius of convergence is
infinite.

24.3 Euler equations
Before developing a full theory for series solutions about singular points, we should consider an
illustrative example. The Euler equation reads:

x2y′′(x) + αxy′(x) + βy(x) = 0, α, β ∈ R (24.3.1)

We begin by assuming x > 0 and try the ansatz y = xr then:

r(r − 1)xr + αrxr + βxr = 0 =⇒ r2 + (α− 1)r + β = 0 (24.3.2)

which has solutions:
r1,2 = −1

2

[
(α− 1)±

√
(α− 1)2 − 4β

]
(24.3.3)
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As in the case of second order constant coefficient ODEs, we can distinguish between three different
cases:

(i) If (α− 1)2 − 4β > 0 then we have a fundamental set of solutions and we find:

y(x) = c1x
r1 + c2x

r2 (24.3.4)

(ii) If (α− 1)2 − 4β > 0 then r1 = λ+ iµ, r2 = r∗
1 for some λ, µ ∈ R. Consequently

xr1 = xλxiµ = xλeiµ ln x = xλ[cos(µ ln x) + i sin sin(µ ln x)] (24.3.5)

giving the fundamental set of solutions with general form:

y(x) = xλ[c1 sin(µ ln x) + c2 cos(µ ln x)] (24.3.6)

(iii) If (α− 1)2 − 4β = 0 then r1 = r2 so we have only found one solution y = xr1 . We could find
another one by method of reduction of order, but here we present a different derivation that
is much faster. Note that:

L[xr] = (r2 + (α− 1) + β)xr =
(
r2 + 2α− 1

2
r + (α− 1)

4

)
xr (24.3.7)

= (r − α− 1
2

)2xr = (r − r1)2xr (24.3.8)

so that

L

[
∂xr

∂r

]
= L[xr ln x] = ∂

∂r
(L[xr]) = 2(r − r1)xr + (r − r1)2xr ln x (24.3.9)

For the above to vanish we need r = r1 so we have found another solution y = xr1 ln x.
Consequently the general solution is given by:

y(x) = (c1 + c2 ln x)xr (24.3.10)

Finally, note that if we let u = −x then the Euler equation remains unchanged, so our solutions for
x > 0 will also hold for x < 0 by simply changing the sign of x.

24.4 Frobenius’ method
We can rewrite the Euler equations as

y′′(x) + α

x
y′(x) + β

x2 q(x) = 0 (24.4.1)

which suggests generalizing to ODEs of the form

y′′(x) + p(x)y′(x) + q(x) = 0 (24.4.2)
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where we can write the following series expansion

p(x) = p0

x
+ p1 + p2x+ p3x

2... (24.4.3)

q(x) = q0

x2 + q1

x
+ q2 + q3x... (24.4.4)

Definition (Regular singular points) The equation (24.4.2) has a regular singular point
at x = x0 if (x − x0)p(x) and (x − x0)2q(x) are analytic at x0. A non-regular singular point
is irregular.

Let us multiply (24.4.2) by x2 to get:

x2y′′(x) + x(xp(x))y′(x) + x2q(x)y(x) = 0 (24.4.5)

We saw that when constants α, β got promoted to functions p(x), q(x), it helped to assume a power
series solution. Inspired by this we may be able to obtain a solution by multiplying our ansatz xr

by a power series:

y(x) = xr
∞∑

n=0
anx

n =
∞∑

n=0
anx

n+r (24.4.6)

We see that:
∞∑

n=0
an(n+ r)(n+ r − 1)xn+r +

( ∞∑
m=0

pmx
m

) ∞∑
n=0

an(n+ r)xn+r (24.4.7)

+
( ∞∑

m=0
qmx

m

) ∞∑
n=0

anx
n+r = 0 (24.4.8)

We can divide by xr and collect like-terms. For example the x0 term reads:

a0[r(r − 1) + p0r + q0] = 0 (24.4.9)

while more generally the xk (k>0) coefficient reads

ak(k + r)(k + r − 1) +
k−1∑
n=0

[pk−nan(n+ r) + qk−nan] = 0 (24.4.10)

or alternatively:

[ak(k + r)(k + r − 1) + p0ak(k + r) + q0ak] +
k−1∑
n=0

[pk−nan(n+ r) + qk−nan] = 0 (24.4.11)

Letting F (r) = r(r − 1) + p0r + q0 then we get the following recurrence relation

F (k + r)ak +
k−1∑
n=0

[pk−n(n+ r) + qk−n]an = 0 (24.4.12)
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Note that for a0 6= 0 we find that a0F (r)xr = 0 so we get the indicial equation

F (r) = r(r − 1) + p0r + q0 = 0 (24.4.13)

which, as before with the Euler equation has two solutions which may or may not be distinct.
However, in our case we have a further problemwhen r1 and r2 differ by some integer. We provide
the solution without proof.

Theorem (Series about regular singular points)
Suppose we have an ODE of the form given in (24.4.2) with a regular singular point at x = 0
so that xp(x) and x2q(x) are analytic at x = 0:

xp(x) =
∞∑

n=0
pnx

n, x2q(x) =
∞∑

n=0
qnx

n (24.4.14)

with radius of convergence ρ. Let r1 and r2 be roots of:

r(r − 1) + p0r + q0 = 0 (24.4.15)

with r1 ≥ r2. Then we have two linearly independent solutions on 0 < x < ρ:
(i) if r1 − r2 is not an integer then:

y(x) = c1x
r1

∞∑
n=0

anx
n + c2x

r2

∞∑
n=0

bnx
n (24.4.16)

(ii) if r1 = r2 then:

y(x) = c1(1 + ln x)xr1

∞∑
n=0

anx
n + c2x

r1

∞∑
n=0

bnx
n (24.4.17)

(iii) if r1 − r2 = N is an integer then:

y(x) = c1(1 + a ln x)xr1

∞∑
n=0

anx
n + c2x

r2

∞∑
n=0

bnx
n (24.4.18)

Proof. The special case of equal roots to the indicial equation can be solved using the same method
used for the Euler equation. We know that one solution can be found:

y(x) = xr1

∞∑
n=0

anx
n (24.4.19)

Now recall that:

L[y] = a0F (r)xr+
∑

n=1∞

∞∑
k=1

{
[akF (k + r) (24.4.20)

+
k−1∑
n=0

[pk−nan(n+ r) + qk−nan]
}
xk+r (24.4.21)
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so treating the coefficients am(r) as functions of r then we can set:

ak(r) = −
∑k−1

n=0[pk−nan · (n+ r) + qk−nan]
F (k + r)

=⇒ L[y] = a0F (r)xr (24.4.22)

giving us the solution to L[y] = 0

y(x) = xr1

∞∑
n=0

anx
n (24.4.23)

where r1 is the root of F (r). Now once again we consider the derivative of L[y] with respect to r,
and recall that F (r) = (r − r1)2 for repeated roots:

∂

∂r
L[y] = L

[
∂y

∂r

]
= 2a0(r − r1)xr + a0(r − r1)2xr ln x (24.4.24)

which again vanishes when r = r1. Hence we find that:

y2(x) = ∂y1

∂r

∣∣∣∣
r=r1

= y1(x) ln x+
∞∑

n=0
bnxuu

n+r1 (24.4.25)

where bn = a′
n(r)|r=r1 . We have thus derived the required result. ■
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25.1 Laguerre polynomials
25.2 Legendre polynomials
25.3 Spherical harmonics
25.4 Hermite polynomials
25.5 Chebyshev polynomials
25.6 Bessel functions
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26.1 Introducing the Dirac delta
Suppose we have a random variable xwith a gaussian probability distribution:

ρ(x) = 1√
2πσ2

e−x2/2σ2
(26.1.1)

Note that this being a probability density function implies that it is properly normalized, and thus
satisfies: ∫

R

ρ(x)dx = 1 (26.1.2)

We ask what would happen if we let σ → 0?. Clearly we must have that for x 6= 0, limσ→0 ρ(x 6=
0) = 0 due to the exponential suppression overpowering the 1/σ factor in the front. However, we
must still have that:

lim
σ→0

∫
R

ρ(x)dx = 1 (26.1.3)

so clearly the value of this function at 0 must be very peculiar.

Definition (Dirac delta function)
We define the Dirac delta function to be the limit of a normalized gaussian in the zero stan-
dard deviation limit:

δ(x) ≡ lim
σ→0

1√
2πσ2

e−x2/2σ2
(26.1.4)

which satisfies: {
δ(x) = 0, x 6= 0∫
R
δ(x)dx = 1

(26.1.5)

Statistically, the Dirac delta represents the probability distribution of a random variable with zero
variance.

Let’s now consider:
P(X ≤ x) =

∫ x

−∞
ρ(x′)dx′ (26.1.6)

which is the probability of the variable X having a value smaller than x. As long as σ > 0 we find
that:

dP(X ≤ x)
dx

= ρ(x′) (26.1.7)
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Should we expect this to hold for σ → 0? In this limit we have that:

P(X ≤ x)→ Θ(x) =

{
0, x < 0
1, x ≥ 0

(26.1.8)

since the probability of X being smaller than one should be zero. Extending (26.1.7) in the σ → 0
case gives:

dΘ(x)
dx

= δ(x) (26.1.9)

We would like to make this reasoning more rigorous, and will require us to introduce the notion
of distributions.

To restate our point, consider for example a wire strung between two walls at x = ±L, taught with
tension T under a weightW hung at x = 0. We should expect there to be no curvature in the wire
away from the mass:

d2y

dx2 = 0, x 6= 0 (26.1.10)

Also, y(±L) = 0 and at x = a the wire’s profile must be continuous (or else it would break).
Newton’s second law gives us:

2T sin θ ≈ 2T tan θ = T

[
dy

dx

]x=L

x=−L

= W (26.1.11)

which can be solved:

y(x) =

{
−W (L+ x)/2T, −L < x < 0
−W (L− x)/2T, 0 < x < L

(26.1.12)

Note that this solution satisfies:
T
d2y

dx2 = Wδ(x) (26.1.13)

Theorem (Delta sifting property)
For an object δ(x) satisfying (26.1.5), letting f(x) ∈ L1(R) then:∫

R

f(x)δ(x)dx = f(0) (26.1.14)

Proof. Let δ > 0 be small. Then we have that:∫
R

f(x)δ(x)dx =
∫ δ

−δ

f(x)δ(x)dx (26.1.15)

since δ(x) = 0 for x 6= 0. Next:∫
R

f(x)δ(x)dx =
∫ δ

−δ

(f(x)− f(0) + f(0))δ(x)dx (26.1.16)

=
∫ δ

−δ

(f(x)− f(0))δ(x)dx+ f(0) (26.1.17)
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Since f(x) is continuous we must have that for any ϵ > 0 there is an δ > 0 such that:

|f(x)− f(0)| < ϵ, ∀x s.t. |x| < δ (26.1.18)

so we can make the integrand (f(x)− f(0)) arbitrarily small:∫ δ

−δ

(f(x)− f(0))δ(x)dx = 0 (26.1.19)

and thus ∫
R

f(x)δ(x)dx = f(0) (26.1.20)

as desired.

It is clear that to rigorously treat the delta function we should not treat it as a normal function as
the name would suggest, but rather as a generalized function defined through its action on other,
well-behaved functions. ■

26.2 Rigorous treatment-distributions
We begin by defining exactly how these “well-behaved functions”, known as test functions, must
behave like. We will not be particularly interested in the exact forms of these test functions, as long
as the following conditions are satisfied.

Definition (Test function)
A function ϕ : R→ R is a test function if:
(i) ϕ(x) ∈ C∞ (smoothness)
(ii) ϕ(x) = 0 has compact support, it vanishes outside some interval.

This definition ensures that ϕ(x) → 0 at ±∞ and also ensures that ϕ(n)(x) is also a test function.
These functions are called test functions because they are used to test the action of distributions
(whichwe have yet to define) on them. Although the exact form of test functions is not particularly
important, we construct an example for sake of clarity. Indee one famous example of a test function
can be constructed from:

Φ(x) =

{
0, x ≤ 0
e−1/x, x > 0

(26.2.1)

Note that this function is infinitely differentiable (with all derivatives vanishing at x = 0 since its
nth derivative will be to leading order o(xn/ex)). Unfortunately Φ(x) is not yet a test function since
it does not vanish at +∞ but we can easily fix this by defining:

ϕ(x) = Φ(x)Φ(1− x) (26.2.2)

which does indeed have a compact support.

Definition (Action on test functions)
Let f(x) ∈ L1(R) be a measurable function. Then we define its action on a test function ϕ(x)
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by:
〈f, ϕ〉 =

∫
R

f(x)ϕ(x)dx (26.2.3)

Note that this is not the same as a normal inner product since f and ϕ need not lie in the same
vector space. We should ask ourselves if this definition of action is well-defined: can two functions
have the same action on a given test function?

Theorem (Unique definition of distribution)
Let f1,2 : R → R be continuous functions. If 〈f1, ϕ〉 = 〈f2, ϕ〉 for all test functions ϕ then
f1(x) = f2(x).

Proof. We begin by proving that if:

〈f, ϕ〉 =
∫
R

f(x)ϕ(x) = 0 (26.2.4)

for all test functions then f(x) = 0. Suppose that f(a) > 0 at some point x = a. Due to the
continuity of f there exists δ > 0 such that f(x) > 0 for all x ∈ (a − δ, a + δ). We can find a test
function ϕ(x) which vanishes outside (a − δ, a + δ) and is non-zero inside this interval, implying
that:

〈f, ϕ〉 =
∫ a+δ

a−δ

f(x)ϕ(x)dx > 0 (26.2.5)

This however is a contradiction, so we cannot have that f(a) > 0 at some x = a. Applying this
result to f(x) = f1(x)− f2(x) immediately reproduces the theorem. ■

Much like in functional analysis, wewill also need to define a property of convergence for sequences
of test functions {ϕn(x)}.

Definition (Convergence of test function sequences) The sequence {ϕn} of test func-
tions converges to zero if:
(i) for all x outside some interval I , ϕn(x) = 0 for all n, so there is a shared compact

support for all test functions in the sequence,
(ii) for all k, ϕ(k)

n converges uniformly to 0 as n→∞.

We are now ready to define distributions.

Definition (Distribution)
A distribution (or generalised function) F is a continuous functional mapping from the set
of test functions D to R defined by the action:

ϕ→ 〈f, ϕ〉 ∈ R (26.2.6)

It must satisfy:
(i) Continuous: if ϕn → 0 then 〈F , ϕn〉 → 0.
(ii) Linear: 〈F , αϕ+ βψ〉 = α 〈F , ϕ〉+ β 〈F , ψ〉 for real constants α, β.
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An example of a distribution is theHeaviside distribution T generated from theHeaviside function
Θ(x):

〈T , ϕ〉 =
∫ ∞

0
ϕ(x)dx (26.2.7)

Clearly this distribution is linear. It is continuous since if ϕn(x)→ 0 then 〈T , ϕn〉 → 0 too.

Proposition (Delta function as a distribution)
The delta function δ(x) defined by the action 〈δ, ϕ〉 = ϕ(0) is a distribution.

Proof. Linearity is trivial. If ϕn → 0 then by the uniform convergence of test functions ϕn(0) → 0
so 〈δ, ϕn〉 → 0. ■

Proposition (Delta function on C0(R))
If f(x) is continuous at x = 0 then

〈δn, f〉 → f(0) as n→∞ (26.2.8)

where

δn =

{
n
2 , |x| <

1
n

0, |x| ≥ 1
n

(26.2.9)

so δ(x) can be applied on continuous functions too:

〈δ, f〉 = f(0), ∀f ∈ C0(R) (26.2.10)

Proof. For any continuous function f(x) ∈ C0(R):

〈δn, f〉 = n

2

∫ 1/n

−1/n

f(x)dx = n

2
f(ηn)

∫ 1/n

−1/n

dx = f(ηn)→ f(0) (26.2.11)

■

This is a very important result because it means that the action of δ(x) is not restricted to the space
of test functions as is the default case for distributions. It makes sense to apply δ(x) to normal,
continuous functions too.

Definitions (Operations with distributions)
Let F (x) be a distribution. Then we define:

〈F(x− a), ϕ(x)〉 = 〈F(x), ϕ(x+ a)〉 (26.2.12)

〈F(ax), ϕ(x)〉 = 1
|a|
〈F(x), ϕ(x/a)〉 , a 6= 0 (26.2.13)

Applying this to the delta function we see that:

〈δ(x− a), f(x)〉 =
∫
R

δ(x− a)f(x)dx = f(a) (26.2.14)
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and

〈δ(ax), f(x)〉 =
∫
R

δ(ax)f(x)dx = 1
|a|
f(0) (26.2.15)

known as sifting properties.

To see where these definitions come from, let us turn to the integral approach and consider these
distributions as normal functions. Then

〈F(x− a), ϕ(x)〉 =
∫
R

F(x− a)ϕ(x)dx =
∫
R

F(s)ϕ(s+ a)ds = 〈F(x), ϕ(x+ a)〉 (26.2.16)

and similarly:

〈F(ax), ϕ(x)〉 =
∫
R

F(ax)ϕ(x)dx = 1
|a|

∫
R

F(s)ϕ(s/a)ds = 1
|a|
〈F(x), ϕ(x/a)〉 (26.2.17)

where the modulus originates from the fact that if a < 0 then the integral bounds are flipped,
giving a negative sign.

Similarly, we may use this approach to motivate a definition for the derivative of a distribution.
Then we see that:

〈F ′, ϕ〉 =
∫
R

F ′(x)ϕ(x)dx =
[
F(x)ϕ(x)

]∞
−∞ −

∫
R

F(x)ϕ′(x)dx = −〈F , ϕ〉 (26.2.18)

prompting us to define:

Definition (Differentiating distributions)
Let F be a distribution. Then its derivative F ′ is defined so as to satisfy 〈F ′, ϕ〉 = −〈F , ϕ〉.

We know that the derivative of a test function is a distribution. Are the derivatives of distributions
also differentiable then?

Theorem (Derivatives of distributions are distributions) Let F be a distribution, then
so is its derivative.

Proof. The action of F ′ is linear due to the linearity of F . Also, if ϕn → 0 then ϕ′ → 0 by uniform
convergence so that:

〈F ′, ϕn〉 = −〈F , ϕ′
n〉 → 0 (26.2.19)

■

The above result also tells us that since test functions can be infinitely differentiated, any distribu-
tion can also by differentiated infinitely many times. This allows us to prove a wonderful result.
Consider the derivative of the Heaviside function:

〈T ′, ϕ〉 = −〈T , ϕ′〉 = −
∫ ∞

0
ϕ′(x)dx = −ϕ(0) = −〈δ, ϕ〉 =⇒ T ′ = −δ (26.2.20)
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In other words we get the result we previously wanted to prove rigorously, that the derivative of
the Heaviside function is the Dirac delta function:

dΘ(x)
dx

= δ(x) (26.2.21)

Similarly we see that the derivative of the delta function can be defined via the action:

〈δ′, f〉 = −〈δ, f ′〉 = −f ′(0) (26.2.22)

It seems like these distributions satisfy typical rules of differential calculus. For example, we can re-
cover the product rule of differentiation using the definition and properties of distributions:

Proposition (Leibniz rule)
If F is a distribution and f ∈ C∞(R) then (fF)′ = fF ′ + f ′F .

Proof. We have that:

〈(fF)′, ϕ〉 = −〈fF , ϕ′〉 = −〈F , ϕ′f〉 (26.2.23)
= −〈F , (ϕf)′〉+ 〈F , f ′ϕ〉 = 〈fF ′, ϕ〉+ 〈f ′F , ϕ〉 (26.2.24)

as desired. ■
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27.1 Basic definition and properties of the Laplace transform
The Laplace transforms is a very important type of integral transform which is a precursor to its
cousin, the Fourier transform. It, like its cousin, can be used to solve both ordinary and partial
differential equations with more immediacy.

Definition (Laplace transform)
The Laplace transform maps a function f(t) ∈ Lp(R+) to another function F (s) = L{f(t)}
defined by:

F (s) = L{f(t)} ≡
∫ ∞

0
e−stf(t)dt (27.1.1)

It is important to note that the Laplace transform is linear due to the linearity of integration so
that:

L{αf(t) + βg(t)} = αL{f(t)}+ βL{g(t)} (27.1.2)

Example. Compute the Laplace transform of the Heaviside function:

Θ(t) =

{
1, t ≥ 0
0, t ≤ 0

(27.1.3)

We find that:
L{Θ(t)} =

∫ ∞

0
e−stdt = −1

s
lim

τ→∞
(e−τs − 1) = 1

s
, s > 0 (27.1.4)

where we must assume that s > 0 for the Laplace transform to be well defined. By the
linearity of Lwe may write:

L{cΘ(t)} = c

s
(27.1.5)

Note also that for any function f(t) integrable on [0,∞):

L{f(t)Θ(t)} = L{f(t)} (27.1.6)

so from (27.1.5) we have found that:

L{c} = c

s
(27.1.7)

◀
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Note that when performing the Laplace transform of some function we lose all information about
its behaviour for t < 0, we say that the Laplace transform is not unitary. Consequently, one should
not expect to be able to invert the Laplace transform and get back the initial function in its original
domain since we don’t know how it behaves for t < 0. There is an ambiguity in choosing the func-
tion’s behaviour if we want to define it over R. We can solve this problem by using the Heaviside
function. Namely:

L{f(t)Θ(t)} = F (s) =⇒ L{F (s)}−1 = f(t)Θ(t) (27.1.8)

We have no ambiguity here since we simply assume that f(t) = 0, t < 0.

Example. Compute the Laplace transform of f(t) = t.
We need to evaluate the following integral:

L{t} =
∫ ∞

0
te−stdt (27.1.9)

which can be solved using Feynman’s trick. Let:

I(s) =
∫ ∞

0
te−stdt (27.1.10)

Then:
I(s) = − d

ds

(∫ ∞

0
e−st

)
= − d

ds

(
1
s

)
= 1
s2 , s > 0 (27.1.11)

so we have that:
L{t} = L{tΘ(t)} = 1

s2 , s > 0 (27.1.12)

◀

Example. Compute the Laplace transform of f(t) = sin(kt) and g(t) = cos(kt). It is useful
to first evaluate L{ekt}. This is a trivial integral:

L{ekt} = L{ektΘ(t)} =
∫ ∞

0
e−(s−k)tdt = 1

s− k
, s > k (27.1.13)

It follows that:

L{eikt} = L{cos kt}+ iL{sin kt} = s

s2 + k2 + i
k

s2 + k2 , s > 0 (27.1.14)

implying that:
L{cos kt} = s

s2 + k2 , L{sin kt} = k

s2 + k2 , s > 0 (27.1.15)

◀

Proposition (Properties of the Laplace transform) Given a function f(t) ∈ Lp(R+)
with Laplace transform:

F (s) = L{f(t)} (27.1.16)

we have that:
L{ektf(t)} = F (s− k) (27.1.17)
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and
L{tnf(t)} = (−1)n d

nF (s)
dsn

(27.1.18)

Proof. Firstly:
L{ektf(t)} =

∫ ∞

0
e−(s−k)tf(t)dt = F (s− k) (27.1.19)

Secondly:

L{tnf(t)} =
∫ ∞

0
tnf(t)e−stdt = (−1)n dn

dsn

(∫ ∞

0
f(t)e−stdt

)
= (−1)n d

nF (s)
dsn

(27.1.20)

■

Theorem (Laplace transform of a derivative)
Let f(t) be a n-differentiable function at 0. Then if L{f(t)} = F (s) then:

L{f (n)(t)} = snF (s)−
n−1∑

i

sn−if (i)(0) (27.1.21)

Proof. We proceed by induction. We have that:

L{ḟ(t)} =
∫ ∞

0
ḟ(t)e−stdt =

∫ ∞

0

d

dt
(f(t)e−st)dt+

∫ ∞

0
sf(t)e−stdt (27.1.22)

= sF (s) + [f(t)e−st]∞0 (27.1.23)
= sF (s)− f(0) (27.1.24)

assuming that f(t) is dominated by the exponentially decaying e−st as t→∞. Let us now suppose
that (27.1.21) is true up to n. Then:

L{f (n+1)(t)} = L{ ˙f (n)(t)} = sL{f (n)(t)} − f (n)(0) (27.1.25)

= sn+1F (s) +
n∑
i

sn−if (i)(0) (27.1.26)

■

Theorem (Laplace transform of an integral) Let f(t′) be integrable over [0, t]. Then:

L{
∫ t

0
f(t′)dt′} = 1

s
F (s) (27.1.27)

Proof. Define:

g(t) =
∫ t

0
f(t′)dt′ =⇒ ġ(t) = f(t) (27.1.28)
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Then:
L{ġ(t)} = F (s) = sL{g(t)} =⇒ L{g(t)} = 1

s
F (s) (27.1.29)

as desired. ■

Proposition (Second shift theorem) We have that:

L{f(t− a)Θ(t− a)} = e−saF (s) (27.1.30)

We have that:

L{f(t− a)Θ(t− a)} =
∫ ∞

0
Θ(t− a)e−stf(t− a)dt (27.1.31)

=
∫ ∞

a

e−stf(t− a)dt = e−sa

∫ ∞

0
e−st′

f(t′)dt′ = e−saF (s) (27.1.32)

27.2 Solving ODEs with Laplace transforms
Consider the general linear inhomogeneous second order ODE with constant coefficients:

aẍ+ bẋ+ cx = f(t), x(0) = x0, ẋ(0) = 0 (27.2.1)

where f(t) has Laplace transform F (s). We can take the Laplace transform of this equation:

a(s2L{x(t)} − sx0 − 0) + b(sL{x(t)} − x0) + cL{x(t)} = F (s) (27.2.2)
=⇒ (as2 + bs+ c)L{x(t)} − asx0 − bsx0 = F (s) (27.2.3)

=⇒ L{x(t)} = F (s) + asx0 + bx0

as2 + bs+ c
(27.2.4)

It is interesting to note that the characteristic polynomial of the ODE popped up in the denominator
of this Laplace transform! For the homogeneous case where f(t) = 0 =⇒ F (s) = 0, assuming
that the characteristic polynomial has roots at λ1,2 then we find that:

L{x(t)} = asx0 + bx0

(s− λ1)(s− λ2)
= A

(s− λ1)
+ B

(s− λ2)
(27.2.5)

where
A = aλ1 − b

λ1 − λ2
x0, B = b− aλ2

λ1 − λ2
x0 (27.2.6)

We can invert the Laplace transform and find that:

x(t) = Aeλ1t +Beλ2t (27.2.7)

as expected. The importance of Laplace transforms is now clear: it is a very useful tool in solving
differential equations.
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27.3 Convolutions

Definition (Convolution integral)
Given two functions f(t) and g(t), their convolution (f ∗ g)(t) is defined as:

(f ∗ g)(t) =
∫ ∞

−∞
f(s)g(t− s)ds (27.3.1)

Intuitively, the convolution integral gives us the overlap between f and g as we shift one relative to
the other by t along s.

Proposition (Causal functions)
A function f(t) is causal if f(t) = 0, ∀t < 0. The convolution of two causal functions f, g is
given by:

(f ∗ g)(t) =
∫ t

0
f(s)g(t− s)ds (27.3.2)

Proof. We have that∫ ∞

−∞
f(s)g(t− s)ds =

∫ ∞

0
f(s)g(t− s)ds =

∫ t

0
f(s)g(t− s)ds (27.3.3)

since g(t− s) = 0 for s > t. ■

Theorem (Convolution theorem for Laplace transforms)
The Laplace transform of the convolution of two causal functions is the product of their
Laplace transforms:

L{(f ∗ g)(t)} = L{f(t)}L{g(t)} (27.3.4)

Proof. We have that:

L{(f ∗ g)(t)} =
∫ ∞

0
e−st

∫ t

0
f(x)g(t− x)dxdt (27.3.5)

=
∫ ∞

0

∫ ∞

x

e−stg(t− x)dt f(x)dx (27.3.6)

=
∫ ∞

0

∫ ∞

0
e−s(v+x)g(v + x− x)dv f(x)dx (27.3.7)

=
∫ ∞

0
g(v)e−svdv

∫ ∞

0
f(x)e−sxdx = L{g(t)}L{f(t)} (27.3.8)

as desired. ■

Example. Let’s find the inverse Laplace transform of:

F (s) = a

s4 + a2s2 (27.3.9)
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We have that:

L−1(F (s)) = L−1
(

1
s2

a

s2 + a2

)
(27.3.10)

and since L−1(1/s2) = t and L−1(a/(s2 + a2)) = sin(at) one finds:

L−1(F (s)) = L−1(L{t ∗ sin(at)}) =
∫ t

0
(t− s) sin(as)ds = at− sin at

a2 (27.3.11)

◀
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28.1 Non-linear systems

Definition (Autonomous equations and Fixed points)
An autonomous ODE is a differential equation of the form

ẋ = f(x), x(0) = x0 (28.1.1)

The particular solution, x(t) for t > 0 starting with an initial value x(0) = x0 is known as
the orbit of x0. Solutions to f(x) = 0 are known as fixed points or equilibrium points.

In general, given an autonomous equation integrating 1
f(x) can be a very difficult (if not impossible)

task. Nevertheless we can still qualitatively investigate the properties of its solutions by looking at
f(x) only.

For example, consider the following logistic differential equation

ẋ = Ax−Bx2, A,B 6= 0 (28.1.2)

We can solve this problem by integrating directly and find that

1
A

log x

A−Bx
= t+ c =⇒ x(t) = AceAt

1 +BceAt
= Ac

e−At +Bc
(28.1.3)

Therefore, if x(0) = x0 then
x0 = Ac

1 +Bc
=⇒ c = x0

A−Bx0
(28.1.4)

so the particular solution is given by

x(t) = Ax0

Ae−At +Bx0(1− e−At)
(28.1.5)

Note that if x0 = 0 then x(t) = 0 so the orbit of the origin will just stay at the origin, x0 = 0 is a
fixed point. Similarly if x0 = A

B then x(t) = A
B so we get another fixed point providedA,B have the

same sign. If we look at solutions with x0 close to the origin or A
B (if A,B have the same sign), we

see that if A,B > 0 then the orbits will flow away from the origin, but towards x = A
B . If A,B < 0

then the orbits will flow towards the origin but away from x = A
B . Finally, if A < 0, B > 0 then

orbits will flow towards the origin while if A > 0, B < 0 they flow away from it.
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These results could have also been deduced directly from f(x) = Ax − Bx2. Indeed we have that
f(x) = 0 is solved when x = 0 or x = A

B , these are the fixed points we found earlier. If A,B > 0
then we get a concave-down parabola which has positive slope near x = 0 and negative slope near
x = A

B . This means that the origin is an unstable point because the orbits of nearby points are
flowing away from it, while the other fixed point is stable because the orbits of nearby points are
flowing towards it. Similarly if A > 0, B < 0 (or A < 0, B > 0) then we get an unstable (stable)
fixed point at x = 0 and no other points since x > 0, and finally if A,B < 0 then we get an stable
fixed point at x = 0 and an unstable fixed point at x = A

B .

More generally, if xe is an equilibrium point of ẋ = f(x) with f ′(xe) 6= 0 then we can linearise
the autonomous system near xe by defining x(t) = xe + p(t), where p is a small perturbation, and
expand f(xe + p) ≈ f(xe) + pf ′(xe) = pf ′(xe) to get

ẋ = ṗ = pf ′(xe) =⇒ p(t) = Aetf ′(xe) (28.1.6)

So we see that if f ′(xe) > 0 then the perturbation increases exponentially and we get an unstable
point at xe. If instead f ′(xe) < 0 then the perturbation decays andwe get a stable point at xe. There-
fore the behaviour of f ′(x) near xe gives us information on the error-correction of orbits perturbed
from the origin.

Theorem (Stability of fixed points)
Let x = xe be a fixed point of ẋ = f(x). Then xe is a
(i) stable fixed point provided f ′(xe) < 0
(ii) unstable fixed point provided f ′(xe) > 0

The principles we have described can be readily applied to higher dimensional systems, most no-
tably 2D systems.

28.2 Equilibrium points in Phase space
We consider a system of two interacting populations, a predator population and a prey population.
Let X(t) and Y (t) be the prey and predator population respectively at time t.

For a predator-free environment we should expect an exponential growth in the prey population,
governed by Ẋ = kX, k > 0, due to unlimited reproduction. However, due to the presence of
predators there will be an attenuation term −AXY which should be proportional to the number
of encounters between the two populations. Therefore we find that

Ẋ = kX −AXY, k,A > 0 (28.2.1)

On the other hand, in a prey-free environment we should expect exponential decay of the predator
population governed by Ẏ = −hY, h > 0. However, the presence of preys will introduce a term
BXY which should be proportional to the number of encounters between the two populations.
Therefore we find that

Ẏ = −hY +BXY, h,B > 0 (28.2.2)

Since we will be performing Taylor approximations it will prove useful to rescale these equations 1

1without this rescaling we can’t argue reasonably that X is small, since X could be measured in units, hundreds, thou-
sands... who knows! To say that something is small that something should be dimensionless, and thus usually a ratio
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by defining x = BX
h and y = AY

k :

ẋ = kx(1− y), ẏ = −hy(1− x−) (28.2.3)

These are known as the Lotka-Volterra equations.

Definition (Lotka-Volterra equations)
The Lotka-Volterra equations model two interacting populations X and Y via a system of
non-linear differential equations

Ẋ = kX −AXY, Ẏ = −hY +BXY (28.2.4)

where k, h,A,B are all positive. They can be rescaled to yield

ẋ = kx(1− y), ẏ = −hy(1− x) (28.2.5)

The Lotka-Volterra equations are an example of a two-dimensional autonomous system

ẋ = u(x, y), ẏ = v(x, y) (28.2.6)

Definition (Phase space terminology)
Let

ẋ = u(x, y), ẏ = v(x, y) (28.2.7)

be a two-dimensional autonomous system. We define the point (x(t), y(t)) to be a phase
point in a two-dimensional phase space. The position vector x = (x(t), y(t))T in phase
space allows us to write

ẋ = u(x), u(x) = (u(x, y), v(x, y))T (28.2.8)

where u(x) is a vector field known as the phase velocity. A solution x(t) for t > 0 satisfying
the initial condition x(0) = x0 is called the orbit of x0 and the trajectory it traces as it evolves
is its phase path. The phase velocity determines the flow of the orbits, just like in 1d, since
u tangent to a phase path x(t) at every t > 0, and at a given point it points in the direction in
which the orbit passing through that point evolves. A phase portrait shows the collection
of all phase paths.

According to this definition, the Lotka-Volterra equations become

ẋ = u(x), u(x) =
(
kx(1− y)
−hy(1− x)

)
(28.2.9)

Note that the velocity yield vanishes at (0, 0) and (1, 1), so at these points the phase paths do not
evolve: if we set x(0) = xe then x(t) = xe at all t > 0, we get an equilibrium point. This makes
sense, when both populations vanish we are never going to get any change in the system so x = 0.
Instead x = (1, 1) occurs when the birth and death rates balance out for both populations, so we
will again get a balanced, unchanging population.
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Definition (Equilibrium point)
The system ẋ = u(x) has an equilibrium point at xe if the phase-velocity vanishes at this
point u(xe) = 0.

We can retrieve a lot of information about a non-linear system’s behaviour by looking at its proper-
ties near an equilibrium point. Indeed suppose xe is an equilibrium point of ẋ = u(x), and suppose
we perturb the system away from this equilibrium by defining

x(t) = xe + p(t) (28.2.10)

We are interested in the evolution of p(t) under this system’s dynamics. Assuming p is small then
we can expand u to first order

u(xe + p) = u(xe) + J(xe)p (28.2.11)

where we used the Jacobian

J(x) =


∂u

∂x
(x) ∂u

∂y
(x)

∂v

∂x
(x) ∂v

∂y
(x)

 (28.2.12)

Consequently we find that:

Proposition (Linearisation of non-linear systems)
The linearisation of ẋ = u(x) about an equilibrium point xe yields the following evolution
for a small perturbation p:

ṗ = J(xe)p (28.2.13)

Note that the solution to ṗ = J(xe) is fully determined by diagonalizing the Jacobian and finding
its eigenvalues λ1, λ2 and correspondingly its eigenvectors v1,v2:

p = c1e
λ1tv1e+ c2e

λ2tv2 (28.2.14)

In the case of the Lotka-Volterra equations, we see that

J(x) =

k(1− y) −kx

hy −h(1− x)

 =⇒ J(0, 0) =

k 0

0 −h

 , J(1, 1) =

0 −k

h 0

 (28.2.15)

so we find that

ṗ =

k 0

0 −h

p =⇒ p = c1

1

0

 ekt + c2

0

1

 e−ht near (0, 0) (28.2.16)

and

ṗ =

0 −k

h 0

p, =⇒ p = c1

i√a
b

1

 ei
√

kht + c2

−i√a
b

1

 e−i
√

kht near (1, 1) (28.2.17)
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28.3 Classifying equilibrium points
Suppose we have found the equilibrium points of a non-linear system and have found the eigenval-
ues and eigenvectors of the Jacobian at each of these points. Let’s say for example that the linearised
solution near xe is

p = c1e
λ1tv1 + c2e

λ2tv2 (28.3.1)

where λ1, λ2 are eigenvalues of J(xe)with corresponding eigenvectors v1,v2. Note that since u(x) is
well-behaved (more specifically wewant it and its inverse u−1(x) to be differentiable), the Jacobian
will be invertible and thus we will get two non-zero eigenvalues. Alternatively, this ensures that
the only fixed point of the linearised system occurs at the origin p = 0.

λ both real and λ1 ≷ λ2 ≷ 0
If both eigenvalues are real and have the same sign, then we will get orbits that either diverge away
or converge towards xe. The former occurs when λ1 > λ2 > 0, in which case we get an unstable
node, while the latter occurs when λ1 < λ2 < 0, in which case we get a stable node.

λ both real and λ1 > 0 > λ2

If both eigenvalues are real but one is positive and the other negative, then the orbits will flow
towards the origin along one eigenvector but away from it along the other eigenvector. We therefore
get a saddle point, because if we traverse it along one eigenvector it is a stable point, while if we
traverse it along the other it is unstable.

λ both complex and Re(λ) 6= 0
Suppose one eigenvalue, λ1 = ν+ iω, with eigenvector v1 = v is complex. Then since J(xe) is a real
matrix, the other eigenvalue λ2 = λ1 must be the complex conjugate of λ1, and similarly v2 = v.
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Consequently we find that
p(0) = c1v + c2v (28.3.2)

but since the LHS must be real (remember it is a perturbation in phase space), it must hold that
c1v + c2v = c2v + c1v and therefore c1 = c2 = c. We finally find that

p(t) = eνt(ceiωtv + ce−iωtv) = 2eνtRe(ceiωtv) (28.3.3)

Now it can be seen that if ν > 0 then we will get phase paths that spiral away from the origin,
while if ν < 0 the solutions will spiral into the origin. In the first case we get an unstable spiral
while in the latter we get a stable spiral. The sign of ω then determines the direction of the spiral
(anti-clockwise for ω > 0 and clockwise for ω < 0).

λ both complex and Re(λ) = 0
If instead ν = 0 then p(t) = 2Re(ceiωtv) so we get a circle, also known as a center.

Theorem (Classifying equilibrium points)
Consider the linear system ṗ = J(xeq)p, where J has eigenvalues λ1, λ2. The equilibrium
point xeq can be categorised as follows

λ1, λ2 ∈ R
λ1>λ2>0
λ1<λ2<0
λ1>0>λ2

unstable node
stable node
saddle point

λ1,2=ν±iω
µ,ν∈R,ω 6=0

ν>0
ν<0
ν=0

unstable spiral
stable spiral

center

Example. Let’s apply these results to study the phase portrait of the Lotka-Volterra system

ẋ = kx(1− y), ẏ = −hy(1− x−) (28.3.4)
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We have already calculated that this system has fixed points at x = (0, 0) and x = (1, 1), with
corresponding linearised solutions given by

p = c1

1

0

 ekt + c2

0

1

 e−ht near (0, 0) (28.3.5)

p = c1

i√a
b

1

 ei
√

kht + c2

−i√a
b

1

 e−i
√

kht near (1, 1) (28.3.6)

Since k, h > 0 we have that the origin is a saddle, orbits close to it will diverge away along
the x-axis and converge in along the y-axis. On the other hand, (1, 1) is a center since the
Jacobian’s eigenvalues ±i

√
kh are purely imaginary.

◀

28.4 The Poincare-Bendixson theorem
We saw that in the Lotka-Volterra phase portrait, many (actually all orbits except those through
the axes) are closed, and therefore represent oscillating solutions. Centres can often be associated
with conserved quantities, constants of motion along the closed orbits, which we shall now inves-
tigate.

Definition (Constant of motion)
The quantityK(x, y) is a constant of motion iff K̇ = 0 or in other words

ẋ
∂K

∂x
+ ẏ

∂K

∂y
⇐⇒ u · ∇K = 0 (28.4.1)

Since ∇K is normal to the contours of K, this means that the velocity field u should be tangent to
the contours of K. But the velocity field is also tangent to the phase paths! So the contours of K
will be given by the phase paths of the system. The phase paths are found by solving

dy

dx
= uy

ux
(28.4.2)
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which for the Lotka-Volterra system becomes

dy

dx
= −hy(1− x)

kx(1− y)
=⇒ h(x− ln x) = k(ln y − y) + c (28.4.3)

It follows that K(x, y) = h(x − ln x) − k(ln y − y) must be a constant of motion. Since the phase
portrait of the system is given by the contour map ofK, it follows that any extrema of a conserved
quantitymust represent equilibriumpoints of the phase flow. Not only that, since contours near rel-
ative extrema are circles, the corresponding phase flow will be composed of circular orbits. There-
fore these equilibrium points are centres. Similarly saddle points ofK will give saddle point of the
phase portrait.

In the case of the Lotka-Volterra equation we see that

∂K

∂x
= h

(
1− 1

x

)
,
∂K

∂y
= −k

(
1
y
− 1
)

(28.4.4)

implying that the equilibrium point is given by x = y = 1, as expected. This point is also a global
minimum, sinceK(x, y) is continuous, with one stationary point at (1, 1), and approaches infinity
at the origin and at infinity. It follows that all contours of K except for at the stationary point and
centre will be closed: the solutions to the Lotka-Volterra system are always periodic in time!

Example. We consider the following nonlinear system

ẋ = (1− y2)x, ẏ = −(1− x2)y (28.4.5)

The velocity field is u = ((1−y2)x, −(1−x2)y)T , so to find the phase paths we need to solve

dy

dx
= −y(1− x2)

x(1− y2)
(28.4.6)

which is separable∫ (
1
y
− y
)
dy =

∫ (
x− 1

x

)
dx =⇒ ln y − 1

2
y2 = 1

2
x2 − ln x+ c (28.4.7)

Consequently the constant of motion will be K(x, y) = ln(xy) − 1
2 (x2 + y2). We find its

extrema by solving
∂K

∂x
= 1
x
− x = 0, ∂K

∂y
= 1
y
− y = 0 (28.4.8)

sowe see that (1, 1) is a stationary point. This is also a fixed point since theu(0, 0) = 0. To test
whether we have found a center, let us Taylor expand about (1, 1), with log(1 + ϵ) ≈ ϵ− 1

2ϵ
2:

K(x, y) ≈ x+ y − x2 − y2 (28.4.9)

which is indeedmaximised at the origin. Therefore (1, 1) is a center of the nonlinear system.
◀

A limit cycle is a closed orbit whose neighbouring orbits not open but converge towards it
(stable limit cycle), diverge away from it (unstable limit cycle), or converge in one region
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and diverge in the other (half-stable limit cycle).

Figure 28.1. (a) stable limit cycle (b) unstable limit cycle (c) half-stable limit cycle (d) center

Example. Consider the following nonlinear system

ẋ = x(1− x2 − y2)(x2 + y2 − 4)− y (28.4.10)
ẏ = y(1− x2 − y2)(x2 + y2 − 4) + x (28.4.11)

It will be convenient to transform to polar coordinates, where

x = r cos θ, y = r sin θ (28.4.12)

and therefore

ẋ = ṙ cos θ − rθ̇ sin θ (28.4.13)
ẏ = ṙ sin θ + rθ̇ cos θ (28.4.14)

The nonlinear system then becomes

ṙ cos θ − rθ̇ sin θ = r cos θ(1− r2)(r2 − 4)− r sin θ (28.4.15)
ṙ sin θ + rθ̇ cos θ = r sin θ(1− r2)(r2 − 4) + r cos θ (28.4.16)

We multiply the first by cos θ, the second by sin θ and add them, this yields

ṙ = r(1− r2)(r2 − 4) (28.4.17)

Similarly we can multiply the first by sin θ, the second by cos θ and subtract them to find

θ̇ = 1 (28.4.18)
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From the first we see that θ = t+θ0, the angular flow is always positive (counter-clockwise)
and gives no fixed points.

For the radial coordinate, the flow is radially inwards for 0 < r < 1 and r > 2, radially
outwards for 1 < r < 2, with fixed points at r = 0, 1, 2. Looking at the slopes of the graph
we see that r = 0 is a stable node, r = 2 is a stable limit cycle (negative slope), and r = 1 is
an unstable limit cycle (positive slope). ◀

An important result in two-dimensional nonlinear systems theory is knownas the Poincaré-Bendixson
theorem. It confines the possible behaviour of bounded solutions to three types, ruling out any type
of chaotic behaviour. Intuitively, this is a result of the uniqueness of solutions to non-linear sys-
tems of ODEs with well-behaved u(x). Since no two phase paths can ever intersect, any orbit that
is contained within a closed orbit can never touch points outside this closed orbit.

Theorem (Poincaré-Bendixson theorem)
Consider the two-dimensional nonlinear system ẋ = u(x) with initial condition x(0) = x0,
and where u is continuously differentiable. Suppose a solution to this system is constrained
to a closed, bounded region of R2. Then
(i) the orbit is a closed path
(ii) the orbit approaches a closed path as t→∞
(iii) the orbit approaches a fixed point as t→∞
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29PDE1 First order PDEs

29.1 Introduction

Definition (Linear first order PDE) A linear first order partial differential equation is of
the form

n∑
i=1

ai(x1, ..., xn) ∂u
∂xi

+ c(x, y)u = d(x, y) (29.1.1)

where ai, b, d are continuous functions. In two dimensions this reads

a(x, y)∂u
∂x

+ b(x, y)∂u
∂y

+ c(x, y)u = d(x, y) (29.1.2)

where a, b, c, d are continuous functions.

As with first order ODEs, there are some special cases of linear first order PDEs that can be consid-
ered.

29.2 From ODEs to PDEs

Definition (Separable linear first order PDE) A first order PDE is said to be separable
if it is of the form

∂u

∂xi
= f(x1, ..., xi−1, xi+1, ...)g(xi) (29.2.1)

Separable PDEs can be solved by integrating directly, this time remembering that all but one vari-
able are not integrating over and should thus be treated as constants. In other words

∂u

∂xi
= f(x1, ..., xi−1, xi+1, ...)g(xi) =⇒

∫
∂u

∂xi
dxi =

∫
f(x1, ..., xi−1, xi+1, ...)g(xi)dxi (29.2.2)

Consider for example the following

∂u

∂y
= xy =⇒ u(x, y)− f(x) = 1

2
xy2 =⇒ u(x, y) = 1

2
xy2 + f(x) (29.2.3)

Note that the general solution to this first order PDE in y contains an arbitrary function of x, just
like the solution to a first order ODE contains an arbitrary constant.
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Another case which can be solved in a manner analogous to ODEs are those of the type

∂u

∂x
+ a(x, y)u = b(x, y) (29.2.4)

These can be solved using the method of integrating factor. Suppose we have found the integrating
factor Λ using the usual method, then the above can be written as

∂

∂x
(Λ(x, y)u(x, y)) = Λ(x, y)b(x, y) (29.2.5)

which can be integrated to give

Λ(x, y)u(x, y) = B(x, y) + f(y) =⇒ y(x, y) = B(x, y)
Λ(x, y)

+ f(y)
Λ(x, y)

(29.2.6)

Example. For example, consider the following first order PDE

∂u

∂y
+ 3
y
u = y2, y 6= 0 (29.2.7)

The integrating factor is

Λ(x, y) = exp
(∫

3
y
dy

)
= e3 ln y = y3 (29.2.8)

so we find
∂

∂y
(y3u(x, y)) = y5 =⇒ u(x, y) = 1

6
y3 + f(x)

y3 (29.2.9)

As another example, consider
∂u

∂y
− xyu = y, x 6= 0 (29.2.10)

The integrating factor is

Λ(x, y) = e−xy2/2 =⇒ ∂

∂y
(e−xy2/2u(x, y)) = ye−xy2/2 (29.2.11)

which can be integrated to give

e−xy2/2u(x, y) = −e
−xy2/2

x
+ f(x) =⇒ u(x, y) = − 1

x
+ f(x)exy2/2 (29.2.12)

◀

We can solve certain second order PDEs by transforming it into a first order PDE, as the next ex-
ample shows.

Example. Consider ∂2y
∂x∂t + 1

t
∂u
∂x = x, t 6= 0. We can transform this into a first order PDE

by letting f(x, y) = ∂u
∂x :

∂f

∂t
+ 1
t
f = x (29.2.13)
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This can be solved by the method of integrating factors, it is easy to see that Λ(t) = t so that

∂

∂t
(tf) = tx =⇒ f(x, t) = 1

2
tx+ 1

t
h(x) (29.2.14)

To find u(x, t) we substitute back f = ∂u
∂x which yields

∂u

∂x
= 1

2
tx+ 1

t
h(x) (29.2.15)

which can be integrated directly to give the general solution:

u(x, t) = 1
4
tx2 + 1

t
h(x) + g(t) (29.2.16)

◀

29.3 Change of variable and the chain rule
Substitutions of variables are often useful in simplifying PDEs, this requires the use of the chain
rule.

For example, consider the first order PDE

∂u

∂x
− ∂u

∂y
+ u = 2 (29.3.1)

We may define x = η and y = ϕ− η. Then we see that

∂u

∂η
= ∂u

∂x
− ∂u

∂y
(29.3.2)

so that the PDE transforms to
∂u

∂η
+ u = 2 (29.3.3)

We can solve this equation for u using the integrating factor method

Λ(x, y) = eη =⇒ u(η) = 2 + e−ηf(ϕ) (29.3.4)

which in the old coordinates reads

f(x, y) = 2 + e−xf(x+ y) (29.3.5)

29.4 The method of characteristics
Consider the PDE

∂u

∂x
+ ∂u

∂y
= 0 (29.4.1)

We know that letting χ = x and η = x− y then it will transform to

∂u

∂χ
= 0 =⇒ u(x, y) = f(x− y) (29.4.2)
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Note that by performing this special change of coordinates we got a PDE depending on only one
variable. The corresponding solutions are therefore found by integrating over level curves of the
missing variable, in the previous example by keeping x − y = cnst. Such curves are known as
characteristic curves of the PDE and are very useful tools.

Consider the general first order PDE

a(x, y)∂u
∂x

+ b(x, y)∂u
∂y

+ c(x, y)u = d(x, y) (29.4.3)

where a(x, y) 6= 0. Thus we may equivalently write

∂u

∂x
+ g(x, y)∂u

∂y
+ h(x, y)u = k(x, y) (29.4.4)

We define two new variables χ = χ(x, y) and η = η(x, y) so that

∂u

∂χ
+ h(χ, η)u = k(χ, η) (29.4.5)

This can be done if we let

∂u

∂χ
= ∂u

∂x

∂x

∂χ
+ ∂u

∂y

∂x

∂χ
= ∂u

∂x
+ g(x, y)∂u

∂y
(29.4.6)

so by solving the following system of PDEs{
∂x
∂χ = 1
∂y
∂χ = g(x, y)

(29.4.7)

Let χ = x, then the first equation is satisfied, and along the characteristic curves η = csnt we find
that

∂y

∂χ
= dy

dx
= g(x, y) (29.4.8)

Thus solving the above ODE will yield the general solutions α(x, y) = c which are the required
characteristic curves if we define η = α(x, y).

Example. Consider for example

x2 ∂f

∂x
− xy∂f

∂y
+ y2 = 0, x 6= 0 (29.4.9)

which we can write equivalently as

∂f

∂x
− y

x

∂f

∂y
+ y2

x2 = 0 (29.4.10)

To find the characteristic curves we need to solve the ODE

dy

dx
= −y

x
=⇒ xy = c (29.4.11)

so we see that the characteristics are hyperbolae. Hence let χ = x and η = xy. Then we have
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that
∂f

∂y
= ∂f

∂χ

∂χ

∂y
+ ∂f

∂η

∂η

∂y
= x

∂f

∂η
(29.4.12)

and similarly
∂f

∂x
= ∂f

∂χ

∂χ

∂x
+ ∂f

∂η

∂η

∂x
= ∂f

∂χ
+ y

∂f

∂η
(29.4.13)

The PDE now transforms to
∂f

∂χ
+ η2

χ4 = 0 (29.4.14)

which we can integrate directly to find

f(χ, η) = η2

3χ3 + f(η) =⇒ f(x, y) = y2

3x
+ f(xy) (29.4.15)

◀

We can apply this reasoning to some second order PDEs by transforming them into first order
PDEs. This is best illustrated in the following example.

Example. Consider
∂2u

∂x∂y
+ 3x2 ∂

2u

∂y2 − 2∂u
∂y

= 0 (29.4.16)

Let f = ∂u
∂y this becomes a first order PDE

∂f

∂x
+ 3x2 ∂f

∂y
− 2f = 0 (29.4.17)

To find the characteristic curves we solve y′ = 3x2 =⇒ y− x3 = c. Thus we define the new
coordinates χ = x and η = y − x3. Then by the chain rule

∂f

∂x
= ∂f

∂χ
− 3x2 ∂f

∂η
,
∂f

∂y
= 3x2 ∂f

∂η
(29.4.18)

We therefore get a PDE in χ only
∂f

∂χ
− 2f = 0 (29.4.19)

which can be integrated directly to give

f(χ, η) = g(η)e2χ =⇒ f(x, y) = g(y − x3)e2x (29.4.20)

This means that

∂u

∂y
= g(y − x3)e2x =⇒ u(x, y) = h(y−3)e2x + k(x) (29.4.21)

is the general solution. ◀
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31PDE3 Elliptic PDEs: Electrostatics

31.1 Existence and uniqueness theorem
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32PDE4 Hyperbolic PDEs: Waves

32.1 The wave equation
We are interested in the solutions of the following equation

∂2ϕ

∂t2
= c2∇2ϕ (32.1.1)

but before we look at the solutions lets try to derive these from a physical perspective.

Newtonian derivation
Consider an elastic, circular rubber membrane Ω of uniform density ρ that is fixed along some
boundary ∂Ω due to a uniform tension force per unit length T . We will also deal with small oscil-
lations only, so ϕ(x, y, t) is small. Let’s look at the forces acting on an infinitesimal surface element
dA = dx dy. We see that there are four forces acting on four edges of the element, two have mag-
nitude Tdy and the other two have magnitude Tdx. We can model these forces to act only on the
midpoint of the edges, as shown below.

The force along x acting on the frontal edge of the membrane is given by

F 1
x = T cos θ2dy − T cos θ1dy ≈ 0 (32.1.2)
F 1

y = T sin θ2dy − T sin θ1dy ≈ T (tan θ2 − tan θ1)dy (32.1.3)

where we used the small angle approximation. Now note that

tan θ2 = ∂u

∂x

∣∣∣∣
x+dx,y1

, and tan θ1 = ∂u

∂x

∣∣∣∣
x,y2

(32.1.4)

where y1 and y2 are midpoints of the left and right edges respectively. Therefore we see that

F 1
y = T

(
∂u

∂x

∣∣∣∣
x+dx,y1

− ∂u

∂x

∣∣∣∣
x,y2

)
dy = T

∂2u

∂x2

∣∣∣∣
x,y1

dxdy (32.1.5)

Similarly for the other end we find that

F 2
y = T

(
∂u

∂x

∣∣∣∣
x1,y+dy

− ∂u

∂x

∣∣∣∣
x2,y

)
dx = T

∂2u

∂y2

∣∣∣∣
x1,y

dxdy (32.1.6)
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Consequently using Newton’s second law we find that

∂2u

∂t2
ρdxdy = T∇2udxdy (32.1.7)

which gives the 2D wave equation

∂2u

∂t2
= c2∇2u, c =

√
T

ρ
(32.1.8)

We see that the phase velocity of waves propagating on themembrane is given by
√

T
ρ . This deriva-

tion however is tricky to generalize if the tension is non-uniform, a simple way to account for this
is by taking the lagrangian approach instead.

Variational/Lagrangian derivation
The kinetic energy of the membrane is given by

K = 1
2

∫
Ω
µ

(
∂ϕ

∂t

)2

dx dy (32.1.9)

and since we are only working to first order we can approximate

dA =

√
1 + ∂ϕ

∂x

2
√

1 + ∂ϕ

∂y

2
≈ 1 (32.1.10)

To work out the potential energy, note that if the displaced membrane has area dS then the associ-
ated potential energy is T (dS − dx dy) and therefore

V =
∫

Ω
T

√
1 + ∂ϕ

∂x

2
√

1 + ∂ϕ

∂y

2
dx dy −

∫
Ω
T dx dy (32.1.11)

≈ 1
2

∫
Ω
T

[(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2
]
dx dy (32.1.12)

Combining these the Lagrangian reads

L = 1
2

∫
Ω

{
µ

(
∂ϕ

∂t

)2

− T

[(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2
]}

dx dy (32.1.13)

and thus the Lagrangian density is

L = 1
2
µ

(
∂ϕ

∂t

)2

− 1
2
T

[(
∂ϕ

∂x

)2

+
(
∂ϕ

∂y

)2
]

(32.1.14)

The Euler-Lagrange equations are

∂

∂y

(
∂L

∂(∂yϕ)

)
+ ∂

∂x

(
∂L

∂(∂xϕ)

)
+ ∂

∂t

(
∂L
∂ϕ̇

)
= ∂L
∂ϕ

(32.1.15)
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and consequently we get
∂2ϕ

∂t2
= c2∇2ϕ (32.1.16)

as desired.

32.2 d’Alembert’s solution
Let χ = x− ct and η = x+ ct so that

∂ϕ

∂x
= ∂ϕ

∂χ

∂χ

∂x
+ ∂ϕ

∂η

∂η

∂x
= ∂ϕ

∂χ
+ ∂ϕ

∂η
(32.2.1)

and

∂ϕ

∂t
= ∂ϕ

∂χ

∂χ

∂t
+ ∂ϕ

∂η

∂η

∂t
= c

∂ϕ

∂χ
− c∂ϕ

∂η
(32.2.2)

Consequently

∂2ϕ

∂x2 = ∂2ϕ

∂χ2 + ∂2ϕ

∂η2 + 2 ∂2ϕ

∂χ∂η
(32.2.3)

∂2ϕ

∂t2
= c2 ∂ϕ

∂χ
+ c2 ∂ϕ

∂η
− 2c2 ∂2ϕ

∂χ∂η
(32.2.4)

from which we get the wave equation in the new coordinates

∂2ϕ

∂χ∂η
= 0 =⇒ ϕ(x, t) = f(x− ct) + g(x+ ct) (32.2.5)

32.3 Energy conservation and Uniqueness
Having derived an expression for the kinetic and potential energy of a vibrating membrane, let us
see under what conditions energy is conserved. The Hamiltonian (in N dimensions) is

H(t) = 1
2

∫
Ω

[
µ

(
∂ϕ

∂t

)2

+ T (∇ϕ)2
]
dnx (32.3.1)

so we see that

dH

dt
=
∫

Ω

[
µ
∂ϕ

∂t

∂2ϕ

∂t2
+ T (∇ϕ) · ∇

(
∂ϕ

∂t

)]
dnx (32.3.2)

=
∫

Ω
T

[
∂ϕ

∂t
∇2ϕ+ (∇ϕ) · ∇

(
∂ϕ

∂t

)]
dNx (32.3.3)

=
∫

Ω
∇ ·
(
∂ϕ

∂t
∇ϕ
)
dNx (32.3.4)

=
∮

∂Ω

(
∂ϕ

∂t
∇ϕ
)
· n dS (32.3.5)

Thus energy is conserved under motion described by the wave equation if ∂ϕ
∂t = 0 or if n · ∇ϕ = 0.

For example, an electromagnetic wave in vacuum satisfies ∇ · B = 0 and ∇ · E = 0 so energy will
be conserved.
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This theorem on the conservation of energy can be used to prove another useful result, namely
the uniqueness of solutions to the wave equation subject to certain boundary conditions. Indeed
suppose we had found two solutions ϕ1 and ψ2 such that

∂2ϕi

∂t2
= c2∇ϕ2

i ,


ϕi(x, 0) = f(x), x ∈ Ω
∂ϕi

∂t (x, 0) = g(x), x ∈ Ω
ϕi(x, t) = h(x), x ∈ ∂Ω

(32.3.6)

We have two initial conditions (as required by the second order time derivative) and a Dirichlet
boundary condition (we also have other implicit boundary conditions, such as thewell-definedness
of the solution in Ω etc...). Then by the linearity of the wave equation ϕ = ϕ1 − ϕ2 will be another
solution, this time satisfying 

ϕ(x, 0) = 0, x ∈ Ω
∂ϕ
∂t (x, 0) = 0, x ∈ Ω
ϕ(x, t) = 0, x ∈ ∂Ω

(32.3.7)

Therefore we see that H(t = 0) = 0, and since ∇ϕ vanishes on ∂Ω, energy conservation implies
that H(t = 0) = H(t) = 0 at all times t. This implies that∫

Ω

[
µ

(
∂ϕ

∂t

)2

+ T (∇ϕ)2
]
dnx = 0, ∀t (32.3.8)

and since the integrand is a sum of two positive numbers we find that ∇ϕ = ∂ϕ
∂t = 0 on Ω ×

[0,∞). In other words, ϕ = c, but using the initial conditions ϕ = 0 and thus ϕ1 = ϕ2, the two
original solutions are identical. Note that had we changed the Dirichlet condition with a Neumann
condition, then the argument would have been identical until the last step. This time ϕ1 and ϕ2
would differ at most by a constant.

Just like for the Laplace equation, this is a very useful result, it shows that if we are able to find
a solution to the wave equation satisfying the conditions in (32.3.6), then that will be the solu-
tion, independent of how we have found it (guessing, summoning a genie, separation of variables
etc...)

32.4 The 1D wave equation: strings
32.5 The 2D wave equation: membranes
We move to the two-dimensional case and consider a circular membrane of unit radius made out
of a perfectly elastic material of density µ, and that is fixed at its circular boundary by a tension
force per unit length T . We are interested in modelling waves on this circular membrane which
are describes by the wave equation, it will be useful to use polar coordinates due to the problem’s
circular geometry:

∂2ϕ

∂t2
=
(
∂2

∂r2 + 1
r2

∂2

∂θ2 + 1
r

∂ϕ

∂r

)
ϕ (32.5.1)

Moreover, we also require that {
ϕ(r, θ, t) = ϕ(r, θ + 2π, t)
ϕ(1, θ, t) = 0

(32.5.2)

− 313 −



32.5. THE 2D WAVE EQUATION: MEMBRANES

We begin by using separation of variables and let ϕ(r, θ, t) = R(r)Θ(θ)T (t), so that

R(r)Θ(θ)
c2

d2T

dt2
= Θ(θ)T (t)d

2R

dr
+ Θ(θ)T (t)

r

dR

dr
+ R(r)T (t)

r2
d2Θ
dθ2 (32.5.3)

1
c2T (t)

d2T

dt2
= 1
R(r)

d2R

dr2 + 1
rR(r)

dR

dr
+ 1
r2Θ(θ)

d2Θ
dθ

(32.5.4)

Note that the LHS is a function of t while the RHS is a function of (r, θ), so both must be set to a
constant k, yielding

1
T (t)

d2T

dt2
= −kc2,

r2

R(r)
d2R

dr2 + r

R(r)
dR

dr
+ kr2 = − 1

Θ(θ)
d2Θ
dθ

(32.5.5)

Again we see that for the second equation the LHS depends on r only while the RHS depends on
θ, so both sides will also be equal to a constant l

d2T

dt2
= −kc2T, r2 d

2R

dr2 + r
dR

dr
+ (kr2 − l)R = 0, d

2Θ
dθ

= −lΘ (32.5.6)

The first ODE is solved by T (t) = Aei
√

kt + Be−i
√

kt. The other two ODEs are Sturm-Liouiville
equations which we have encountered previously! We have that Θ(θ) = Cei

√
lθ + De−i

√
lθ, and

similarly R(r) = EJ√
l(
√
kr) + FY√

l(
√
kr). The most general solution we can build up using our

separation of variables ansatz is thus given by

ϕ(r, θ, t) =
∑
k,l

(Ae
√

kct +Be−
√

kct)(Cei
√

lθ +De−i
√

lθ)[EJ√
l(
√
kr) + FY√

l(
√
kr)] (32.5.7)

Nowwe can use our boundary conditions to fix some parameters. Firstly, the Bessel function of the
second kind Yn(r) is ill-defined at the origin, and since we require our solution to be regular over
the entire membrane it must be discarded, so D = 0. Next, we also require 2π-periodicity in θ, so
we need

√
l ∈ N and thus l = n2, ∀n ∈ Z. Our solution is thus

ϕ(r, θ, t) =
∞∑

k=1

∞∑
n=0

(Aei
√

kct +Be−i
√

kct)(Cn,ke
inθ +Dn,ke

−inθ)Jn(
√
kr) (32.5.8)

Finally, we use ϕ(1, θ, t) = 0 and the linear independence of our solutions to find that

∞∑
k=1

∞∑
n=0

(Aei
√

kct +Be−i
√

kct)(Cn,ke
inθ +Dn,ke

−inθ)Jn(
√
k) = 0 =⇒ Jn(

√
k) = 0 (32.5.9)

Therefore
√
k = ank is the kth zero of the nth Bessel function of the first type. We have therefore

found that

ϕ(r, θ, t) =
∞∑

k=1

∞∑
n=0

(An,ke
ijnkct +Bn,ke

−ijnkct)(Cn,ke
inθ +Dn,ke

−inθ)Jn(jnkr) (32.5.10)

The remaining parameters can be determined using the orthogonality of Sturm-Liouville eigen-
functions and the initial conditions. Usually we are given one condition on ϕ(t = 0) and another
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on ∂ϕ
∂t

∣∣
t=0. For example, suppose that

ϕ(r, θ, 0) = 0, ∂ϕ
∂t

∣∣∣∣
t=0

= g(r) (32.5.11)

so the membrane is initially still but gets a sudden radial impulse at t = 0. The first condition
implies that A = −B so that

ϕ(r, θ, t) =
∞∑

k=1

A0k sin(j0kct)J0(j0kr)+
∞∑

k=1

∞∑
n=1

(Cn,ke
inθ +Dn,ke

−inθ) sin(jnkct)Jn(jnkr) (32.5.12)

For the second condition, we find that
∞∑

k=1

cj0kA0kJ0(j0kr) +
∞∑

k=1

∞∑
n=0

jnk(Cn,ke
inθ +Dn,ke

−inθ)Jn(jnkr) = g(r) (32.5.13)

The RHS does not depend on θ so only the n = 0 term will survive. The solution is

ϕ(r, θ, t) =
∞∑

k=1

A0k sin(j0kct)J0(j0kr), A0k = 1
cj0k

2
[J1(j0k)]2

∫ 1

0
J0(j0kr)g(r)r dr (32.5.14)

where we used ∫ 1

0
Jn(jnkr)Jn(jnlr)r dr = 1

2
[Jn+1(jnk)]2δkl (32.5.15)

32.6 Fourier transforming to the Hemholtz equation
Let us denote the Fourier transform of ϕ(x, t) as ϕ̃(k, t) so that

ϕ(x, t) = 1√
2π

∫ ∞

−∞
ϕ̃(k, t)eik·x d3k, ϕ̃(k, t) = 1√

2π

∫ ∞

−∞
ϕ(x, t)e−ik·x d3x (32.6.1)

It follows that
∂2ϕ∂t2 = 1√

2π

∫ ∞

−∞

∂2ϕ̃

∂t2
e−ik·x d3k (32.6.2)

and
∇2ϕ = 1√

2π

∫ ∞

−∞
ϕ̃e−ik·x(−k2)e−ik·x d3k (32.6.3)

so the wave-equation takes the form

∂2ϕ̃

∂t2
+ c2k2ϕ̃ = 0 (32.6.4)

This is known as theHemholtz equation, it describes the spectral evolution of the solutions to the
wave equation as linear (namely each mode evolves linearly).
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33PDE5 Parabolic PDEs: Heat andDiffu-
sion

33.1 Existence and uniqueness theorem
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34PDE6 Green’s functions for PDEs
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35L1 Vector spaces

35.1 Definitions
We begin by defining a fundamental mathematical concept used in several areas of physics (most
notably Quantum Mechanics), the Vector Space.

Classically speaking, vectors are defined as objects with both a magnitude and direction. However,
as we will see soon this definition is very limited, and breaking beyond the barrier of arrows with
lengths and directions will enable us to create a broader mathematical structure.

Definition 34.1 (Vector space axioms)
A linear space V over a field K is a collection of vectors v over which two binary operations
+, · are defined, such that ∀u,v, z ∈ V and ∀α1, α2 ∈ K the following are satisfied:

(VS1) Closure under addition: u + v ∈ V
(VS2) Closure under scalar multiplication: α1u ∈ V
(VS3) Commutativity of addition: u + v = v + u
(VS4) Associativity of addition: u + v
(VS5) Associativity of addition: u + (v + z) = (u + v) + z)
(VS6) Associativity of scalar multiplication: α1(α2u) = α1α2u
(VS7) Right-distributivity: (α1 + α2)x1 = α1u + α2u
(VS8) Left-distributivity: α1(u + v) = α1u + α1v
(VS9) Existence of zero vector: ∃0 ∈ V such that u + 0 = u

(VS10) Existence of inverse under addition: ∃(−u) ∈ V such that u + (−u) = 0

Definition 34.2 (Vector subspace)
A vector space W is said to be a vector subspace of a vector space V if W ⊆ W , and is a
proper subspace ifW is neither the zero subspace {0} nor V .

So, if a vector space satisfying VS1-VS10 is a subset of some other vector space, then it is a vector
subspace. Luckily, given a subset of V , one does not necessarily have to prove that all the vector
space axioms hold, since some of them hold for all subsets of V . Indeed, it turns out that only VS1
and VS2 do not necessarily hold for a subset of a vector space. All the others do.

Proposition 34.3 (Criteria of vector subspaces)
A subsetW ⊆ V is said to be a vector subspace of V over K iff :
(S1) Closure under addition: ∀w1,w2, w1 + w2 ∈W
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(S2) Closure under multiplication: ∀α ∈ K,∀w ∈W, αw ∈ W

(S3) Identity inclusion: 0V ∈W , where 0V is the zero of V , such that 0V +w = w,∀w ∈W .

Proof. We proceed by showing that all the vector space axioms hold forW :

(VS1) is equivalent to S1

(VS2) is equivalent to S2

(VS3-VS8) w1,w2 ∈ W =⇒ w1,w2 ∈ V . Hence, since VS3-VS8 hold for all vectors of V , they must
necessarily hold for all vectors ofW .

(VS9) is equivalent to S3

(VS10) implication of S2 with α being the negative identity of K.

■

Definition 34.4 (Span)
The span of a set of vectors {v1...vk} is defined as the set of all their linear combinations:

Span(v1...vk) ≡
{ k∑

i=1
αivi : ∀αi ∈ K

}
(35.1.1)

Definition 34.5 (Linear independence)
Let V be a vector space over K and let α1...αk ∈ K. Then we say that the set of vectors
{v1...vk} are linearly independent iff :

k∑
i=1

αivi = 0 =⇒ αi = 0, ∀1 ≤ i ≤ k (35.1.2)

Otherwise, they are said to be linearly dependent.

Firstly note that by this definition (that uses otherwise) a set of vectors is either linearly dependent
of linearly independent, it cannot be both or neither.

Also note that it suffices for only one coefficient of a set of vectors to not be zero for linear depen-
dence to be satisfied. Linear independence occurs onlywhen all coefficients αi must be zero.

An immediate result is the following:

Proposition 34.5 (Linear dependence of sets containing 0)
Any set of vectors {0,v1, ..., vk} ⊆ V is linearly dependent.

Proof. The set {0,v1, ..., vk} ⊆ V cannot be linearly independent, since for α 6= 0 we may write:

α · 0 +
k∑

i=1
0 · vi = 0 (35.1.3)
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Therefore, the vectors must be linearly dependent. ■

35.2 Basis and dimensions

Definition 34.6 (Basis)
A set of vectors {v1,v2, ..., vk} ⊆ V is said to be a basis of V iff :
(B1) they are linearly independent
(B2) they generate V : Span(v1,v2, ..., vk) = V .
Then, {v1,v2, ..., vk} are said to be basis vectors.

So, given a basis {v1,v2, ..., vk}, it is always possible towrite any vector in V as a linear combination
of these basis vectors.

Proposition 34.7 (Uniqueness of linear combination)
Let {v1,v2, ..., vk} be a basis of a vector space V . Then, any vector v ∈ V can be expressed
as:

v =
k∑

i=1
αivi (35.2.1)

where αi are uniquely determined.

Proof. Suppose that v can be expressed as two different linear combinations:

v =
k∑

i=1
αivi =

k∑
i=1

α′
ivi (35.2.2)

Then:
k∑

i=1
(αi − α′

i)vi = 0 (35.2.3)

However, since vi are linearly independent by (B1), this implies that αi = α′
i, which is a contradic-

tion. ■

Theorem 34.8 (Steinitz Exchange theorem)
Let {v1,v2, ..., vk} be a basis of V , and let {w1,w2, ...,wl} ⊊ V . If l > k, then w1,w2, ...,wl

are linearly dependent.

Proof. If w1 = 0, then by Proposition 34.5 w1,w2, ...,wl are linearly dependent.

Suppose w1 6= 0. Then, we may write:

w1 =
k∑

i=1
αivi ⇐⇒ v1 = 1

α1
(w1 −

k∑
i=2

αivi) (35.2.4)
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wherewe assumewithout loss of generality that ∃α1 6= 0, since otherwise the sets would be linearly
dependent as desired. Hence:

Span
(

(w1 −
k∑

i=2
αivi),v2, ..., vk

)
= V (35.2.5)

where we omit 1
α1

since it is only a constant and will be lost when writing out the linear combina-
tion. Note however that

∑k
i=2 αivi has already been included in the other vectors in the span, and

can therefore be ignored:
Span

(
w1,v2, ..., vk

)
= V (35.2.6)

We can repeat this process by replacing vj with:

1
α′

j

(
wj −

j−1∑
i=1

α′
iwi −

k∑
i=j+1

α′
ivi

)
, ∀ 1 < j ≤ l (35.2.7)

so that, by similar logic to before:

Span
(
w1,w2, ...,wj−1,wj −

j−1∑
i=1

α′
iwi −

k∑
i=j+1

α′
ivi,vj+1, ..., vk

)
= V (35.2.8)

Again, all the vectors in
∑j−1

i=1 α
′
iwi and

∑k
i=j+1 α

′
ivi have already been included in the Span, and

can be neglected. Hence, we get:

Span(w1,w2, ...,wj ,vj+1, ...vl) (35.2.9)

Now since l ≥ k, the end result of reiterating this algorithm will be:

Span(w1,w2, ...,wk) = V (35.2.10)

with l− k remainingwi vectors. This means that the vectors which were left out can be expressed
as a linear combination of w1...wk. For example:

wl−k =
k∑
i

βiwi =⇒ wl−k −
k∑
i

βiwi = 0 (35.2.11)

implying linear dependence. ■

The contrapositive of the Exchange lemma also provides an interesting result which we shall use
soon.

Proposition 34.9 (Contrapositive of the exchange theorem)
Let {v1,v2, ..., vk} be a basis of V , and let {w1,w2, ...,wl} ⊊ V . If w1,w2, ...wl are linearly
independent, then l ≤ k.
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Definition 34.10 (Dimension of a finite dimensional vector space)
The dimension of a finite dimensional vector space is the number of vectors in its basis. So
if V has a basis of cardinality n, then the dimension over a field K is :

dimK(V ) ≡ n (35.2.12)

It may not be immediately clear that the dimension of a vector space is well-defined. How can we
know that all the bases of a vector space contain the same number of vectors?

Theorem 34.11 (Well-definedness of vector space dimension)
Any two bases of a finite dimensional vector space must contain the same number of basis
vectors.

Proof. Suppose we have two bases, {u1,u2, ...,um} and {v1,v2, ..., vn}, each of cardinalitym and n
respectively. Consequently, by B1, they must be both linearly independent. Using Proposition 34.9
then, we have thatm ≥ k and k ≥ m, implying that k = m as desired. ■

It is interesting to note that the dimension of a vector space can depend on the field we define it on.
For example, the vector space of all 3×3 matrices over R has dimension 9, whereas over C it has
dimension 18.

In general, we will omit inserting the field when it is clear from the context.

Proposition 34.11 (Properties of finite dimensional spaces)
The following properties are satisfied by any finite dimensional vector space V :
(D1) V has a basis
(D2) every linearly independent subset of V can be expanded to form a basis
(D3) If n = dim(V ), then any linearly independent subset {v1,v2, ..., vn} ⊆ V is a basis of

V

(D4) if dim(V ) = dim(W ) and V ⊆W , then V = W .

Proof. sdgsdG

(D1) V is spanned by a finitely many vectors, by definition. Hence, we can always find k vectors
that span V :

Span(v1,v2, ..., vk) = V (35.2.13)

If {v1,v2, ..., vk} are linearly independent, then we have found a basis.

Otherwise, one of the vectors can be expressed as a linear combination of the others, and can
be dropped from the span. Repeat this process until the remaining set of vectors is linearly
independent.

(D2) Suppose v1,v2, ..., vk do not span V (since otherwise we would already have a basis). Then,
∃vk+1 6= Span(v1,v2, ..., vk), which can be added to our set of linearly independent vectors.
Continue until V has been generated.

(D3) If dim(V ) = n, then any basis ofV must necessarily containn vectors. Suppose a linearly inde-
pendent set of vectors v1,v2, ..., vn does not form a basis. Then, ∃vn+1 6= Span(v1,v2, ..., vn)
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which can be added to the linearly independent set. However, by Proposition 34.9, any lin-
early independent set of m vectors must satisfy m ≤ n, where n is the dimension of V . This
would imply n+ 1 ≤ n, a contradiction.

(D4) If dimV = dimW = n, then there exists a basis {v1,v2, ..., vn} ⊆ V . We can deduce using
(D3) that {v1,v2, ..., vn} ⊆ V must be a basis ofW too, and thus:

Span(v1,v2, ..., vn) = V = W (35.2.14)

as desired.

■

35.3 Operations on subspaces
In this section we will more closely inspect the properties of vector subspaces, and the operations
we can apply on them, namely sums, direct sums and direct products, as well as intersections and
unions.

Webegin byproviding an alternative, often fasterway to prove that some subsets are subspaces.

Proposition 34.12 (Subspace criterion)
For a subsetW ⊆ V to be a vector subspace of V over K, we need:

cw1 + w2 ∈W, ∀w1,w2 ∈W,∀c ∈ K (35.3.1)

Proof. We wish to prove that (S1)-(S3) are equivalent to 34.3.1. Firstly, note that:

(w′
1 + w′

2 ∈W ) ∧ (cw′
1 ∈W, ∀w′

1,w′
2 ∈W,∀c ∈ K) (35.3.2)

=⇒ cw1 + w2 ∈W, ∀w1,w2 ∈W,∀c ∈ K (35.3.3)

if we takew′
1 = cw1. Similarly:

cw1 + w2 ∈W, ∀w1,w2 ∈W,∀c ∈ K (35.3.4)
=⇒ (w′

1 + w′
2 ∈W ) ∧ (cw′

1 ∈W, ∀w′
1,w′

2 ∈W,∀c ∈ K) (35.3.5)

if we take c = 1 and w2 = w1 to prove the left and right statements of 34.3.5 respectively. Also:

cw1 + w2 ∈W, ∀w1,w2 ∈W,∀c ∈ K =⇒ 0 ∈W (35.3.6)

if we take c = −1 and w1 = w2 ■

Theorem 34.13 (Spanning subspace)
Let S ⊆ V , then Span(W ) is a vector subspace of V .

Proof. Let S = {u1,u2, ...,uk} ⊆ V . Then, 0 =
∑k

i=1 0 · ui =⇒ 0 ∈ Span(W ).
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Now let v1 =
∑k

i=1 αiui ∈ Span(W ) and v2 =
∑k

i=1 βiui ∈ Span(W ) with αi, βi ∈ K, then:

cv1 + v2 = c

k∑
i=1

αiui +
k∑

i=1
βiui =

k∑
i=1

(cαi + βi)ui =
k∑

i=1
γiui ∈ Span(W ) (35.3.7)

where γi = cαi + βi ∈ K due to the closure of fields. Hence, by Proposition 34.12, Span(W ) is a
subspace of V . ■

Proposition 34.14 (Dimension of subspace)
The dimension of a vector subspace of V is always less than or equal to the dimension of V .

Proof. Let V be a vector space of dimension dim(V ) = n, and let S ⊆ V be a subspace of V of
dimension dim(W ) = m. Let BV = {v1,v2, ..., vn} be a basis of V , and BW = {w1,w2, ...,wn}
be a basis of W , then it follows that BW is linearly independent. Hence, using Proposition 34.9,
dim(W ) = m < n = dim(V ). ■

Proposition 34.15 (Union and intersection of subspaces)
Let V be a finite dimensional vector space, with subspaces {W1,W2, ...,Wn}. Then ∀1 ≤ k ≤
n:

W =
k⋂

i=1
Wi is a subspace of V ∀1 ≤ k ≤ n (35.3.8)

and for any two subspacesW1,W2:

W1 ∪W2 is a subspace of V iffW1 ⊆W2 orW2 ⊆W1 (35.3.9)

Proof. We begin by proving that
k⋂

i=1
Wi is a subspace of V, ∀1 ≤ k ≤ n. 0 ∈ W , since 0 ∈ Wi for all

i by the subgroup axioms.

Moreover, if u,v ∈W , then u,v ∈Wi for all i. By proposition 34.12 then:

αu + v ∈Wi,∀i =⇒ αu + v ∈W (35.3.10)

as required. Hence, the subgroup criteria are met, andW =
k⋂

i=1
Wi is a subspace of V .

Next we prove thatW1 ∪W2 is a subspace of V iffW1 ⊆W2 orW2 ⊆W1.

( =⇒ ) We proceed by contradiction. SupposeW1∪W2 is a subspace of V and supposeW1 ⊈ V and
W2 ⊈ V . Then ∃w1 ∈ W1 \ W2 and ∃w2 ∈ W2 \ W1. Therefore, by the closure axiom of
groups:

w1 + w2 ∈ V (35.3.11)

Now suppose that w1 + w2 ∈W1. Then:

(−w1) + (w1 + w2) = w2 ∈W1 (35.3.12)
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which is a contradiction. Sow1 +w2 /∈W1. Similarly, suppose thatw1 +w2 ∈W2. Then this
would imply that:

(−w2) + (w1 + w2) = w1 ∈W1 (35.3.13)

which is a contradiction. Thus, we conclude thatw1 +w2 /∈W1 ∪W2. However, this violates
the subspace criteria in Proposition 34.3. Hence, we must requireW1 ⊆W2 orW2 ⊆W1.

(⇐= ) Suppose thatW1 ⊆W2 orW2 ⊆W1. ThenW1∪W2 = W2 orW1∪W2 = W1 respectively, and
since both W1,W2 are both subspaces of W then it follows that W1 ∪W2 is in either cases a
subspace ofW .

■

Definition 34.16 (Cosets, quotient spaces, sums of spaces)
Let V be a vector space and letW be a vector subspace of V . Then, a coset of V is:

v +W ≡
{
v + w : ∀v ∈ V

}
(35.3.14)

where w ∈W . The set of all cosets of V inW is called the quotient space ofW modulo V :

V/W ≡
{
v +W : ∀v ∈ V

}
(35.3.15)

Finally, the sum of two vector subspaces U,W of V is defined as:

U +W ≡ {u + w : ∀u ∈ U,w ∈W} (35.3.16)

Theorem 34.17 (Dimension of sum of spaces)
Let U,W be subspaces of a finite dimensional space V . Then:

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ). (35.3.17)

Proof. We firstly prove that dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Let B∩ = {v1,v2, ..., vr} be a basis for U ∩W so that dim(U ∪W ) = r. From Proposition 34.15, we
must have that U ∪W is a subspace of both U andW , and consequently (D2) of Proposition 34.11
implies that B∩ can be extended to form a basis of U andW .

Hence suppose that BU = {v1,v2, ..., vr,u1, ...,um} and BW = {v1,v2, ..., vr,w1, ...,wn} are bases
for U andW respectively.

Now let v′ ∈ U +W , then it may be expressed as:

v′ = u′ + w′ (35.3.18)

=
( r∑

i=1
αivi +

m∑
i=1

α′
iui

)
︸ ︷︷ ︸

u′

+
( r∑

i=1
βivi +

n∑
i=1

β′
iwi

)
︸ ︷︷ ︸

w′

(35.3.19)
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for some u′ ∈ U,w′ ∈W . We can rearrange the above equation:

v′ =
( r∑

i=1
αivi +

m∑
i=1

α′
iui

)
+
( r∑

i=1
βivi +

n∑
i=1

β′
iwi

)
(35.3.20)

=
r∑

i=1
γivi +

m∑
i=1

α′
iui +

n∑
i=1

β′
iwi (35.3.21)

where γi = αi + βi. Therefore:

Span(v1, ..., vr,u1, ...,um,w1, ...,wn) = U (35.3.22)

Also, note that {v1, ..., vr,u1, ...,um,w1, ...,wn} is linearly independent. Indeed, suppose:

r∑
i=1

αivi +
m∑

i=1
βiui +

n∑
i=1

γiwi = 0 =⇒
r∑

i=1
αivi +

m∑
i=1

βiui = −
n∑

i=1
γiwi (35.3.23)

for someαi, βi, γi ∈ K. The above belongs toU , since {v1, ..., vr,u1, ...,um} is a basis ofU . Similarly,
it also belongs toW . Therefore:

r∑
i=1

αivi +
m∑

i=1
βiui = −

n∑
i=1

γiwi ∈ U ∩W (35.3.24)

and can therefore be written as:
r∑

i=1
αivi +

m∑
i=1

βiui = −
n∑

i=1
γiwi =

r∑
i=1

civi (35.3.25)

=⇒
m∑

i=1
βiui =

r∑
i=1

divi and −
n∑

i=1
γiwi =

r∑
i=1

civi (35.3.26)

where di = ci − αi. Recall that ui and vi must be linearly independent, since they form a basis of
U . Thus we obtain βi = 0 and di = 0 =⇒ ci = αi.

Similarly, we require thatwi and vi be linearly independent since they form a basis forW . Conse-
quently γi = ci = 0 =⇒ αi = 0. Linear dependence is thus satisfied.

So we may claim that {v1, ..., vr,u1, ...,um,w1, ...,wn} is a basis of U +W . It follows that:

dim(U +W ) = (r +m) + (r + n)− r = dim(U) + dim(W )− dim(U ∩W ) (35.3.27)

as was desired. ■

Theorem 34.18 (Dimension of quotient spaces)
Let U,W be subspaces of a finite dimensional space V . Then:

dim(V/W ) = dim(V )− dim(W ) (35.3.28)

Proof. Let BW = {w1,w2, ...,wn} and BV = {w1,w2, ...,wn,v1,v2, ..., vm} be bases for W and V
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respectively. Let v +W ∈ V/W , where v ∈ V , then it may be expressed as:

v +W =
n∑

i=1
αiwi +

m∑
i=1

βivi + V (35.3.29)

=
n∑

i=1
αi(wi +W ) +

m∑
i=1

βi(vi +W ) (35.3.30)

=
m∑

i=1
βi(vi +W ) (35.3.31)

∈ Span(v1 +W,v2 +W, ..., vm +W} (35.3.32)

where
n∑

i=1
αi(wi +W ) disappears since it is equal toW , and can be reabsorbed into the second sum.

Also, we note that {v1 +W,v2 +W, ..., vm +W} is linearly independent. Indeed:

m∑
i=1

αi(vi +W ) = 0 +W ≡W (35.3.33)

implies:
m∑

i=1
αivi ∈W =⇒

m∑
i=1

αivi =
n∑

i=1
βiwi (35.3.34)

But {w1,w2, ...,wn,v1,v2, ..., vm} is linearly independent since it forms a basis forV . Consequently,
αi = 0, thus proving linear independence of {v1 +W,v2 +W, ..., vm +W}.

So we may claim that {v1 +W,v2 +W, ..., vm +W} is a basis for V/W . It follows immediately that:

dim(V/W ) = (m+ n)− n = dim(V )− dim(W ) (35.3.35)

as required. ■

Definition 34.19 (Direct sums)
Let U,W be subspaces of a finite dimensional space V . Then, we say that V is the (internal)
direct sum of U andW if:

(DS1) U +W = V

(DS2) U ∩W = {0}
We then say that U andW are complementary spaces, and denote the direct sum as:

U ⊕W = V (35.3.36)

Instead, given two arbitrary vector spaces V1, V2 then their (external) direct sum is defined
as:

V1 ⊕ V2 ≡ {(v1,v2) : v1 ∈ V1,v2 ∈ V2} (35.3.37)

An immediate consequence of this definition is that:

dim(U ⊕W ) = dim(U) + dim(W ) (35.3.38)
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or more generally that:

dim
( n⊕

i=1
Wi

)
=

n∑
i=1

dim(W )i (35.3.39)
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37L3 Linear transformations

37.1 What is a map?
We begin by restating some common results on maps that you should be familiar with.

Definition 46.1 (Map, Domain, Image and Kernel)
A map between two sets X and Y assigns to each x ∈ X some y = f(x) ∈ Y referred to as
the image of x under f :

f : X → Y (37.1.1)
x 7→ f(x) (37.1.2)

Here X is called the domain of f , denoted dom(f). Instead, the set:

Im(f) = {f(x) : x ∈ X} ⊆ Y (37.1.3)

is called the image of f . If f is a homomorphism, then the set:

Ker(f) = {x ∈ X : f(x) = 0} (37.1.4)

is called the kernel of f .

Figure 37.1. Map from X to Y .

Definition 46.2 (Injectivity, Surjectivity, Bijectivity) Recall that a function f : X → Y

is said to be:
(i) Injective: if every element of Y is the image of at most one element of X i.e. f(x) =

f(x′) =⇒ x = x′,∀x, x′ ∈ X .
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(ii) Surjective: if every element of Y is the image of at least one element ofX i.e. Im(f) =
Y .

(iii) Bijective: if it is both surjective and injective.

Recall that another way to state surjectivity is that if ∀y ∈ Y, ∃x ∈ Xs.t.f(x) = y. This latter
definition is equivalent to y ∈ Y =⇒ y ∈ Im(f) so that Y ⊆ Im(f). But Im(f) ⊆ Y so Y =
Im(f).

As we saw in Group theory, it is possible to compose different elements of a dihedral group. Simi-
larly, one can also compose maps.

Definition 46.3 (Map composition)
Given two maps f : X → Y and g : Y → Z then their composite map is defined as:

g ◦ f : X → Z (37.1.5)
x 7→ g(f(x)) (37.1.6)

shown in the form of a commutative diagram below:

A B

C

f

g◦f
g (37.1.7)

It is very important that Im(f) ⊆ domg since otherwise it would not be possible to evaluate g(f(x)).
We can interpret the composite of two maps as another map which "jumps over" and bypasses Y
as shown below:

Figure 37.2. Composite map g ◦ f

Suppose we wish to find two maps such that when composed together, they map back every ele-
ment to itself. Such two maps would then be inverses of each other, so that when composed they
give the identity transformation. We define them more rigorously below.

Definition 46.4 (Inverse and identity maps)
The identity map idX : X → X maps all elements of X to themselves.
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Given a map f : X → Y , then g : Y → X is its inverse is:

(g ◦ f) = idX and (f ◦ g) = idY (37.1.8)

Figure 37.3. Inverse map f−1

It is not always a given that a map f has an inverse. We can use the following theorem to determine
which map f .

Theorem 46.4 (Bijectivity and invertibility)
The map f : X → Y has an inverse iff f is bijective, and this inverse is unique.

Proof. sdfd

( =⇒ ) Suppose f has an inverse g : Y → X . Then:

g ◦ f = idX and f ◦ g = idY (37.1.9)

If f(x) = f(x′) then g(f(x)) = idX(x) = x and g(f(x′)) = idX(x′) = x′ so that x = x′, thus
implying injectivity.

Let y ∈ Y . So g(y) = x for some x, hence f(g(y)) = idY (y) = y = f(x). Hence for any y there
exists some x so that y = f(x), giving surjectivity.

(⇐= ) Suppose f is bijective, so ∀y ∈ Y , there exists x s.t. f(x) = y. If we define g(y) = x then for
all y ∈ Y :

(f ◦ g)(y) = f(x) = y and (g ◦ f)(x) = g(y) = x (37.1.10)

as required, g is its inverse.

Suppose f is invertible with two inverses g, h. Then:

(f ◦ g)(x) = (f ◦ h)(x)∀x ∈ X (37.1.11)

then composing with g g(x) = h(x) =⇒ g = h since this equality holds for any x. ■

One can see this more intuitively. Indeed, if f is surjective, then then there may be some elements
in Y that are not mapped. Hence we cannot find an x so that f−1(y) = x, which is clearly a problem
since all ymust get mapped by f−1. If f is injective, then there may be several elements xmapping
to the same y, so that f−1(y) is no longer well-defined. If however it is bijective, then every element
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of x gets mapped exactly once to some y, and all y are a map of some x, so invertibility is easily
satisfied.

Proposition 46.6 (Important inverses)
Suppose f, g are bijective maps. Then f−1, g−1 and f ◦ g are bijective, with inverses:

(f ◦ g)−1 = g−1 ◦ f−1 and (f−1)−1 = f (37.1.12)

Proof. The first follows from:
(f ◦ g)−1 ◦ (f ◦ g) = id (37.1.13)

and:
(g−1 ◦ f−1) ◦ (f ◦ g) = g−1 ◦ id ◦ g = id (37.1.14)

so (f ◦ g)−1 and g−1 ◦ f−1 are inverses of f ◦ g. But inverses are unique, hence the two must be
equal.

Similarly:
(f−1)−1 ◦ f−1 = id and f ◦ f−1 = id (37.1.15)

hence by the same logic as before f = (f−1)−1 as desired. ■

Figure 37.4. Left: diagram of f−1 treating it following definition 46.1 (so all elements of Y get mapped).
Right: diagram of f−1 treating it as the map that undoes f

37.2 What is a linear map?

Definition 46.7 (Linear map)
A linear map is a map f : V → W between two vector spaces V andW over a field F such
that it preserves addition and scalar multiplication:
(L1) f(v1 + v2) = f(v) + f(v2), ∀v1,v2 ∈ V
(L2) f(αv1) = αf(v1), ∀v1 ∈ V, ∀α ∈ F

The set of all linear maps from V toW is denoted Hom(V,W )

Proposition 46.8 (Properties of linear maps)
For any linear maps f : V →W :
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(i) f(0) = 0, that is, f fixes the zero vector.
(ii) Ker(f) is a subspace of V and Im(f) is a subspace ofW .
(iii) f is surjective ⇐⇒ Im(f) = W ⇐⇒ dim Im(f) = dimW .
(iv) f is injective ⇐⇒ Ker(f) = {0} ⇐⇒ dimKer(f) = 0.
(v) αf is linear for α ∈ K.
(vi) if g is linear then f + g is linear.
(vii) if g is linear then f ◦ g is linear.

Proof. sdgdg

(i) We have already shown that 0 ∈ Ker(f) in point (i). f(0) = f(0 · 0) = 0f(0) = 0

(ii) Let v1,v2 ∈ Ker(f). Then f(αv1 + v2) = αf(v1) + f(v2) = 0 =⇒ αv1 + v2 ∈ Ker(f).
Proposition 34.12 then ensures that Ker(f) is a subspace of V .

We have already shown that 0 ∈ Im(f) in point (i). Let w1,w2 ∈ Im(f), so that ∃v1,v2 ∈ V
such thatwi = f(vi). Then αw1 + w2 = αf(v1) + f(v2) = f(αv1 + v2) ∈ Im(f). Proposition
34.12 then ensures that Im(f) is a subspace ofW .

(iii) If f is surjective, then ∀w ∈ W,∃v ∈ V such that w = f(v) ∈ Im(f). So W ⊆ Im(f), and
Im(f) ⊆W implying Im(f) ⊆W .

If instead Im(f) = W , thenW ⊆ Im(f), and Im(f) ⊆ W . Hence ∀w ∈ W,∃v ∈ V such that
w = f(v) ∈ Im(f), implying that f is surjective. It follows then that the two spaces have the
same dimension.

(iv) Suppose f is injective, and let v1, 0 ∈ Ker(f). Then f(v1 − 0 = 0 since Ker(f) is a subspace.
Consequently f(v1) = f(0) and so v1 = 0. So Ker(f) = {0}.

Suppose Ker(f) = {0}, and let v1,v2 ∈ Ker(f). Then, f(v1) = f(v2) =⇒ f(v1 − v2) = 0.
Hence v1 − v2 ∈ Ker(f) and so v1 = v2.

It follows that dimKer(f) = dim{0} = 0.

■

Definition 46.9 (Rank and nullity)
The dimension of the image of a linear map f is called its rank:

rk(f) = dim Im(f) (37.2.1)

and the dimension of the kernel of a linear map f is called its nullity:

null(f) = dimKer(f) (37.2.2)

Theorem 46.10 (Rank-nullity theorem)
For any linear map f : V →W :

null(f) + rk(f) = dim(V ) (37.2.3)
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Proof. Let n = dimV and k = null(f), and let {v1, ..., vk} be a basis for Ker(f), which we can
complete to {v1, ..., vk,vk+1, ..., vn} to form a basis for V . We wish to show that f(vk+1...vn is a
basis of Im(f).

Let is firstly prove that Im(f) = Span(f(vk+1...vn). Indeed consider w ∈ Im(f). Then there exists
some v such that:

w = f(v) = f
( n∑

i=1
αivi

)
=

n∑
i=1

αif(vi) (37.2.4)

However, for i ≤ k we have that f(vi) = 0 and soIm(f) = Span(f(vk+1...vn).

Now let us prove that {vk+1...vn} are linearly independent. Consider:

n∑
i=k+1

αif(vi) = 0 =⇒ f
( n∑

i=k+1

αivi

)
= 0 (37.2.5)

and consequently
n∑

i=k+1
αivi ∈ Ker(f). Using the fact that {v1, ..., vk} is a basis of Ker(f) we find

that:
n∑

i=k+1

αivi =
k∑

i=1
βivi =⇒

n∑
i=1

γivi = 0 (37.2.6)

where γi = αi for k < i ≤ n, and γi = βi for 1 ≤ i ≤ k. However, we know that {vi, ..., vn} forms a
basis, and must therefore be linearly independent. Hence γi = 0 and so αi = 0 as well.

Since {vk+1...vn} both generate Im(f) and are also linearly independent, they must form a basis of
Im(f). So rk(f) = n− k and consequently:

dimV = n = k + (n− k) = null(f) + rk(f) (37.2.7)

■

Figure 37.5. Visual depiction of the rank-nullity theorem

Throughout this proof we have also demonstrated how to construct a basis for Im(f), which is to
simply take the image of the basis of the domain.
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It is then easy to see that for f to be invertible/bijective, then we need Ker(f) to only contain 0, and
no other vectors. In other words, we need null(f) = 0 and hence rk(f) = dimW .

Let’s justify this more rigorously.

Proposition 46.11 (Consequence of rank-nullity)
Let f : V →W be a linear transformation with n = dimV . Then:
(i) f is bijective =⇒ dimV = dimW .
(ii) f is bijective ⇐⇒ null(f) = 0 ⇐⇒ rk(f) = n.
(iii) If it exists, f1 : W → V is linear.

Proof. sdfdg

(i) if f is bijective, then we showed in Proposition 46.8 that null(f) = 0 and rk(f) = dimW .
Using the rank nullity theorem:

dimV = rk(f) = dimW (37.2.8)

as required.

(ii) Suppose dimW = dimW = n (which follows from bijectivity), then from the rank-nullity
theorem:

n = dimV = rk(f) + null(f) = dimW (37.2.9)

and since f is bijective then:

null(f) = 0 =⇒ rk(f) = n (37.2.10)

(iii) Set w1 = f(v1) and w2 = f(v2). Then:

f−1(αw1 + w2) = f−1(αf(v1) + f(v2)) (37.2.11)
= f−1(f(αv1 + v2)) (37.2.12)
= αv1 + v2 (37.2.13)
= αf−1(w1) + f−1(w2) (37.2.14)

■

Proposition 46.12 (Linear map given basis of domain)
Let V and W be vector spaces, with {v1, ..., vn} as a basis of V . For w1, ...,wn ∈ W there
exists one linear map f : V →W such that f(vi) = wi.

Proof. One such linear map is:
f(v) =

∑
αiwi (37.2.15)

where αi are the coefficients of vi:
v =

∑
αivi (37.2.16)
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It is linear since:

f(βv + v′) = f(
∑

βαivi +
∑

α′
ivi) (37.2.17)

= f
(∑

(βαi + α′
i)vi

)
(37.2.18)

=
∑

(βαi + α′
i)wi (37.2.19)

= β
∑

αivi +
∑

α′
ivi (37.2.20)

Obviously, it maps vi 7→ wi. Finally, it is unique, since if g was also a linear map with such proper-
ties then for all v ∈ V :

g(v) =
∑

αiwi = f(v) =⇒ f = g (37.2.21)

as required. ■

37.3 Isomorphisms

Definition 46.13 (Isomorphism)
Two vector spaces V andW are said to be isomorphic whenever we can find an invertible
linear map f : V →W , called an isomorphism of V ontoW .

It follows immediately from (i) of Proposition 46.11 that if two spaces are isomorphic, then they
must have the same dimension. It turns out that the converse is also true.

Theorem 46.14 (Equivalent statement of isomorphicity)
Two finite dimensional vector spaces V andW are isomorphic iff dimV = dimW .

Proof. We have already proven =⇒ .

Now suppose that dimV = dimW and let {v1, ..., vn} and {w1, ...,wn} be bases for V and W

respectively. Then we know from Proposition 46.12 that there exists a linear map f mapping the
basis of V to the basis ofW . Let us show that it is invertible, that is, bijective. Firstly, it is injective,
since:

f(v) = f(v′) =⇒
∑

αivi =
∑

βivi =⇒ αi = βi (37.3.1)

and so v = v′. It is also surjective since Im(f) = {f(vi) : i ∈ N} = {wi : i ∈ N}. Hence f is
invertible, provided dimV = dimW . ■

37.4 Linear maps and matrices

Definition 46.15 (Coordinate map)
For a vector space V over K, endowed with a basis β = {v1, ..., vn}, then we define the
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coordinate map φ : V 7→ Kn by:

φβ(v) =


α1
α2
...
αn

 = [v]β , ∀v ∈ V (37.4.1)

where v =
n∑

i=1
αivi. Here, [v]β is known as the coordinate vector of v relative to β.

The inverse of φβ is ϕβ which given a basis β associates to a list of scalars α1, α2, ..., αn a
vector v.

Note that φ and ϕ are clearly linear. Moreover, {v1, ..., vn} forms a basis of V then dimV = n =
dimKn implying that f is bijective and invertible. Consequently φ is an isomorphism, giving us
the next insightful result:

Proposition 46.16 (Isomorphisms of V onto Kn)
Every n dimensional vector space V is isomorphic to F n through a coordinate map ϕ.

Therefore, given a vector space V and a basis α then the maps ϕα and φα:

Kn V Knϕα φα

Definition 46.17 (Matrix representation)
Let us now consider a basis β = {v1, ..., vn} for V and a basis γ = {w1, ...,wm} forW . Let f
be a linear transformation. Then, there exist unique scalars aij ∈ K for 1 ≤ i ≤ m such that
for each 1 ≤ j ≤ n:

f(vj) =
m∑

i=1
aijwi, (37.4.2)

The scalars aij form a matrix A of size m × n, called the matrix representation of T in the
bases β and γ, denoted as A = [f ]γβ .

We can draw a commutative diagram to demonstrate how matrix representations work:

V W

Kn Km

f

ϕβ

[f ]γ
β

ϕγ

In this diagram, we designate the fields over which we define V andW in the bottom row. These
contain the coordinate vectors of any v ∈ V,w ∈W . To map from Kn to V given a basis β, we need
ϕβ as defined in Definition 46.15. Similarly tomap fromKm toW we need ϕγ . Finally, if f : V →W

then we can map from Kn to Km (map from one coordinate vector to another) by multiplying by
the matrix representation.
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Proposition 46.18 (Columns of matrix representation)
Given a matrix representation A of f in the bases β and γ then:

A = ([f(v1)]γ [f(v2)]γ ... [f(vn)]γ) (37.4.3)

so that f(v) = Av for all v ∈ V (or alternatively [f(v)]γ = A[v]β).

Proof. Note that for v ∈ V :

f(v) = f
( n∑

j=1
vjvj

)
=

n∑
j=1

vjf(vj) (37.4.4)

so that if we let [f(vj)]γ = (a1j a2j ... amj)T then:

[f(v)]γ =


a11v1 + a12v2 + ...+ a1nvn

a21v1 + a22v2 + ...+ a2nvn

...
am1v1 + am2v2 + ...+ amnvn

 (37.4.5)

We can express this more compactly as:

[f(v)]γ =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn



v1
v2
...
vn

 (37.4.6)

=
(

[f(v1)]γ [f(v2)]γ ... [f(vn)]γ
)

[v]β (37.4.7)

=⇒ [f(v)]γ = A[v]β (37.4.8)

More abstractly, one may write:

f(v) = f
( n∑

j=1
vjvj

)
=

n∑
j=1

vj

m∑
i=1

aijwi =
m∑

i=1

( n∑
j=1

vjaij

)
wi (37.4.9)

so that we end up with:

(f(v))i =
n∑

j=1
vjaij = (Av)i (37.4.10)

This however is the expression of matrix multiplication Av, as desired. ■

Theorem 46.19 (Uniqueness of matrix representation)
The matrix representation of a linear representation with respect to the bases β and γ is
unique.
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Proof. Suppose we had two different matrix representations A and B as shown below:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 and B =


b11 b12 . . . b1n

b21 b22 . . . b2n

...
...

...
bm1 bm2 . . . bmn

 (37.4.11)

Then the image of any basis vector vj ∈ β is from Proposition 46.18:

[f(vj)]γ = (a1j a2j ... amj)T = (b1j b2j ... bmj)T (37.4.12)

so jth column of A and B coincide. Since this is true for any 1 ≤ j ≤ nwe have that A = B. ■

Proposition 46.20 (Properties of matrix representations)
Let V andW be finite dimensional vector spaces with bases β and γ respectively, and let f, g
be linear maps of V ontoW . Then:
(i) [f + g]γβ = [f ]γβ + [g]γβ
(ii) [αf ]γβ = α[f ]γβ

Proof. Let β = {v1, ..., vn} and γ = {w1, ...,wm} then there exists unique aij and bij such that:

f(vj) =
m∑

i=1
aijwi, and g(vj) =

m∑
i=1

bijwi (37.4.13)

Then:
(αf + g)(vj) =

n∑
i=1

(αaij + bij)wi (37.4.14)

and so:
([f + g]γβ)ij = αaij + bij = α[f ]γβ + [g]γβ (37.4.15)

■

Theorem 46.21 (Matrix representation of composition)
Let V,W,U be finite dimensional vector spaces with bases α, β and γ respectively. Then, if
g : V →W and f : W → U are linear maps:

[f ◦ g]γα = [f ]γβ [g]βα (37.4.16)

Proof. Let C = [f ◦ g]γα, A = [f ]γβ , B = [g]γβ . Also, let α = {v1, ..., vn}, β = {w1, ...,wm}, γ =
{u1, ...,ul}. We can draw the following commutative diagram:

V W U

Kn Km Kl

g f

ϕα

[g]β
α

ϕβ

[f ]γ
β

ϕγ
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Then for vi ∈ α:

(f ◦ g)(vi) = f
( m∑

k=1

Bkiwk

)
=

m∑
k=1

Bkif(wk) (37.4.17)

=
m∑

k=1

Bki

( l∑
j=1

Ajkuk

)
(37.4.18)

=
m∑

k=1

l∑
j=1

AjkBkiuk =
l∑

k=1

Cjiuk (37.4.19)

where:

Cji =
l∑

j=1
AjkBki = Aj · Bi (37.4.20)

However, this is exactly the definition of matrix multiplication we encountered in the previous
chapter, hence:

[f ◦ g]γα = C = AB = [f ]γβ [g]βα (37.4.21)

■

Proposition 46.22 (Invertibility of linear maps)
Let f : V → W be a linear map, where α and β are bases of V andW respectively. Then f
is invertible iff [f ]γβ is invertible, then [f−1]γβ = ([f ]γβ)−1.

Proof. Suppose that f has an inverse, so that dimV = dimW = n. Then [f ]γβ is a square matrix of
size n, and:

In = [idV ]β = [f−1 ◦ f ]β = [f−1]βγ [f ]γβ (37.4.22)

Similarly [f ]γβ [f−1]βγ , so [f ]γβ is invertible, and [f−1]γβ = ([f ]γβ)−1.

Now suppose A = [f ]γβ is invertible, then there exists B so that AB = BA = In. Then there exists a
map g ∈ Hom(W,V ) such that:

g(wj) =
n∑

i=1
Bijvi (37.4.23)

where γ = {w1, ...,wn} and β = {v1, ..., vn} are bases ofW and V respectively. Then:

[g ◦ f ]β = [g]βγ [f ]γβ = BA = In = [idV ]β (37.4.24)

so we conclude that g ◦ f = idV (and similarly f ◦ g = idV ) by the uniqueness of matrix represen-
tations.

■

Theorem 46.23 (All linear maps have a representation)
The vector spaces Matn,m(K) and Hom(V,W ) are isomorphic.
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Proof. Let β = {v1, ..., vn} and γ = {w1, ...,wm} be bases for V andW respectively. Then:

Φ : Hom(V,W )→Matn,m(K) (37.4.25)
f 7→ [f ]γβ (37.4.26)

is an isomorphism. Indeed, it is linear, as shown in proposition 46.20. Furthermore, it is injective,
since matrix representations are unique as was shown in Theorem 46.19. Finally, it is surjective,
since given any matrix A then we can always find a linear map such that:

f(vi) =
m∑

i=1
Aijwi (37.4.27)

as warranted by Proposition 46.12. But this implies that Φ(f) = [f ]γβ = A as required. ■

An immediate consequence is that given two vector spaces V , W of dimensions n and m then
Hom(V,W ) has dimension n ·m.

This is a fundamental result since it proves that given any matrix, we can associate it to some linear
map. Similarly, to every linear map we can associate some matrix representations. Generally, a
map is linear iff it has a matrix representation.

Since every matrix defines a linear map, we can define its nullity and rank.

Definition 46.24 (Matrix rank)
Given a matrix A : F n → Fm, its associated linear map is:

Av =
m∑

i=1
vif(vi) =

m∑
i=1

viAi (37.4.28)

then the image of A is Im(A) = Span(A1, ...,Am). Its column rank, rk(A), is the number of
linearly independent columns of A. Its row rank is the number of linearly independent rows
of A, so rk(AT ).

Proposition 46.25 (Column rank and row rank)
Column rank and row rank are the same.

Proof. Suppose that A1 can be written as a linear combination:

A1 =
n∑

j=1
αjAj (37.4.29)

and let α = (α2 α3 ... αn)T . Let:

Ai =
(
ai

bi

)
, bi =


b2i

b3i

...
bni

 =⇒ A =


a1 a2 . . . am

b21 b22 . . . b2m

b31 b32 . . . b3m

...
...

...
bn1 bn2 . . . bnm

 (37.4.30)
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Consequently

ai = (Ai)1 = (A1)i =
n∑

j=2
αjAji =

n∑
j=2

αj(Ai)j (37.4.31)

= α2b2i + α3b3i + ...+ αnbni (37.4.32)
= α · bi (37.4.33)

so that
Ai =

(
α · bi

bi

)
(37.4.34)

Therefore, if one row is a linear combination of the others, then we can drop it, leaving the row
rank unchanged obviously. However, the column rank also remains unchanged. Indeed dropping
the first row of A we get:

A =


α · b1 α · b2 . . . α · bm

b21 b22 . . . b2m

b31 b32 . . . b3m

...
...

...
bn1 bn2 . . . bnm

 −→ A′ =


b21 b22 . . . b2m

b31 b32 . . . b3m

...
...

...
bn1 bn2 . . . bnm

 (37.4.35)

the column rank remains the same. Indeed, the first element of any columnalready contains a linear
combination of all elements below it. Consequently, the column spans of A and A′ are generated
by the same number of elements. In other words, the column rank is unchanged by removing a
linearly dependent row.

More rigorously, we need to prove that removing the row containing α · bi will not alter the linear
dependence of the columns. Suppose that A1, A2...Al is the maixmal linearly independent set of
columns of A. Then note that

c1

(
α · b1
b1

)
+ c2

(
α · b2
b2

)
+ ...+ cl

(
α · bl

bl

)
=
(
α · (c1b1 + ...+ clbl)
c1b1 + ...+ clbl

)
(37.4.36)

So ifA1,A2...Al are linearly independent, then b1, b2... bl are also linearly independent. Moreover,
adding any other bi will result in linear dependence. Indeed, if this were not the case, then c′

1b1 +
...+ c′

lbl + c′
l+1bl+1 =⇒ c′

i = 0 and so:(
α · (c′

1b1 + ...+ c′
l+1bl+1)

c′
1b1 + ...+ c′

l+1bl+1

)
= c′

1

(
α · b1
b1

)
+ ...+ c′

l+1

(
α · bl+1
bl+1

)
= 0 =⇒ c′

i = 0 (37.4.37)

so the columns A1, A2...Al+1 would be linearly independent, a contradiction.

A similar reasoning can be used to show that the row rank is unchanged by removing a linearly
dependent column.

So, if we continue this process, removing linearly dependent rows/columns, eventually we will
end up with a final matrix A, whose row and column ranks will not have been altered, and whose
rows and columnswill be linearly independent. This final matrix must be forcibly square. If it were
n×m, assumeWLOG n < m then them vectors in F n must be linearly dependent, a contradiction.
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Hence, the number of linearly independent rows and columns are the same, as desired. ■

37.5 Change of basis and equivalence

Definition 46.26 (Standard basis)
The standard basis of a coordinate vector space Kn is:

ei =



0
...
1
...
0


← iith component (37.5.1)

and its coordinate map is denoted φid.

Supposewe are given the coordinate vector of somevectorv ∈ V in the standard coordinates:

v =
n∑

i=1
viei (37.5.2)

How do we find its coordinates in some other basis β = v1, ..., vn?

Consider the commutative diagram below:

V V

Kn Kn

idV

ϕid ϕβ

Pβ

then:
Pβ = [idV ]idβ = ([v1]id [v2]id ... [vn]id) (37.5.3)

whereas:
Mβ = P−1

β = [idV ]βid = ([e1]β [e2]β ... [en]β) (37.5.4)

Indeed, notice that:

Mβ [v]id = ([e1]β [e2]β ... [en]β)[v]id (37.5.5)
= v1[e1]β + v2[e2]β + ...+ vn[en]β (37.5.6)
= [v1e1 + v2e2 + ...+ vnen]β (37.5.7)
= [v]β = [idV (v)]β (37.5.8)
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where v1, v2, ..., vn are the components of [v]id. Similarly:

Pβ [v]β = ([v1]id [v2]id ... [vn]id)[v]β (37.5.9)
= v′

1[v1]id + v′
2[v2]id + ...+ v′

n[vn]id (37.5.10)
= [v′

1v1 + v′
2v2 + ...+ v′

nvn]id (37.5.11)
= [v]id = [idV (v)]id (37.5.12)

where v′
1, v

′
2, ..., v

′
n are the components of [v]β .

Definition 46.27 (Transition matrix)
If β = {v1,v2, ..., vn} is a basis of a vector space V then:

Mβ = ([e1]β [e2]β ... [en]β) (37.5.13)

called the transition matrix maps φid(v) 7→ φβ(v) so that:

[v]β = Mβ [v]id (37.5.14)

We can view the transition matrix as the matrix representation of φβ . Similarly Pβ is the matrix
representation of ϕβ .

Let us generalize this result for any two bases:

Proposition 46.28 (Change of coordinate matrix)
Let β = {v1,v2, ..., vn} and γ be two bases of a vector space V . Then:

Mβ→γ = ([v1]γ [v2]γ ... [vn]γ) (37.5.15)

is the change of coordinate matrix mapping φβ(v) 7→ φγ(v) so that:

[v]γ = Mβ [v]β (37.5.16)

Proof. Consider the following commutative diagram:

Kn Kn Kn

V V V

ϕβ

Pβ

Mβ→γ

ϕid

Mγ

ϕγ

idV idV

so that it is clear that:
Mβ→γ = [φγ ◦ ϕβ ]id = [id]γβ (37.5.17)

Then

Mβ→γ = MγPβ = Mγ([v1]id [v2]id ... [vn]id) (37.5.18)
= (ϕγ([v1]id) ϕγ([v2]id) ... ϕγ([vn]id)) (37.5.19)
= ([v1]γ [v2]γ ... [vn]γ) (37.5.20)
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as desired. Alternatively, using proposition 46.18 with f = idV then:

Mβ→γ = [id]γβ = ([v1]γ [v2]γ ... [vn]γ) (37.5.21)

as found previously. ■

Proposition 46.29 (Invertibility of change of coordinate matrix)
The inverse of Mβ→γ is M−1

β→γ = Mγ→β .

Proof. Let us firstly prove that Mγ→βMβ→γ = In. Indeed, let β = {v1, ..., vn} so that:

Mγ→βMβ→γ = [idV ]βγ [idV ]γβ = [idV ]ββ = ([v1]β [v2]β ... [vn]β) = In (37.5.22)

where we used Theorem 46.21. Similarly, one can also find that Mβ→γMγ→β ■

Theorem 46.30 (Change of basis of linear transformation)
Let β, β′ be two bases for V and let γ, γ′ be two bases forW . If f : V → W is a linear map,
then:

A′ = Mγ→γ′ A Mβ′→β (37.5.23)

Proof. Consider the commutative diagram below:

V V W W

Km Km Kn Kn

idV f idV

Mβ′→β

ϕβ′

A′

A

ϕβ ϕγ

Mγ′→γ

ϕγ′

Then note that:

A = φγ ◦ f ◦ ϕβ (37.5.24)
A′ = φγ′ ◦ f ◦ ϕβ′ (37.5.25)

hence:

A′ = φγ′ ◦ f ◦ ϕβ′ (37.5.26)
= φγ′ ◦ (ϕγ ◦ φγ) ◦ f ◦ (ϕβ ◦ φβ) ◦ ϕβ′ (37.5.27)
= (φγ′ ◦ ϕγ) ◦ A ◦ (φβ ◦ ϕβ′) (37.5.28)
= M−1

γ′→γ A Mβ′→β (37.5.29)

but we have proven that M−1
γ′→γ = Mγ→γ′ so that:

A′ = Mγ→γ′ A Mβ′→β (37.5.30)
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as desired. ■

We can interpret this result with some intuition by considering the action of each matrix in 46.5.29
on [v]β′ . Indeed, the matrixMβ′→β converts it to [v]β . Then Amaps it to A[v]β = [f(v)]γ by Propo-
sition 46.18. Finally Mγ→γ′ maps it to [f(v)]γ′ .

Definition 46.31 (Equivalent matrices)
Let A,B ∈ Matn,m(K) are equivalent matrices if there exists invertible matrices P,Q ∈
Matm(K) such that:

B = Q−1AP (37.5.31)

We see immediately that if two matrices represent the same linear map with respect to different
bases, then they are similar.

Proposition 46.32 (Similarity to special matrix)
Any matrix A ∈Matm,n(K) is equivalent to:(

Ir 0
0 0

)
(37.5.32)

where r = rk(A).

Proof. We begin by proving that any linear map f : V →W has some set of bases β and γ of V and
W respectively such that:

[f ]γβ =
(
Ir 0
0 0

)
(37.5.33)

Set r so that null(f) = n−r, so that ker f has basis vr+1, ..., vn whichwe extend tov1, ..., vr,vr+1, ..., vn

a basis for V . We know that f(v1), f(v2), ..., f(vn) is a basis for Im(f), and can be extended to a
basis γ forW . Consequently:

[f ]γβ = ([f(v1)]γ [f(v2)]γ ... [f(vr)]γ [f(vr+1)]γ ... f(vn)]γ) (37.5.34)

but f(vi) = 0 for r < i ≤ n so that:

[f ]γβ = ([f(v1)]γ [f(v2)]γ ... [f(vr)]γ 0 ... 0) =
(
Ir 0
0 0

)
(37.5.35)

Now, if we choose some matrix A ∈ Matm,n(K), then by Theorem 46.23 it must be the matrix
representation of some linear map f . Hence, it must be equivalent to:(

Ir 0
0 0

)
(37.5.36)

which is also another representation of f as desired. ■

We can use this theorem to prove the equivalence of row and column rank. Indeed, if we let A ∈
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Matm,n(K) then there exist Q,P ∈Matm(K) such that:

Q−1AP =
(
Ir 0
0 0

)
(37.5.37)

implying that:

(Q−1AP)T == PT At(Q−1)T =
(
Ir 0
0 0

)
(37.5.38)

so that AT is also equivalent to
(
Ir 0
0 0

)
, and hence AT and A both represent the samemap andmust

therefore have the same rank. So column rank and row rank are the same.
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38.1 Structure of solutions
Let’s consider a linear map f : V →W . Suppose we wish to find the solutions to

f(x) = b, x ∈ V,b ∈W (38.1.1)

For b 6= 0, this is known as the inhomogeneous linear equation, whose associated homogeneous
equation is:

f(x) = 0 (38.1.2)

Clearly, the solution of the latter is Ker(f).

Proposition (Structure of solutions)
Suppose x0 ∈ V is a solution to the inhomogeneous equation (38.1.1). Then the general
solution is given by:

x = x0 + Ker(f) (38.1.3)

Proof. Suppose x ∈ V is a general solution to (38.1.1) so that f(x) = b. Since x0 is a solution, we
have that f(x0) = b, so we may write that f(x − x0) = 0. This implies that x − x0 ∈ Ker(f) or
alternatively that x = x0 + Ker(f). ■

Suppose we have a linear transformation f represented by amatrix A : Kn → Km. Then, for x ∈ Kn

and b ∈ Km we consider the linear system of equations Ax = b:
a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2
...
am1x1 + am2x2 + ...+ amnxn = bm

(38.1.4)

We must now consider the following three scenarios:

(i) if rk(A) = m, then a solution exists for any choice of b. Indeed, since Im(A) = Km (since
Im(A) ⊆ Km and they have the same dimensionality), it follows that any vector b ∈ Km may
be expressed as an image of f . The number of free parameters is given by dimKer(A) = n−m.
Geometrically, if we let m = n = 3 and K = R, then we see that if rk(A) = 3 then the linear
map f maps the typical Euclidean space to itself.
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(ii) if rk(A) < m and b ∈ Im(A) then solution exists. Indeed, in this case a generic case of bwill no
longer work, wemust be careful andmake sure that it belongs to the image of A. The number
of free parameters will be dimKer(A) = n − rk(A). Geometrically, this corresponds to the
linear map f mapping the Euclidean space to a subspace of itself, such as a plane. We may
add any vector that maps to the origin to a solution. For example in the case where Im(A) is a
plane the kernel will be a line, any vector on this line may be added, giving a free parameter.

(iii) if rk(A) < m but b /∈ Im(A) then solution doesn’t exist. Indeed if the vector b doesn’t lie in the
space spanned by A then clearly a solution will not exist, since no vector x will get mapped
to b.

Definition (Augmented matrix)
Consider the linear system of equations Ax = bwhere A : Kn → Km is a matrix and x ∈ Kn

and b ∈ Km. We define its augmented matrix to be:

(A|b) =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
...

...
... . . .

am1 am2 . . . amn bm

 (38.1.5)

Theorem (Rank of augmented matrix)
For a matrix A : Kn → Km and b ∈ Kn:

b ∈ Im(A) ⇐⇒ rk(A) = rk((A|b)) (38.1.6)

Proof. =⇒ Suppose that b ∈ Im(A). Then adding this vector to A will not alter the space it spans,
so that rk(A) = rk((A|b)).

⇐= Suppose that rk(A) = rk((A|b)). Then, this means that:

Span(A1,A2, ...,An,b) = Span(A1,A2, ...,An) (38.1.7)

showing that b ∈ Im(A). ■

Therefore, if we can find the rank of the augmented matrix and show that it is equal to the rank
of the coefficient matrix A, then we have shown that a solution must indeed exist. We can find the
rank of matrices using elementary matrix operations.

38.2 Elementary matrix operations

Definition (Elementary row operations)
The following are elementary row operations:
(R1) exchange two rows
(R2) scale a row by a non-zero scalar
(R3) add a non-zero multiple of a row to another row
These operations do not alter the rank of a matrix.
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Because these operations do not alter the rank of a matrix, we may use them to transform a given
matrix into a simpler one where it is easier to determine the span of its column/row vectors.

Definition ((Reduced) row echelon form)
A matrix is said to be in row echelon form if:
(i) a leading entry in a non-zero row is strictly to the right of the leading entry in the row

above
(ii) zero rows are at the bottom

so it has general form: 

. . . aij1 . . . . . . . . . ∗
... a2j2

...
...

...
... arjr

. . .

0 0 . . . . . . . . . 0


(38.2.1)

Instead, a matrix is said to be in reduced row echelon form if:
(i) it is in row echelon form
(ii) each leading entry is a 1
(iii) each leading 1 is the only non-zero entry in its column

For example, the following matrix: 
0 1 0 2 0 7
0 0 1 −3 0 2
0 0 0 0 1 7
0 0 0 0 0 1

 (38.2.2)

is not in reduced row echelon form since the leading 1 in the fourth row is not the only non-zero
element in its column. However it is in row echelon form.

Instead, the following matrix: 1 0 0 3
0 0 1 1

2
0 0 0 0

 (38.2.3)

is indeed in reduced row echelon form.

This gives us a strategy, knownasGauss-Jordan elimination to solve systems of linear equations.

Strategy (Gauss-Jordan elimination)
(i) Apply row operations to (A|b) until the matrix A within it is in row-echelon form.
(ii) Let r = rk(A). If bi 6= 0 for some i > r, then this means that rk(A) 6= rk((A|b)), and

hence b /∈ Im(A). The system therefore has no solutions.
(iii) Otherwise, convert to reduced row echelon form, and solve the resulting system of

equations.
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Example. Consider: 
3x1 − 11x2 − 3x3 = 3
2x1 − 6x2 − 2x3 = 1
5x1 − 17x2 − 6x3 = 2
4x1 − 82 = 7

(38.2.4)

We construct the augmented matrix:

(A|b) =


3 −11 −3 3
2 −6 −2 1
5 −17 −6 2
4 −8 0 7

 (38.2.5)

which we reduce to row echelon form:

(A|b) =


3 −11 − 3
2 −6 −2 1
5 −17 −6 2
4 −8 0 7

→


3 −11 −3 3
0 4

3 0 −1
0 4

3 −1 −3
0 20

3 4 3

 (38.2.6)

→


3 −11 −3 3
0 4

3 0 −1
0 0 −1 −2
0 0 4 8

→


3 0 −3 − 21
4

0 4
3 0 −1

0 0 −1 −2
0 0 0 0

 (38.2.7)

(38.2.8)

So we see that rk(A) = rk((A|b)) = 3 implying that b ∈ Im(A), and that a solution to the
system exists.
We therefore convert the augmented matrix into reduced row echelon form:

(A|b)→


3 0 −3 − 21

4
0 4

3 0 −1
0 0 −1 −2
0 0 0 0

→


3 0 0 3
4

0 4
3 0 −1

0 0 −1 −2
0 0 0 0

 (38.2.9)

→


1 0 0 1

4
0 1 0 − 3

4
0 0 1 2
0 0 0 0

 (38.2.10)

which gives the solution:
x1 = 1

4
, x2 = −3

4
, x3 = 2 (38.2.11)

◀

A useful tool to check whether or not an arithmetic mistake has been made while performing row
reduction is to write the sum of the entries in each row as an extra column, so for example. For
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example 
3 −11 −3 3 −8
0 4

3 0 −1 1
3

0 4
3 −1 −3 − 8

3
0 20

3 4 3 41
3

 (38.2.12)

When we perform a row operation, we perform it on this extra column as well. If the numbers
in this final column still correspond to the sum of the elements in the corresponding row, then no
mistakes have been made. In our example, we get:

3 −11 −3 3 −8
0 4

3 0 −1 1
3

0 0 −1 −2 −3
0 0 4 8 12

 (38.2.13)

so we do indeed find that the sum of all the rows are given in the transformed fifth column.

If saywe had gotten, say, 13 in the last row, then an arithmeticmistakemust have beenmade.

38.3 Inverting matrices

Definition (Elementary matrix)
The matrices obtained by performing row operations on 1 are known as elementary matri-
ces.

Note that elementary matrices are important because they represent row operations. Suppose we
have some row operation, which when acted on 1n gives the elementary matrix E. Then applying
the same row operation on another n×nmatrix A wewill get A′ = EA. For example, if E represents
the exchange of rows i and j, then:

1 =
(
e1 . . . ej . . . ei . . . en

)T =⇒ E =
(
e1 . . . ej . . . ei . . . en

)T (38.3.1)

so that:

E1A = (e1 . . . ej . . . ei . . . en)T (A1 . . . Ai . . . Aj . . . An) (38.3.2)

=



e1 ·A1 e1 ·A2 . . . e1 ·An
...

...
...

ej ·A1 ej ·A2 . . . ej ·An
...

...
...

ei ·A1 ei ·A2 . . . ei ·An
...

...
...

en ·A1 en ·A2 . . . en ·An


(38.3.3)
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which is indeed the version of A with the ith and jth rows exchanged:

A = 1A = (e1 . . . ej . . . ei . . . en)T (A1 . . . Ai . . . Aj . . . An) (38.3.4)

=



e1 ·A1 e1 ·A2 . . . e1 ·An
...

...
...

ei ·A1 ei ·A2 . . . ei ·An
...

...
...

ej ·A1 ej ·A2 . . . ej ·An
...

...
...

en ·A1 en ·A2 . . . en ·An


(38.3.5)

Similarly, if E2 represents multiplication of the ith row by a scalar λ then clearly:

E2A = (e1 . . . λei . . . . . . en)T (A1 . . . Ai . . . . . . An) (38.3.6)

=


e1 ·A1 e1 ·A2 . . . e1 ·An

...
...

...
λei ·A1 λei ·A2 . . . λei ·An

...
...

...
en ·A1 en ·A2 . . . en ·An

 (38.3.7)

which is the version of A with the ith row multiplied by λ.

Finally, suppose that E3 represents adding a λ-multiple of the jth row to the ith row. Then we find
that:

E1A = (e1 . . . ei . . . ej + λei . . . en)T (A1 . . . Ai . . . Aj . . . An) (38.3.8)

=



e1 ·A1 e1 ·A2 . . . e1 ·An
...

...
...

ei ·A1 ei ·A2 . . . ei ·An
...

...
...

ej ·A1 + λei ·A1 ej ·A2 + λei ·A2 . . . ej ·An + λei ·An
...

...
...

en ·A1 en ·A2 . . . en ·An


(38.3.9)

which is indeed the version of A with the λ-multiple of the ith row added to the jth row.

Note also that elementary rowmatrices are all invertible, because the row operations they represent
are all invertible.

Theorem (Invertibility theorem)
(a) An n×n squarematrixA is invertible iff its reduced row echelon form is 1, so if rk(A) =

n.
(b) Any sequence of row operations that transform A to 1 also transform 1 to A−1.

Proof. Let A be an n× nmatrix whose reduced row echelon form is:

U = EkEk−1...E1A = BA (38.3.10)

where Ek,Ek−1, ...,E1 are elementarymatrices. Since they are all invertible, we have that B−1 exists.
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=⇒ SupposeA is invertible. ThenU is the product of invertiblematrices, and is therefore invertible
itself. Hence it cannot have any zero rows, since such matrices are not invertible. It follows from
the conditions of the reduced row echelon form of matrices that the only possible choice of U is 1.
Indeed, it is upper triangular (so in row echelon) with each leading entry as 1. Because it has n
leading 1s and n rows, these leading entries must be on the diagonal. Finally, since there are no
other entries on each columnwith a leading 1, and all columns have a leading 1, we get the identity
matrix.

⇐= Suppose U = 1, then:

BA = 1 =⇒ A = B−11 =⇒ AB = 1 (38.3.11)

Note however that 1 and B−1 are invertible, so A will also be invertible, with A−1 = B.

Therefore, we find that:

A−1 = B = EkEk−1...E11 =⇒ (A|1)→ (1|A−1) (38.3.12)

so we find A−1 by applying the same row operations that row reduce A to 1. ■

We can use the invertibility theorem to find the inverse of matrices.

Example. Let’s find the inverse of the following matrix:

A =

1 4 1
1 6 3
2 3 0

 (38.3.13)

We find that: 1 4 1 1 0 0
1 6 3 0 1 0
2 3 0 0 0 1

→
 1 4 1 1 0 0

0 2 2 −1 1 0
0 −5 −2 −2 0 1

→
 1 4 1 1 0 0

0 2 2 −1 1 0
0 0 3 − 9

2
5
2 1

 (38.3.14)

→

 1 4 1 1 0 0
0 2 0 2 − 2

3 −
2
3

0 0 1 − 3
2

5
6

1
3

→
 1 4 0 5

2 − 5
6 −

1
3

0 2 0 2 − 2
3 −

2
3

0 0 1 − 3
2

5
6

1
3

 (38.3.15)

→

 1 0 0 − 3
2

1
2 1

0 2 0 2 − 2
3 −

2
3

0 0 1 − 3
2

5
6

1
3

→
 1 0 0 − 3

2
1
2 1

0 1 0 1 − 1
3 −

1
3

0 0 1 − 3
2

5
6

1
3

 (38.3.16)

so we see that:

A−1 = 1
6

−9 3 6
6 −2 −2
−9 5 2

 (38.3.17)

To check:
1
6

−9 3 6
6 −2 −2
−9 5 2

1 4 1
1 6 3
2 3 0

 = 1
6

6 0 0
0 6 0
0 0 6

 = 1 (38.3.18)

as expected. ◀
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The invertibility of matrices is especially important when solving linear systems of equations, since
they can be used to find solutions whenever the associated system has only trivial solutions (that
is, when the kernel of the matrix is null, and hence the rank is maximal).

Proposition (Linear systems and invertibility)
For an n× nmatrix A, the following statements are equivalent:
(a) A is invertible
(b) The system Ax = b has a unique solution for any b
(c) The system Ax = 0 only has a trivial solution.

Proof. sdg

(a) =⇒ (b) Let A be invertible. Suppose Ax = b, then multiplying by A−1 then A−1Ax = A−1b =⇒ x =
A−1b. Instead, if x = A−1b then multiplying by A we get Ax = b.

(b) =⇒ (c) Suppose Ax = b has a unique solution for any b. Then Ax = 0 also has a unique solution,
which can only be the trivial solution

(c) =⇒ (a) Suppose that Ax = 0 only has a trivial solution. Then this means that when we reduce the
augmented matrix:  a11 a12 a13 0

a21 a22 a23 0
a31 a32 a33 0

 (38.3.19)

then we must get that:  1 0 0 0
0 1 0 0
0 0 1 0

 (38.3.20)

since there can only be trivial solutions. So A has a reduced row echelon form of 1, proving
by the Invertibility theorem that it is invertible.

Alternatively, we could note that if dimKer(A) = 0 then rk(A) = n. Therefore A is invertible.

■

Example. Let’s consider the system:
x+ 4y + z = 4
x+ 6y + 3z = 6
2x+ 3y = 9

(38.3.21)

which may be written in matrix form as:

Ax = b, A =

1 4 1
1 6 3
2 3 0

 ,b =

4
6
9

 (38.3.22)
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We have already found A−1, so we find that:

x = A−1b = 1
6

−9 3 6
6 −2 −2
−9 5 2

4
6
9

 = 1
6

36
−6
12

 =

 6
−1
2

 (38.3.23)

so the solution to the system of equations is x = 6, y = −1, z = 2. ◀

Proposition (Inverse matrix properties)
Let A,B be invertible matrices. Then:
(a) (AT )−1 = (A−1)T

(b) (A−1))−1 = A
(c) AB is invertible and (AB)−1 = B−1A−1

Proof. (a) We find that:
(AT )(A−1)T = (A−1A)T = 1T = 1 (38.3.24)

and similarly:
(A−1)T (AT ) = (AA−1)T = 1T = 1 (38.3.25)

(b) We find that:
(A−1)(A) = 1 = (A)(A−1) (38.3.26)

(c) We find that:
ABB−1A−1 = AA−1 = 1 (38.3.27)

and
B−1A−1AB = B−1B = 1 (38.3.28)

as desired.

■
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39.1 The determinant of a matrix

Definition (Determinant)
The determinant det : Kn → K maps n vectors a1, a2, ..., aN ∈ Kn to a scalar
det(a1, a2, ..., aN ) ∈ K. It satisfies the following properties:
(a) det(..., αa + βb, ...) = α det(..., a, ...) + β det(...,b, ...).
(b) det(..., a, ...,b, ...) = −det(b, ..., a, ...)
(c) det(e1, e2, ..., en) = 1

The determinant of a matrix A with column vectors Ai, 1 ≤ i ≤ n is the determinant of
these column vectors:

det A ≡ det
(
A1,A2, ...,An

)
(39.1.1)

Note that:
det(..., 0, ...) = det(...,v− v, ...) = det(...,v, ...)− det(...,v, ...) = 0 (39.1.2)

and:
det(..., a, ..., a, ...) = −det(..., a, ..., a, ...) =⇒ det(..., a, ..., a, ...) = 0 (39.1.3)

So the determinant of a matrix with a zero column is null, and so is the determinant of a matrix
with a repeated column vector.

Also, we have that:
det(..., a, ..., αa, ...) = α det(..., a, ..., a, ...) = 0 (39.1.4)

so the determinant of a matrix with two columns that are proportional to each other will also be
zero. We can combine these results to state that the determinant of a matrix where one row is a
linear combination of some of the others is also zero.

We summarize these results in the next theorem:

Proposition (Zero determinant matrices)
The following matrices have a zero determinant:
(a) an entire row (or column) of zeros
(b) a row (or column) that is a linear combination of other rows (or columns)

− 359 −



39.1. THE DETERMINANT OF A MATRIX

Proposition (Special determinants) The matrix of a diagonal matrix A is given by the
product of its diagonal elements.
The matrix of an upper or lower triangular matrix A is also given by the product of its diag-
onal elements.

Proof. Consider a matrix A = diag(a11, a22, ..., ann). Then:

det A = det(a11e1, a22e2, ..., annen) = a11a22...ann (39.1.5)

Instead, for an upper triangular matrix:

det A = det

(
a11e1, a12e1 + a22e2, ...,

∑
i

ainei

)
(39.1.6)

=
���������������:0

det

(
a11e1, a12e1, ...,

∑
i

ainei

)
+ det

(
a11e1, a22e2, ...,

∑
i

ainei

)
(39.1.7)

= det(a11e1, a22e2, ..., annen) (39.1.8)
= a11a22...ann (39.1.9)

as desired. ■

Theorem (Determinant of matrix)
For a given n× nmatrix A, we have that:

det A =
∑

σ∈Sn

sgn(σ)
n∏

k=1

aσ(ik)k (39.1.10)

Proof. We start by writing:

det A = det
(
A1,A2, ...,An

)
(39.1.11)

= det

(∑
i1

ai11ei1 ,
∑
i2

ai22ei2 , ...,
∑

k

ainnein

)
(39.1.12)

=
∑
i1

ai11 det

(
ei1 ,

∑
i2

ai22ei2 , ...,
∑
in

ainnein

)
(39.1.13)

=
∑

i1i2...in

ai11ai22...ainn det(ei1 , ei2 , ..., ein
) (39.1.14)

Now note that the only terms that survive out of this sum are i1 6= i2 6= i3 6= ... 6= in. In other

− 360 −



39.1. THE DETERMINANT OF A MATRIX

words, the only terms surviving are all the permutations of e1, e2, ..., en, so we write:

det A =
∑

σ∈Sn

sgn(σ)aσ(i1)1aσ(i2)2...aσ(in)n det(e1, e2, ..., en) (39.1.15)

=
∑

σ∈Sn

sgn(σ)
n∏

k=1

aσ(ik)k (39.1.16)

as desired. ■

Proposition (Determinant properties)
Let’s consider two n× nmatrices A,B. Then:
(a) det

(
AT
)

= det A
(b) det(AB) = det A · det B
(c) A is bijective ⇐⇒ det A 6= 0 and det A−1 = 1

det A

Proof. (a) Let a′
ij be the matrix elements of AT so that a′

ij = aji. Then:

det AT =
∑

σ∈Sn

sgn(σ)
n∏

k=1

a′
σ(ik)k =

∑
σ∈Sn

sgn(σ)
n∏

k=1

akσ(ik) (39.1.17)

=
∑

σ∈Sn

sgn(σ−1)
n∏

k=1

aσ−1(ik)k =
∑

ρ∈Sn

sgn(ρ−1)
n∏

k=1

aρ−1(ik)k = det A (39.1.18)

(b) Recall that (AB)ik =
∑

j aijbjk implying that:

(AB)k =
∑

ij

aijbjkei =
∑

j

bjkAj (39.1.19)

Hence, we get that:

det AB = det

∑
j1

bj11Aj1 ,
∑
j2

bj22Aj2 , ...,
∑
jn

bjnnAjn

 (39.1.20)

=
∑

j1,...jn

bj11bj22...bjnn det
(
Aj1 ,Aj2 , ...,Ajn

)
(39.1.21)

Again, we see that the only terms that survive are those where j1 6= j2 6= ... 6= jn, so we will
get:

det AB =
∑

σ∈Sn

sgn(σ)bσ(j1)1bσ(j2)2...bσ(jn)n det
(
A1,A2, ...,An

)
(39.1.22)

= det A · det B (39.1.23)

as desired.

(c) ( =⇒ ) Suppose that A is bijective, and thus invertible. Then:

det
(
AA−1) = det A · det A−1 = det 1 = 1 (39.1.24)
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implying that det A 6= 0.

( ⇐= ) Suppose that A is not bijective, so that rk(A) < n. Therefore, there is at least one
column vector, say Ai, which may be written as a linear combination of some of the others:

Ai =
∑

j

αjAj (39.1.25)

It then follows that

det A = det
(
A1, ...,Ai, ...,An

)
= det

(
A1, ...,Ai, ...,An

)
(39.1.26)

= det

A1, ...,
∑

j

αjAj , ...,An

 (39.1.27)

=
∑

j

αj det
(
A1, ...,Aj , ...,Aj , ...,An

)
(39.1.28)

= 0 (39.1.29)

as desired.

Using (39.1.24):
det A−1 = 1

det A (39.1.30)

as desired.

■

39.2 Laplace expansion

Definition (Cofactor matrix)
Consider an n× nmatrix A, then we define the associated (i, j) matrix A(i, j) as the matrix
A with the ith row and jth column substituted with ei and eT

j respectively:

A(i, j) =



jth col
0

A
... A

0 . . . 0 1 0 . . . 0

A
... A
0


← ith row (39.2.1)

The (i, j) cofactor coefficient is then defined as the determinant of A(i, j)

Cij = det(A(i, j)) (39.2.2)

The cofactor matrix is the matrix C whose elements are Cij . The cofactor expansion in the
ith row is defined as:

cofiA =
∑

k

aikCik = ai1Ci1 + ai2Ci2 + ...+ ainCin (39.2.3)
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It turns out that the cofactor matrix is especially important in evaluating the inverse of matrices. It
is therefore important to be able to calculate the determinant of Aij more easily.

Proposition (Cofactor matrix calculation)
Let A be a n×nmatrix and let Ãij be thematrix A with the ith row and jth column removed.
Then:

Cij = (−1)i+j det
(
Ã(i, j)

)
(39.2.4)

Proof. Note that the determinant only acquires a sign change whenmoving columns, and the same
goes for rows since det

(
AT
)

= det A. Hence, we may move the ith row and jth column to the first
row and column respectively. To do so we must perform i − 1 row exchanges followed by j − 1
exchanges. 1 If we define Ãij to be the matrix with the ith and jth rows removed, then if:

B(i, j) ≡


1 0 . . . 0
0
... Ã(i, j)
0

 (39.2.5)

=⇒ det(B(i, j)) = (−1)i+j+2 det(A(i, j)) = det
(
Ã(i, j)

)
(39.2.6)

so that:
det(A(i, j)) = (−1)i+j det

(
Ã(i, j)

)
(39.2.7)

■

This is amuch easier formula to usewhen evaluating the cofactormatrix, since instead of evaluating
the determinant of an n × n matrix, we’re evaluating the determinant of an (n − 1) × (n − 1)
matrix.

Theorem (Laplace expansion)
For a given n× nmatrix A with cofactor matrix C:

(det A)1 = CT A (39.2.8)

so that:
det A =

∑
k

(−1)k+iAkj det
(
Ã(k, i)

)
(39.2.9)

Proof. We find that:

(CT A)ij =
∑

k

CkiAkj (39.2.10)

=
∑

k

det(A(k, i))Akj (39.2.11)

=
∑

k

Akj det
(
A1 −Ak1ek,A2 −Ak2ek, ..., ek, ...,An −Aknen

)
(39.2.12)

1we can’t just exchange the ith row with the first row, since this would alter the order of the rows, and would not give
the matrix A with the ith row removed.
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Now note that

det
(
A1 −Ak1ek, ..., ek, ...

)
= det

(
A1, ..., ek, ...

)
−Ak1 det(ek, ..., ek, ...) (39.2.13)

= det
(
A1, ..., ek, ...

)
(39.2.14)

Repeating this process we find that:

(CT A)ij =
∑

k

Akj det
(
A1,A2, ..., ek, ...,An

)
(39.2.15)

=
∑

k

det
(
A1,A2, ...,Aj , ...,An

)
(39.2.16)

= det
(
A1,A2, ...,Ai, ...,An

)
δij (39.2.17)

= det Aδij (39.2.18)

implying that:
CT A = det A1 (39.2.19)

as desired. ■

Example. Consider a 3× 3 matrix:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (39.2.20)

We calculate the cofactor expansion in the first column: Then we find that:

C11 = a22a33 − a23a32, C21 = a13a32 − a12a23, C31 = a12a23a22a13 (39.2.21)

so:

det A = C11a11 + C21a21 + C31a31 (39.2.22)
= a11(a22a33 − a23a32) + a21(a13a32 − a12a23) + a31(a12a23a22a13) (39.2.23)

Note that had we used the cofactor expansion in any other column (or also row), the d ◀

Proposition (Cofactor orthogonality with rows)
We have that the jth row Aj of a matrix A is orthogonal to the ith row of its cofactor matrix
C, for i 6= j. So:

Aj · Ci =
∑

k

ajkCik = 0 (39.2.24)

Proof. For i 6= j, we have that

Aj · Ci =
∑

k

ajkCik = aj1Ci1 + aj2Ci2 + ...+ ajnCin (39.2.25)

Our goal is to find some other matrix B whose cofactor expansion is like this. To find the form of
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this matrix, we note that:

aj1Ci1 + aj2Ci2 + ...+ ajnCin = bi1Ci1 + bi2Ci2 + ...+ binCin (39.2.26)

Firstly, since Cij takes all the entries of A without the ith row and jth column, it follows that for
these cofactors to coincide with those of B, all the elements of B except for the ith row are identical
to those ofA.

The only change is that for ajk = bik, k = 1, 2, ..., n, so the ith row of B is the jth row of A. However,
note that the jth row of B must also be the jth row of A as we argued in the previous paragraph,
so B has two repeated rows. Therefore, its determinant/cofactor expansion must vanish:

aj1Ci1 + aj2Ci2 + ...+ ajnCin = bi1Ci1 + bi2Ci2 + ...+ binCin = 0 (39.2.27)

■

Definition (Adjoint matrix)
The adjoint adj A of a matrix A is the transpose of its cofactor matrix C:

adj A = CT =⇒ (det A)1 = (adj A)A (39.2.28)

Theorem (Inverse of matrix)
Let A be an invertible n× nmatrix, then:

A−1 = 1
det Aadj A (39.2.29)

Proof. We find that:

(det A)1 = CT A =⇒ (det A)A−1 = adj A =⇒ A−1 = 1
det Aadj A (39.2.30)

as desired. ■

Example. Consider the 2× 2 matrix:

A =
(
a b

c d

)
, ad− bc 6= 0 (39.2.31)

We find that:
det A = ad− bc (39.2.32)

Furthermore:
C11 = d, C12 = −c, C21 = −b, C22 = d (39.2.33)

giving the cofactor matrix:

C =
(
d −c
−b d

)
(39.2.34)
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Consequently

adj A =
(
d −b
−c a

)
=⇒ A−1 = 1

ad− bc

(
d −b
−c a

)
(39.2.35)

◀

39.3 Cramer’s rule
With our newfoundknowledge of determinants, we are now ready to formulate yet anothermethod
to solve linear systems. Previously we have discussed Gauss-Jordan elimination, as well as invert-
ing matrices as methods of solutions.

Theorem (Cramer’s rule)
Consider a linear system of equations Ax = b. Let Bi be the matrix A with the ith column
replaced with b. Then the solution to the system is given by:

xi det A = det Bi (39.3.1)

Proof. We find that:

det Bi = det
(
A1, ...,b, ...,An

)
(39.3.2)

=
∑

i

bi det
(
A1, ..., ei, ...,An

)
(39.3.3)

=
∑

i

Aijxj det
(
A1, ..., ei, ...,An

)
(39.3.4)

=
∑

i

xj det
(
A1, ...,Aj , ...,An

)
(39.3.5)

= xi det
(
A1, ...,Ai, ...,An

)
= xi det A (39.3.6)

as desired. Hence, if A is invertible then the solutions are given by:

xi = det Bi

det A (39.3.7)

■

Example. Consider the following system:
x+ 2y + 3z = 0
2x+ 3y + 4z = 1
3x+ 4y + 6z = 2

(39.3.8)

Then we see that:

A =

1 2 3
2 3 4
3 4 6

 , b =

0
1
2

 (39.3.9)
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so that:

B1 =

0 2 3
1 3 4
2 4 6

 , B2 =

1 0 3
2 1 4
3 2 6

 , B3 =

1 2 0
2 3 1
3 4 2

 (39.3.10)

Now we evaluate the determinants using the Laplace expansion:

det A = (18− 16)− 2(12− 12) + 3(8− 9) = −1 (39.3.11)
det B1 = −2(6− 8) + 3(4− 6) = −2 (39.3.12)
det B2 = (6− 8) + 3(4− 3) = 1 (39.3.13)
det B3 = (6− 4)− 2(4− 3) = 0 (39.3.14)

so that:
x = 2, y = −1, z = 0 (39.3.15)

◀
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40L6 Inner product spaces

40.1 Inner products

Definition (Inner products)
An inner product on a vector space V defined over K = R (or C) is a map:

〈 , 〉 : V × V → K (40.1.1)

satisfying:
S1. 〈v,w〉 = 〈w,v〉 for a symmetric scalar product

(or 〈v,w〉 = 〈w,v〉∗ for hermitian inner product)
S2. 〈v, αu + βw〉 = α 〈v,u〉+ β 〈v,w〉
S3. 〈v,v〉 ≥ 0 with equality holding only for v = 0

for all v,w,u ∈ V, α, β ∈ K.

Example.
i. Minkowski product: for v = vµeµ ∈ R4 and w = wµeµ ∈ R4, the Minkowski product

is defined as:
〈v,w〉 = vTηv (40.1.2)

where η = diag(1,−1,−1,−1).
ii. Functional products: for f, g ∈ C0([a, b]), we define their inner product as:

〈f, g〉 =
∫ b

a

f(x)∗g(x)dx (40.1.3)

◀

Proposition (Inner product is well-defined)
Let f, g ∈ End(V ) be two endomorphisms on V , then:

〈v, f(w〉 = 〈v, g(w)〉 ,∀v,w ∈ V =⇒ f = g (40.1.4)

Proof. Let B = {ei} be an orthonormal basis for V . It follows that for any v,w ∈ V (we assume a
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hermitian inner product, the proof for a symmetric scalar product is similar):

〈v, f(w)〉 = 〈v, g(w)〉 ⇐⇒ 〈v, f(w)− g(w)〉 = 0 (40.1.5)

⇐⇒
∑

ij

v∗
i wj 〈ei, f(ej)− g(ej)〉 = 0 (40.1.6)

Since this applies for any v,w, we must therefore have that:

〈ei, h(ej)〉 ≡ 〈ei, f(ej)− g(ej)〉 = 0, ∀i, j = 1, 2, ... (40.1.7)

where we defined h = f −g ∈ End(V ). Consequently, h(ej) cannot have any component along any
of the basis vectors for V , and must therefore be zero. Hence f = g as desired. ■

Definition (Orthogonal complement) For a subspaceW of V , we define the orthogonal
complementW⊥ as:

W⊥ = {v ∈ V : 〈v,w〉 = 0, ∀w ∈W} (40.1.8)

40.2 Projectors

Proposition (Properties of orthogonal complements) For a subspace W of V with
orthogonal complementW⊥, we have that:
(i) W⊥ ⊂ V
(ii) W ∩W⊥ = {0}
(iii) dimW + dimW⊥ = dimV

Proof. (i) Trivial.

(ii),(iii) Firstly note thatW ⊕W⊥ = V . Indeed, given a vector v ∈ V , we can decompose it as:

v = 〈w,v〉w︸ ︷︷ ︸
∈W

+ (v− 〈w,v〉w)︸ ︷︷ ︸
∈W ⊥

(40.2.1)

Therefore, we must have that dimW + dimW⊥ = dimV , as well asW ∩W⊥ = {0} from the
properties of direct sums.

■

Definition ((Orthogonal) Projection operators) Let V = U⊕W . We define a projection
from V toW as a map Π satisfying:

Π : V →W (40.2.2)
u + w→ w (40.2.3)

with u + w. Clearly, Π2 = Π so it is idempotent.
If U = V ⊥ then we say that Π is an orthogonal projection operator.
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Theorem (All idempotent maps are projective)
All idompotent maps are projections.

Proof. Let Π be an idempotent map so that Π2 = Π. Let v, then clearly we have that:

v = Π(v) + (v−Π(v)) = Π(v) + (1−Π)(v) (40.2.4)

Now let us defineW = {Π(v)∀v ∈ V } = Im(Π) and U = {v− Π(v) : ∀v ∈ V } = Im(1− Π). Since
these are both images of linear transformations, we have that U,W are subspaces of V . Note also
that Π(w) = 0 for all w ∈W and Π(u) = u. Consequently V = U ⊗W , with:

Π(v) = Π(u + w) = Π(u) + Π(w) = u (40.2.5)

proving that Π is indeed a projector. ■

40.3 Inner products and matrices

Definition (Adjoint, Hermitian and Unitary linear map)
For a linear map f ∈ End(V ) on V defined over K, its adjoint map f† ∈ End(V ) is define so
that it satisfies:

〈v, f(w)〉 = 〈f†(v),w)〉 , ∀v,w ∈ V (40.3.1)

If K = R(or C), then a symmetric (or hermitian) linear map f satisfies f = f†, while an
orthogonal (or unitary) linear map U satisfies H−1 = H†.

Proposition (Adjoint map properties)
For a linear map f ∈ End(V ), the following must hold:
(i) f† is unique
(ii) (f†)† = f

(iii) (f ◦ g)† = g† ◦ f†

(iv) (f−1)† = (f†)−1

(i) Let g, h be adjoint maps of f . Then 〈v, f(w)〉 = 〈g(v),w)〉 = 〈v, f(w)〉 = 〈h(v),w)〉 which by
previous proposition implies that g = h.

(ii) For all v,w ∈ V , we have that 〈v, f(w)〉 = 〈f†(v),w)〉 = 〈v, (f†)†(w)〉 which be the same
proposition as before implies that (f†)† = f

(iii) 〈v, (f ◦ g)†(w)〉 = 〈f(g(v)),w〉 = 〈g(v), f†(w)〉 = 〈v, (g† ◦ f†)(w)〉.

(iv) f ◦ f−1 = idV =⇒ (f−1)† ◦ f† = idV =⇒ (f−1)† = (f†)−1 where we used (iii) to take the
adjoint of both sides in the first implication.

Note that if we have an orthonormal basis B = {ei} for V , then given any f ∈ End(V ), we have
that:

f(ei) =
∑

j

Aijej =⇒ Aij = 〈ej , f(ei)〉 (40.3.2)
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so we can use inner products to find the matrix elements of linear maps. It is easy to see that if
f ∈ End(V ) defined over C has matrix elements Aij in a given basis, then its adjoint f† will have
matrix elements Bij in the same basis given by:

Bij = 〈ei, f
†(ej)〉 = 〈f(ei), ej〉 = 〈ej , f(ei)〉∗ = A∗

ji (40.3.3)

Hence the matrices A,A† representing f, f† respectively satisfy A† = (A∗)T .

It follows that Hermitian maps have matrix representations A = AT = (A∗)T and Unitary maps
have matrix representations A−1 = AT = (A∗)T .

Proposition (Alternative definition of Unitarity) Let U ∈ End(V ) is a unitary map,
then 〈U(v), U(w)〉 = 〈v,w〉 for all v,w ∈ V is an equivalent definition.

Proof. We find 〈U(v), U(w)〉 = 〈v, (U† ◦ U)(w〉 = 〈v,w〉. Hence by the well-definedness of inner
products, U† ◦ U = idV ⇐⇒ U−1 = U†. ■

40.4 Bilinear and Sesquilinear forms
In the previous section we looked at properties of inner product spaces over real or complex vector
spaces. It turns out that when we remove the condition for the inner product to be positive semi-
definite we get some interesting new forms.

Definition (Bilinear/Sesquilinear form)ABilinear formon a vector space V defined over
R is a map T : V × V → R linear in both of its terms:

T (αv + βw,u) = αT (v,u) + βT (w,u) (40.4.1)
T (u, αv + βw) = αT (u,v) + βT (u,w) (40.4.2)

A bilinear form is symmetric if T (v,w) = T (w,v).
A Sesquilinear form on a vector space V defined over C is a map T : V × V → C linear in
both of its terms:

T (αv + βw,u) = α∗T (v,u) + β∗T (w,u) (40.4.3)
T (u, αv + βw) = αT (u,v) + βT (u,w) (40.4.4)

A sesquilinear form is hermitian if T (v,w) = T (w,v).

Example. An important example of a Bilinear form often used in Special relativity is:

T (x,y) = xT Ay (40.4.5)
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where x,y ∈ V andA ∈Matn(V ). Indeed, weprove linearity in the first argument as follows:

T (αx + βy, z) = (αx + βy)T Az (40.4.6)
= (αxT + βyT )Az (40.4.7)
= αxT Az + βyT Az (40.4.8)
= αT (x, z) + βT (y, z) (40.4.9)

The proof is similar for the linearity in second argument. We can extend this example to
sesquilinear forms by defining:

T (x,y) = x†Ay (40.4.10)

where x,y ∈ V and A ∈ Matn(V ). Here † denotes conjugate transposition. We again prove
linearity in the first argument as follows:

T (αx + βy, z) = (αx + βy)†Az (40.4.11)
= (αx† + βy†)Az (40.4.12)
= αx†Az + βy†Az (40.4.13)
= αT (x, z) + βT (y, z) (40.4.14)

Note also that if A is a symmetric matrix then:

T (x,y) = (xT A)y = (AT x)Ty = yT Ax (40.4.15)

so T is a symmetric bilinear form. We can extend this result to sesquilinear forms quite
easily by letting A be hermitian. Then

T (x,y) = (x†A)y = (A†x)†y = y†Ax (40.4.16)

◀

It turns out that all bilinear/sesquilinear forms may be expressed in the form of the previous ex-
ample. Indeed, let T be a (bilinear) sesquilinear form on a (real) complex vector space V . Let {ei}
be an ordered basis of V , then:

T (x,y) =
∑

ij

x∗
i yjT (ei, ej) (40.4.17)

If we let Aij = T (ei, ej) then clearly:

x†Ay =
∑

ij

x∗
iAijyj =

∑
ij

x∗
i yjT (ei, ej) = T (x,y) (40.4.18)

as desired.

Theorem (Matrix representation of forms) A bilinear/sesquilinear form T over a
real/complex vector space V has an associated matrix representation in a given basis {ei}
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of V:

A =

T (e1, e1) T (e1, e2) . . .
T (e2, e1) T (e2, e2) . . .

... . . . ...

 (40.4.19)

Analogously to linearmaps, one can also performs changes of basis for sesquilinear/bilinear forms.
Suppose that in the basis {ei} the form T is represented by A so that

Aij = T (ei, ej) (40.4.20)

Let us introduce a new basis {e′
i} such that:

e′
i =

∑
m

cmiem (40.4.21)

then we find
A′

ij = T (e′
i, e′

j) =
∑
mn

c∗
micnjT (em, en) =

∑
mn

c∗
miAmncnj (40.4.22)

Consequently, if we define a change of basis matrix P with components Pmn = cmn then we
get:

A′ = P†AP (40.4.23)

We interpret this result as usual. P converts our vector from the original unprimed basis to the new
primed basis:

x =
∑

i

x′
ie′

i =
∑

ij

x′
icjiej =

∑
j

xjej (40.4.24)

where
x′

j =
∑

i

x′
icji ⇐⇒ [x]′ = P[x] (40.4.25)

Therefore if we want to calculate the form x†Ay then we need a P† to the left of A to convert the
components of x† to the primed basis, and aP to the right ofA to convert the components of y.
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41.1 Finding eigenvalues and eigenvectors

Definition (Eigenvalue and eigenvector)
Let f : V → V be a linear map on V over F . We say that λ ∈ F is an eigenvalue of f if
∃v ∈ V, s.t. v 6= 0, known as an eigenvector, such that:

f(v) = λv (41.1.1)

The eigenspace of λ is defined as:

Eigf (λ) ≡ Ker(f − λidV ) ⊆ V (41.1.2)

For a map f to have non-trivial eigenvalues, we require that:

dimEigf (λ) = Ker(f − λidV ) > 0 =⇒ rk(f − λidV ) < dimV (41.1.3)

This is equivalent, by the proposition on linear systems and invertibility, to setting

det(f − λidV ) = 0 (41.1.4)

We could have also seen this by noting that if f − λidV were invertible, then there would only
be one v in Ker(f − λidV ), which must be 0. Therefore f − λidV cannot be invertible, yielding
(41.1.4).

Definition (Characteristic polynomial)
The characteristic polynomial of a map f : V → V is defined as:

χf (λ) = det(f − λidV ) (41.1.5)

To find the eigenvalues of a matrix, it suffices to:

(i) Compute its characteristic polynomial.

(ii) Find the roots λ of χf (λ).

(iii) For each solution λ, find the corresponding eigenspace by solving:

(f − λidV )v = 0 (41.1.6)
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using one of the methods introduced for solving linear systems.

Example. Let us find the eigenvalues and eigenspaces of

A =

4 0 4
0 4 4
4 4 8

 (41.1.7)

Its characteristic polynomial is:

χA(λ) =

∣∣∣∣∣∣
4− λ 0 4

0 4− λ 4
4 4 8− λ

∣∣∣∣∣∣ (41.1.8)

= (4− λ)((4− λ)(8− λ)− 16)− 16(4− λ) (41.1.9)
= (4− λ)(λ2 − 12λ) (41.1.10)
= λ(4− λ)(λ− 12) (41.1.11)

Clearly, the solutions to χA(λ) = 0 are λ = 0, 4, 12.
For λ1 = 0, we need: 4 0 4

0 4 4
4 4 8

xy
z

 =

0
0
0

 =⇒ x = −z, y = −z (41.1.12)

giving an eigenspace:

EigA(λ1) =

{
k

−1
−1
1

 , ∀k ∈ R∗

}
(41.1.13)

Similarly, for λ1 = 4, we need:0 0 4
0 0 4
4 4 4

xy
z

 =

0
0
0

 =⇒ x = −y, z = 0 (41.1.14)

giving an eigenspace:

EigA(λ1) =

{
k

 1
−1
0

 , ∀k ∈ R∗

}
(41.1.15)

Finally, for λ1 = 12, we need:−8 0 4
0 −8 4
4 4 −4

xy
z

 =

0
0
0

 =⇒ z = 2x, y = x (41.1.16)

giving an eigenspace:

EigA(λ1) =

{
k

1
1
2

 , ∀k ∈ R∗

}
(41.1.17)
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◀

Proposition (Characteristic polynomial)
For a matrix A ∈ Matn(K) with characteristic polynomial χA(λ) =

∑n
i=0 ciλ

i, the following
hold:
(i) χPAP−1 = χA for all P ∈Matn(K)
(ii) cn = (−1)n, cn−1 = (−1)n−1trA, c0 = det A

Proof. (i) We have that:

det
(
PAP−1 − λ1

)
= det

(
P(A− λ1)P−1) = det(A− λ1) (41.1.18)

as desired.

(ii) We have that:
c0 = χA(0) = det A (41.1.19)

Furthermore

χA(λ) =
n∏

i=1
(Aii − λ) + o(λn−2) (41.1.20)

= (−1)nλn + (−1)n−1
n∑

i=1
Aii + o(λn−1) (41.1.21)

= (−1)nλn + (−1)n−1trA + o(λn−1) (41.1.22)

implying that cn = (−1)n and cn−1 = (−1)n−1trA.

■

41.2 Matrix diagonalization

Definition (Diagonalized map)
A linear map f : V → V can be diagonalized iff there exists a basis of V which makes the
matrix representation of f diagonal, that is, if it is similar to a diagonal matrix.

Theorem (Diagonalizability)
A linear map f : V → V can be diagonalised iff there exists a basis of V consisting of
eigenvectors of f . In this basis, the matrix representation of f is diag(λi) where λi are the
eigenvalues of f .

Proof. ( =⇒ ) Suppose that f can be diagonalized into the form diag(ci) in some basis {vi}. This
implies that:

f(vi) =
∑

j

Ajivj =
∑

j

δjicivi (41.2.1)

which gives f(vi) = civi, as desired.
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(⇐= )LetP = (v1 v2 ... vn) be the transitionmatrix from some basisB to the set {vi} of eigenvectors
(with respective eigenvalues λi). Of course, to perform the required change of basis we need the
set of eigenvectors {vi} to form a basis of V . Then, we find that the matrix representation A of f in
B:

A′ = P−1AP = P−1A(v1 v2 ... vn) (41.2.2)
= P−1(Av1 Av2 ... Avn) (41.2.3)
= P−1(λ1v1 λ2v2 ... λnvn) (41.2.4)
= P−1Pdiag(λi) (41.2.5)
= diag(λi) (41.2.6)

Thus, the new matrix in the basis P is indeed diagonal, with entries equal to the eigenvalues. ■

Recall that the traces and determinants of a matrix are independent of the chosen basis, so if A is
diagonalizable then:

trA =
∑

i

λi, det A =
∏

i

λi (41.2.7)

This gives us a nice way to check if any arithmetic mistakes have been made in evaluating the
eigenvalues.

We also gain some geometrical insight behind what eigenvectors really are. Indeed, if we consider
any diagonalizable linear map f acting on vectors in V , it follows that its action will be to stretch
V by a factor of λi along vi. This can be readily verified by looking at the diagonalized form of f ,
and noting that the ith column of a matrix representation gives the vector that the corresponding
ith basis vector gets mapped to.

In otherwords, the eigenvectors are vectorswhich, when acted upon by a linearmap f , only change
by a phase, but still point in the same "direction".

Example. Let’s consider the one of the Pauli matrices

σ =
(

0 −i
i 0

)
(41.2.8)

Its characteristic equation is:

χσ(λ) = λ2 − 1 = 0 =⇒ λ = ±1 (41.2.9)

For λ1 = 1 we find that: (
−1 −i
i −1

)(
x

y

)
=
(

0
0

)
=⇒ x = −iy (41.2.10)

Its eigenspace is:

Eigσ(λ1) =

{
k

(
−i
1

)
: k ∈ R∗

}
(41.2.11)
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Similarly, for λ2 = −1 we find that:(
1 −i
i 1

)(
x

y

)
=
(

0
0

)
=⇒ x = iy (41.2.12)

Its eigenspace is:

Eigσ(λ1) =

{
k

(
i

1

)
: k ∈ R∗

}
(41.2.13)

We therefore choose the eigenbasis with k = 1, whose transition matrix is:

P =
(
−i i
1 1

)
(41.2.14)

whose inverse is (since det P = −i− i = −2i):

P−1 = − 1
2i

(
1 −i
−1 −i

)
= i

2

(
1 −i
−1 −i

)
= 1

2

(
i 1
−i 1

)
(41.2.15)

We find that:

σ′ = 1
2

(
i 1
−i 1

)(
0 −i
i 0

)(
−i i
1 1

)
=
(

1 0
0 −1

)
(41.2.16)

◀

Theorem (Simultaneous diagonalization)
Two linear maps f, g are simultaneously diagonalizable, that is, they are diagonalized by
the same matrix P, iff they commute:

[f, g] ≡ f ◦ g − g ◦ f = 0 (41.2.17)

Proof. ( =⇒ ) Suppose that f, g are simultaneously diagonalizable, so that they share a set of eigen-
vectors vi with eigenvalues λi and λ′

i respectively. Then:

[f, g](vi) = λig(vi)− λ′
if(vi) = λiλ

′
i − λiλ

′
i = 0 (41.2.18)

Any vector can be expanded as a linear combination of vi, so [f, g](v) = 0 holds for all v ∈ V . It
follows that [f, g] = 0, the two maps commute.

( ⇐= ) Suppose that f, g commute, and suppose that f has eigenvectors vi with eigenvalues λi.
Then:

(f ◦ g)(vi) = f(g(vi)) = (g ◦ f)(vi) = λig(vi) (41.2.19)

implying that g(vi) ∈ Eigf (λi). For non-degenerate eigenvalues, this means that g(vi) = αvi for
some non-zero α. Hence vi is an eigenvector of both f and g, the two maps are simultaneously
diagonalizable. ■
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41.3 Orthogonal diagonalization

Theorem (Spectral properties for hermitian matrices)
Let A be a hermitian matrix (so that A† = A). Then all its eigenvalues are real, and the
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let v be an eigenvector of A with eigenvalue λ. Then, it follows that

〈v,Av〉 = λ = 〈Av,v〉 = λ∗ =⇒ λ ∈ R (41.3.1)

With this established, an immediate consequence is that if Avi = λivi and Avj = λjvj with λi 6= λj

then:
〈vi,Avj〉 = λj 〈vi,vj〉 = λi 〈vi,vj〉 (41.3.2)

giving:
(λj − λi) 〈vi,vj〉 = 0 (41.3.3)

and since by assumption λi 6= λj then this can only occur 〈vi,vj〉. ■

Interestingly, Hermitian matrices can always be diagonalized.

Proposition (Hermitian diagonalizability)
Let V be an n dimensional vector space over C, if f is a Hermitian map defined on V then it
has an orthonormal eigenbasis E = {vi}.

Proof. We consider non-degenerate maps f , and proceed by induction.

If dimV = 1, then the result is trivial.

Suppose for all k < n we have shown that all hermitian maps have an orthonormal eigenbasis.
Then, let’s consider a map f on an n-dimensional V . We have that its characteristic equation must
have at least one root λ overC. Its eigenspaceW ≡ Eigf (λ) is such that dimW > 0, andwe consider
its orthogonal complementW⊥ = {u :∈ V : 〈u,vi〉 = 0∀vi ∈W}. We have that for u ∈W⊥:

〈w, f(u)〉 = 〈f(w),u〉 = λ 〈w,u〉 = 0 (41.3.4)

so f(u) ∈ W⊥. Consequently, we may restrict f to W⊥, and define its restriction as g ≡ f |W ⊥ .
Since dimW⊥ = k < n, we can use the induction hypothesis to deduce that it has an orthonormal
eigenbasis {vi}. Furthermore, since dimW⊥ + dimW = dimV = n, we have that {vi} ∪W will
give a set of n linearly independent eigenvectors of f , as desired. ■

Hermitianmatrices play an important role, since their diagonalization is often easier to perform.

Theorem (Diagonalizing hermitian matrices) Let f be a hermitian linear map on V .
Then, its diagonalized form is found through the similarity transformation:

A′ = PT AP (41.3.5)
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where A is the matrix representation of f in some basis B, and

P = ([v1]B [v2]B ... [vn]B) (41.3.6)

Proof. We have that:

PT P =


[v1]TB
[v2]TB
...

[vn]TB

 ([v1]B [v2]B ... [vn]B) (41.3.7)

=


[v1]TB [v1]B [v1]TB [v2]B . . . [v1]TB [vn]B
[v2]TB [v1]B [v2]TB [v2]B . . . [v2]TB [vn]B

...
... . . . ...

[vn]TB [v1]B [vn]TB [v2]B . . . [vn]TB [vn]B

 (41.3.8)

= 1 (41.3.9)

Consequently P is unitary, and hence when diagonalizing A′ according to the general procedure:

A′ = P−1AP = PT AP (41.3.10)

as desired. ■

Example. Let’s diagonalize the following hermitian matrix:

A =

1 0 0
0 2 1
0 1 2

 (41.3.11)

Its characteristic equation is:∣∣∣∣∣∣
1− λ 0 0

0 2− λ 1
0 1 2− λ

∣∣∣∣∣∣ = (1− λ)((2− λ)2 − 1) (41.3.12)

= (1− λ)(1− λ)(3− λ) = 0 (41.3.13)

giving λ = 1, 3. It may seem like this matrix is not diagonalisable, since we only have two
eigenvalues. However, we know that this can’t be the case, Hermitian matrices are always
diagonalisable. Indeed, although we only have two eigenvalues, it turns out that the first
λ1 = 1 will have a two dimensional eigenspace, so we will be able to find two orthonormal
eigenvectors associated to this eigenvalue.
For λ1 = 1 we get that 0 0 0

0 1 1
0 1 1

xy
z

 =

0
0
0

 =⇒ y = −z (41.3.14)
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This gives a two-dimensional eigenspace:

EigA(λ1) =

{
t

 k

1
−1

 , ∀k, t ∈ R

}
(41.3.15)

so we can choose as our orthonormal eigenvectors:

v1 = 1√
2

 0
1
−1

 , v2 =

1
0
0

 (41.3.16)

Finally, for λ2 = 3 then we get that:−2 0 0
0 −1 1
0 1 −1

xy
z

 =

0
0
0

 =⇒ x = 0, y = z (41.3.17)

giving the following eigenspace:

EigA(λ2) =

{
t

0
1
1

 , ∀t ∈ R∗

}
(41.3.18)

We choose the following eigenvector

v3 = 1√
2

0
1
1

 (41.3.19)

Hence, the orthonormal eigenbasis has a transition matrix:

P = 1√
2

 0
√

2 0
1 0 1
−1 0 1

 =⇒ PT = 1√
2

 0 1 −1√
2 0 0

0 1 1

 (41.3.20)

The diagonalized form of A is then:

1
2

 0 1 −1√
2 0 0

0 1 1

1 0 0
0 2 1
0 1 2

 0
√

2 0
1 0 1
−1 0 1

 =

1 0 0
0 1 0
0 0 3

 (41.3.21)

as desired. This concludes our process of orthogonal diagonalization. ◀

Definition (Normal linear map)
Let f : V → V be a linear map. Then, f is normal iff [f, f†] = 0.

Note that unitary and hermitian maps are special cases of normal linear maps.
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Proposition (Hermitian adjoint of normal map)
Let f : V → V be a normal linear map over V , and let v ∈ Eigf (λ) ⊆ V be an eigenvector of
f with eigenvalue λ. Then, we have that f†(v) = λ∗v.

Proof. Let g = f − λid. Then we find that:

g ◦ g† = (f − λid) ◦ (f† − λ∗id) = f ◦ f† − λ∗f − λf† + |λ|2id (41.3.22)
= f† ◦ f − λ∗f − λf† + |λ|2id (41.3.23)
= g† ◦ g (41.3.24)

implying that g is a normal linear map. Consequently:

0 = 〈g(v), g(v)〉 = 〈v, g† ◦ g(v)〉 = 〈v, g ◦ g†(v)〉 = 〈g†(v), g†(v)〉 (41.3.25)

implying that g†(v) = f†(v)− λ∗v = 0 as desired. ■

Theorem (Spectral theorem for normal maps)
Let f : V → V be a linear map. Then f is normal iff it has an orthonormal eigenvector basis,
that is, it is diagonalizable.

Proof. ( =⇒ ) Suppose f is a normal linear map on V , we proceed by induction.

If dimV = n = 1, then the result is trivially verified.

Suppose that for dimV = k < n we have shown that all normal linear maps have an orthonormal
eigenvector basis. Then, let’s consider a normal linear map f on an n-dimensional V . We have that
its characteristic equation must have at least one root λ over C. Its eigenspaceW ≡ Eigf (λ) is such
that dimW = 1, and we consider its orthogonal complementW⊥ = {u : 〈u ∈ V : u,vi〉 = 0∀vi ∈
W}with dimW⊥ = n− 1. We have that for u ∈W⊥:

〈f(u),v〉 = 〈u, f†(v)〉 = λ∗ 〈w,v〉 = 0 (41.3.26)
〈f†(u),v〉 = 〈u, f(v)〉 = λ 〈w,v〉 = 0 (41.3.27)

These two results imply that f(W⊥), f†(W⊥) ⊆ W , and we may therefore consider the restriction
f |W ⊥ . By the induction assumption, this normal map has n− 1 orthonormal eigenvectors. Adding
v

|v| gives the desired list of n linearly independent orthonormal eigenvectors.

(⇐= ) Suppose that f has an orthonormal eigenvector basis {ni}. Then:

f ◦ f†(ni) = λ∗
i f(ni) = |λi|2ni (41.3.28)

and
f† ◦ f(ni) = λif(ni) = |λi|2ni (41.3.29)

implying that
[f, f†](ni) = 0 (41.3.30)
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Given any vector v ∈ V , it may be expanded in the eigenbasis as v =
∑

i αini so that:

[f, f†](v) =
∑

i

αi[f, f†](ni) = 0, ∀v ∈ V =⇒ [f, f†] = 0 (41.3.31)

as desired. ■

Notice the resemblance between this proof and the proof that all hermitian maps are diagonal-
izable. We proceeded by showing that there must be some eigenvector, and that its orthogonal
complement is invariant under the map we are interested in. Diagonalizing the restriction of the
map to the orthogonal complement gives an extra set of eigenvectors which we can use to complete
the proof.

41.4 Classifying conics
Suppose we have a conic with general equation:

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (41.4.1)

Our goal will be to classify this conic as either a parabola, hyperbola or ellipse, and determine some
of its fundamental features.

Aligning the axes
We can write (41.4.1) as a product of matrices:

(
x y
)(A B

2
B
2 C

)(
x

y

)
+
(
F G

)(x
y

)
+H = 0 (41.4.2)

Let us define:
A =

(
A B

2
B
2 C

)
, J =

(
F G

)
, x =

(
x

y

)
(41.4.3)

then (41.4.2) turns into
xT Ax + JT x +H = 0 (41.4.4)

It is important to note thatA is a symmetricmatrix, and can therefore be orthogonally diagonalized.
Suppose that D = PT AP, then we get that:

xT PDPT x + JT x +H = 0 (41.4.5)

Let us define the coordinate vectors in the eigenbasis as: x′ = PT x (recall that P represents a change
from the eigenbasis, so its inverse/transpose will represent a change to the eigenbasis). Then we
find that:

(x′)T Dx′ + JT Px′ +H = 0 (41.4.6)

The process we have gone through can be viewed geometrically as rotating R2 to align the axes
with the eigenvector basis of A. Indeed, since A is symmetric, its transition matrix will be unitary,
it will represent a rotation/reflection. By performing a change of basis x → x′ we were really just
rotating R2. Suppose D = diag(λ1, λ2) and JT P = (f g), then we find:

λ1x
′2 + λ2y

′2 + fx′ + gy′ +H = 0 (41.4.7)
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Translating the origin
The final step is translating the origin to get a standard conic. For ellipses and hyperbolas we do so
by completing the square:

λ1x
′2 + λ2y

′2 + fx′ + gy′ +H = 0 (41.4.8)

=⇒ λ1

(
x′ + f

2λ1

)2

+ λ2

(
y′ + g

2λ2

)2

+H − f2

4λ1
− g2

4λ2
= 0 (41.4.9)

Letting the translated axes be defined by:

x′′ = x′ + 1
2

(
f

λ1
g

λ2

)
(41.4.10)

then we find that:
λ1x

′′2 + λ2y
′′2 + h = 0, h = H − f2

4λ1
− g2

4λ2
(41.4.11)

which is a conic. It can be rearranged into the more useful form :

x′′2

a2 + y′′2

b2 = 1 (41.4.12)

where a2 = − h
λ1

and b2 = − h
λ2
. Depending on the values of a, b this will be either a hyperbola or

ellipse.

Conic Standard form

Hyperbola x2

a2 − y2

b2 = 1
Parabola y2 − 4ax = 0

Ellipse x2

a2 − y2

b2 = 1

If instead we area dealing with a parabola, then we will find that one of the eigenvalues is 0. Sup-
pose WLOG that λ1 = 0, then we find:

λ2y
′2 + fx′ + gy′ +H = 0 (41.4.13)

=⇒ λ2

(
y′ + g

2λ2

)2

+ fx′ +H − g2

4λ2
= 0 (41.4.14)

Letting the translated axes be defined by:

x′′ = x′ +

(
H
f −

g2

4fλ2
g

2λ2

)
(41.4.15)

then we find that:
y′′2 + f

λ2
x′′ = 0 (41.4.16)

which is a parabola. Had λ2 = 0 then we would have found in complete analogy to before:

x′′2 + g

λ1
y′′ = 0 (41.4.17)
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Example. Let’s classify the conic described by:

x2 − 4xy + 4y2 − 6x− 8y + 5 = 0 (41.4.18)

which may be re-expressed in matrix for as:

xT

(
1 −2
−2 4

)
x +

(
−6 −8

)
x + 5 = 0 (41.4.19)

The eigenvalues of A are easily found to obey

(1− λ)(4− λ)− 4 = 0 =⇒ λ(λ− 5) = 0 =⇒ λ1 = 0, λ2 = 5 (41.4.20)

For λ1 = 0 we get the eigenspace

EigA(λ1) =
{
k

(
2
1

)
: k ∈ R∗

}
(41.4.21)

Similarly, for λ2 = 5 we get the eigenspace:

EigA(λ2) =
{
k

(
1
−2

)
: k ∈ R∗

}
(41.4.22)

so we may choose the orthonormal basis
{

1√
5

(
2
1

)
, 1√

5

(
1
−2

)}
with transition matrix:

P = 1√
5

(
2 1
1 −2

)
=⇒ JT P = 1√

5
(
−20 10

)
(41.4.23)

Consequently we find:

5y′2 − 4
√

5x′ + 2
√

5y′ + 5 = 0 =⇒ y′2 − 4
√

5
5
x′ + 2

√
5

5
y′ + 1 = 0 (41.4.24)

We now complete the square:

(y′ +
√

5
5

)2 − 4
√

5
5
x′ + 4

5
= 0 =⇒ y′′2 = 4

√
5

5
x′′ (41.4.25)

where y′′ = y′ +
√

5
5 and x′′ = x′ −

√
5

5 . This is therefore a parabola.
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◀

41.5 Matrix exponentials and Lie algebras
One final important application of diagonalization is in determining matrix exponents.

Proposition (Matrix exponents)
Suppose that A is a diagonalizable matrix with A′ = P−1AP. Then:

An = PA′nP−1 (41.5.1)

Proof. This follows immediately from:

An = (PAP−1)(PAP−1)...(PAP−1)︸ ︷︷ ︸
n times

= PA′nP−1 (41.5.2)

■

Definition (Matrix exponential)
Suppose that A matrix, then its exponential is defined as:

eA =
∞∑

i=0

1
n!

An = 1 + A + 1
2

A2 + ... (41.5.3)
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41.6 Schur’s triangulation theorem

Theorem (Schur’s triangulation theorem)
Let A ∈ Matn(C) with eigenvalues λ1, λ2, ... which may be degenerate.. Then A is unitarily
equivalent to an upper triangular matrix:

A = UTU† (41.6.1)

where:

T =

λ1 . . .

0 λ2
... . . .

 (41.6.2)

Proof. We proceed by induction. For n = 1 the result is trivial. Suppose we have shown that
any m × m matrix where m ≤ n − 1 is unitarily equivalent to an upper triangular matrix. Let
A ∈Matn(C) have eigenvalues λ1, λ2, ... and eigenvectors v1,v2, ...,which may be degenerate, and
are assumed to have unit norm.

Now v1 can be used to form an orthonormal basis {v1,u2, ...,un}. Then, the resulting matrix when
we change to this basis will be unitarily equivalent to A:

A = V


λ1 a12 . . . a1n

0
... Ã
0

V† (41.6.3)

Clearly, we must have that χA(λ) = (λ1 − λ)χÃ(λ), implying that Ã has eigenvalues λ2, λ3, ...

identical to A, and which could be degenerate. We can now use the induction hypothesis, since
Ã ∈Matn−1(C) we have that it is unitarily equivalent to some upper triangular matrix:

Ã = W̃


λ2 ã12 . . . ã1n

0
. . . . . . ...

... . . . . . . ãn−1n

0 . . . 0 λn

 W̃† (41.6.4)
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Note also that:
1 0 . . . 0
0
... W̃
0


†

λ1 a12 . . . a1n

0
... Ã
0




1 0 . . . 0
0
... W̃
0

 =


1 0 . . . 0
0
... W̃†

0



λ1 b12 . . . b1n

0
... ÃW̃
0

 (41.6.5)

=


λ1 c12 . . . c1n

0
... W̃†ÃW̃
0

 =



λ1 b̃12 . . . . . . b̃1n

0 λ2
. . . . . . ...

0
. . . . . . . . . ...

... . . . . . . . . . ãn−1n

0 . . . . . . 0 λn


(41.6.6)

Defining:

W =


1 0 . . . 0
0
... W̃
0

 (41.6.7)

we see that W is unitary and that

A = VW


λ1 a12 . . . a1n

0
... Ã
0

W†V† (41.6.8)

Thus A is unitarily triangularizable via U = VW. ■

Theorem (The Cayley-Hamilton theorem)
Let A ∈Matn(C) have characteristic polynomial χA(λ). Then, we have that χA(A) = 0 where
0 is the zero element of Matn(C),

Proof. We can factorize the characteristic polynomial into the following form due to the Fundamen-
tal theorem of algebra:

χA(λ) = (λ1 − λ)(λ2 − λ)...(λn − λ) (41.6.9)

implying that
χA(A) = (λ11− A)(λ21− A)...(λn1− A) (41.6.10)

Since A ∈Matn(C), Schur’s theorem tells us that it can be triangularized unitaril A = UTU† where
T is upper triangular. Therefore:

χA(A) = U(λ11− T)U†U(λ21− T)U†...U(λn1− T)U† (41.6.11)
= U(λ11− T)(λ21− T)...(λn1− T)U† (41.6.12)

Each of the factors λi1− T will be upper triangular with the ith diagonal element equal to zero. It
is easy to verify that a product of such matrices must be null. Let A = λ11 − T and B = λ21 − T,

− 388 −



41.6. SCHUR’S TRIANGULATION THEOREM

and define C = AB. We have that C11 = C22 = 0 since in general for triangular matrices:

Cii =
∑

j

AijBji = AiiBii (41.6.13)

Instead, C12 =
∑

j A1jBj2 = 0 since A11 and B22 are both zero. The first two rows of C are thus
equal to zero.

Suppose we have repeated this process up to the factor (λm1 − T) so that the first m − 1 rows are
all zero. Then letting C =

∏m
i=1(λiI− T) = A(λmI− T) we get:

Clm =
∑

l≤j≤m

AljBjm (41.6.14)

Now since Alj = 0 for all j < m, the only term that will survive will be that with j = m. Conse-
quently:

Clm = AlmBmm = 0 (41.6.15)

so themth columnwill also be zero. It follows by induction that (λ11−A)...(λn1−A) = 0 and thus
χA(A) = 0 as desired. ■

We can use Schur’s triangulation theorem to prove the Spectral theorem more generally.

Proposition (Normal triangular matrices) A triangular matrix is normal iff it is diago-
nal.

Proof. The ⇐= is trivial. Suppose A ∈ Matn(C) is a normal triangular matrix. The case n = 1 is
obvious. Suppose the proposition is true for allm×mmatrices wherem ≤ n− 1. Then, writing A
as:

A =

 a11 a

0 Ã

 =⇒ A† =

 a∗
11 0

a∗ Ã†

 (41.6.16)

we see that

A†A =

 |a11|2 . . .

. . . Ã†Ã + ||a||2

 (41.6.17)

AA† =

 |a11|2 + ||a||2 . . .

. . . ÃÃ†

 (41.6.18)

For these to be equal, we need a11 = 0, a = 0 and Ã†Ã = ÃÃ†. Also, since A ∈ Matn−1(C) is upper
triangular and normal, it must be diagonal. Consequently A is diagonal, as required. ■

Theorem (The Spectral Theorem) Let A ∈ Matn(C) with eigenvalues λ1, ..., λn, the
following are equivalent:
(i) A is normal
(ii) A is unitarily diagonalizable
(iii)

∑
ij |Aij |2 =

∑
i |λi|2
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Proof. sdgdgd

(i) =⇒ (ii) If A is unitarily diagonalizable then A = UDU† and thus

A†A = (UD†U†)(UDU†) = UD†DU† (41.6.19)
AA† = (UDU†)(UD†U†) = UDD†U† (41.6.20)

but D†D = DD† so A is normal.

(ii) =⇒ (i) Suppose A is normal. By Schur’s theorem it is unitarily equivalent to an upper triangular
matrix.

Lemma. Normality is preserved under unitary transformations.

Indeed if A†A = AA† then

(UAU†)†(UAU†) = UA†AU† = UAA†U† = (UAU†)(UAU†)† (41.6.21)

Consequently, the upper triangular decomposition of A must be normal, and thus diagonal,
as desired.

(ii) =⇒ (iii) Since A is unitarily diagonalizable, we have that A = UDU† where D = diag(λ1, λ2, ..., λn)
and thus: ∑

ij

|aij |2 = tr(A†A) = tr(UD†DU†) = tr(U†U) tr(D) =
∑

i

|λi|2 (41.6.22)

(iii) =⇒ (ii) By Schur’s theorem we have that A is triangularizable into T with
∑

i |Tii|2 =
∑

i |λi|2. Note
also that (iii) implies:∑

ij

|aij |2 = tr(A†A) = tr(T†T) =
∑

ij

|Tij |2 =
∑

i

|λi|2 (41.6.23)

We therefore find that
∑

i |Tii|2 =
∑

ij |Tij |2 which is only possible if T is diagonal.

■

41.7 Jordan canonical form (make sure to write by Octo-
ber)
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42.1 Review of linear algebra
Recall the normal definition of vector spaces.

Definition (Vector space)
A vector space (V,+, •) over a field F is a set V and two maps:

+ : V × V → v (42.1.1)
• : F × V → V (42.1.2)

known as addition and scalar multiplication such that for all u, v, w ∈ V, α, β ∈ F :
(i) v + w = w + v

(ii) (u+ v) + w = u+ (v + w)
(iii) ∃0 ∈ V such that v + 0 = v

(iv) ∃(−v) ∈ V such that v + (−v) = 0
(v) α • (β • v) = (αβ) • v
(vi) α • (v + w) = α • v + α • w

(vii) (α+ β) • v = α • v + β • v

(viii) given the identity element 1 of F , then 1 • v = v

The element of a vector space is informally referred to as a vector. It is easy to see that the set Pn

of all polynomial functions p up to order n ∈ N is indeed a vector space:

Pn = {p(x) =
n∑

m=0
pmx

m : pm ∈ R} (42.1.3)

Definition (Linear map)
Let (V,+V , •V ) and (W,+W , •W ) be two vector spaces. Then the map ϕ : V → W is a linear
map if it is structure preserving:
(i) ϕ(u+V v) = ϕ(u) +W ϕ(v)
(ii) ϕ(α • V v) = α • Wϕ(v)

If such a map between V andW exists then we write that V ∼= W .
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Definition (Set of linear maps)
We define the set of all linear maps between two vector spaces (V,+V , •V ) and (W,+W , •W )
(the latter defined over FW ) as Hom(V,W ). Together with the operations ⊕ and � defined
below this set becomes a vector space:

⊕ : Hom(V,W )×Hom(V,W )→ Hom(V,W ) (42.1.4)
(ϕ, φ) 7→ ϕ⊕ φ (42.1.5)

and

� : FW ×Hom(V,W )→ Hom(V,W ) (42.1.6)
(α, φ) 7→ α� φ (42.1.7)

where

(ϕ⊕ φ)(v) = ϕ(v) +W φ(v), ∀v ∈ V (42.1.8)
(α� φ)(v) = α • Wϕ(v), ∀v ∈ V, ∀α ∈ FW (42.1.9)

Definition (Dual vector space)
Given a vector space V defined over a field F , then the set V ∗ is defined as:

V ∗ ≡ {ϕ : V → F : ϕ is linear} = Hom(V, F ) (42.1.10)

Equipped with ⊕ and ⊗ defined previously then V ∗ is defined as the dual vector space.

Informally, the element ϕ ∈ V ∗ is referred to as a covector.

Definition (Dual basis)
Given a basis B = {e1, e2, ..., en} ⊂ V for V then the dual basis of the dual space V ∗ is
defined as B∗ = {ϵ1, ϵ2, ..., ϵn} ⊂ V ∗ such that:

ϵi(ϵj) = δj
i , ∀i, j (42.1.11)

For the case of Pn, we can choose the basis B = {ei(x) = xi : i = 0, 1, ..., n}. The dual basis
B∗ = {ϵi : i = 0, 1, ...n} can be easily identified as:

ϵi = 1
i!
di

dxi

∣∣∣∣
x=0

(42.1.12)

Indeed one finds that

ϵi(ej) = 1
i!
di

dxi
(xj)

∣∣∣∣
x=0

=


0, i > j

1, i = j

0, i < j

= δij (42.1.13)
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42.2 Mltilinear maps

Definition (Tensor)
Let (V,+, •) be a vector space defined over a field F . Then an (r, s)-tensor T over V is a map:

T : (V ∗)r × V s 7→ F (42.2.1)

that is linear in all its entries, thus a multi-linear map.

Consider for example a (1, 1)-tensor T . Then we must have that:

T (ϕ+ φ, v) = T (ϕ, v) + T (φ, v) (42.2.2)
T (αϕ, v) = αT (ϕ, v) (42.2.3)

T (ϕ, v + w) = T (ϕ, v) + T (ϕ,w) (42.2.4)
T (ϕ, αv) = αT (ϕ, v) (42.2.5)

(42.2.6)

We can connect this to the typical view of a (1, 1)-tensor as a map that takes a vector and maps it
to another vector. Indeed let us construct:

ϕT : V → V (42.2.7)
v 7→ T (·, v) (42.2.8)

which takes in v and maps it to another map T (·, v) which takes covectors to F . But this map is of
the type V ∗ → F and thus T (·, v) ∈ (V ∗)∗ = V provided dimV < ∞. It follows that T (·, v) is a
vector, so ϕT does indeed map a vector to vectors of V .

Definition (Vectors vs Covectors)
Let ϕ ∈ V ∗ be a covector. Then by definition it must be a (0, 1)-tensor since ϕ : V → F is
linear.
Similarly, let v ∈ V = (V ∗)∗ be a vector. Then by definition it must be a (1, 0)-tensor since
v : V ∗ → F .

Definition (Tensor components)
Let T be an (r, s)-tensor over a n-dimensional vector space V with basis B = {ei : i =
0, 1, ...n} and dual space V ∗ with dual basis B∗ = {ϵi : i = 0, 1, ...n}. Then we define the
components of T as:

T i1...ir
j1...js

≡ T (ϵi1 , ..., ϵir , ej1 , ..., ejs
) (42.2.9)

so that:
T (ϕ, v) =

∑
ij

ϕiv
jT i

j (42.2.10)

where ϕ =
∑

i ϕiϵ
i ∈ V ∗ and v =

∑
j v

jej ∈ V .

For example, given a (1, 1)-tensor T then T i
j = T (ϵi, ej). Also, due to the linearity of the tensor map
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the tensor components are very useful because they allow us to expand:

T (ϕ, v) = T

(∑
i

ϕiϵ
i,
∑

j

vjej

)
(42.2.11)

=
∑

ij

ϕiv
jT (ϵi, ej) (42.2.12)

=
∑

ij

ϕiv
jT i

j (42.2.13)

Note the careful placements of subscripts and superscripts, where basis vectors are given subscripts
and basis covectors are given superscripts. This ensures that multiply labelled indices always
appear in an up-down arrangement. Moreover, if we assume that an index appearing both up
and down is summed over, then we retrieve the Einstein summation convention. For example,
(45.4.23) becomes

T (ϕ, v) = ϕiv
jT i

j (42.2.14)

The study of tensors in specific baseswill be the subject of the next two chapters, andwill culminate
in the mathematical framework of differential geometry.
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We have studies several types of mathematical objects until now (especially in linear algebra), and
have seen that many tend to transform under changes of basis in different ways. Scalars are invari-
ant under basis changes, whereas vectors transform under matrix multiplication. Linear operators
instead transform using similarity transformations.

Tensor algebra studies the way wemay categorize the ways objects transform under changes of ba-
sis, and the properties that follow from such classifications. In the next chapter on Tensor calculus,
we study how we can differentiate these objects.

43.1 Einstein summation convention
Consider a vector space V with a basis B = {v1, v2, ..., vn}, which wemodify to B′ = {v′

1, v
′
2, ..., vn}.

From our study of linear algebra we know that we can express this change of basis as:v
′
1
...
v′

n

 =

A11 . . . A1n

. . . . . .

An1 . . . Ann


v1

...
vn

 (43.1.1)

Alternatively:

v′
i =

n∑
j=1

Aijvj (43.1.2)

for 1 ≤ i ≤ n. Here, we call the index i as the running index, whereas the index j is called the
dummy index.

Often times calculations in fields such asGeneral relativity orQFT require the use of several dummy
indices, and could lead to a clutter of summation symbols Σ. Indeed, Einstein himself faced this
problem when trying to work out the differential geometry of his theory of space-time, and to fix
this issue, he devised a notation known as Einstein notation.

In this notation, if an index appears more than once in a summation, then the corresponding
∑

symbol may be omitted, since summation is implied. In other words, we would find that:

v′
i =

n∑
j=1

Aijvj −→ Aijvj (43.1.3)
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Suppose we wish to calculate the product of three matrices:

(ABC)il =
n∑

j=1

n∑
k=1

AijBjkCkl (43.1.4)

In einstein notation, this becomes:

(ABC)il = AijBjkCkl (43.1.5)

which is considerably shorter.

In general, the greek alphabet is reserved for indices of space time components only. These indices
therefore only take values of 0, 1, 2, 3..., where 0 is the temporal component. Instead, the normal
alphabet is reserved for indices of spatial components only, so these indices run from 1, 2, 3.... ac-
cording to the dimension of the space we are working in.

43.2 Cartesian tensors
A cartesian coordinate system in an n-dimensional space associates a coordinate (x1, x2, ..., xn) to
each point in this space, with reference to a set of n basis vectors.

Suppose we have some vector r in this space, whose components are (x1, x2, x3) in the cartesian
system C and (x′

1, x
′
2, x

′
3) in the primed cartesian system C′. The former has a basis {ei} and the

latter has a basis {e′
i}.

Definition (Rigid rotation)
A rigid rotation of the cartesian axes is the transformation of components of one cartesian
system to another:

x′
j = Rjkxk

xk = Rjkx
′
j

(43.2.1a)
(43.2.1b)

where Rjk = e′
j · ek.

Indeed, a general vector rmay be expressed as:

r = xkek = x′
je′

j (43.2.2)

and since ek = (e′
j · ek)e′

j = Rjke′
j we find that:

xkRjke′
j = x′

je′
j =⇒ xkRjk = x′

j (43.2.3)

since {e′
j} is linearly independent. Similarly, we may write e′

j = (e′
j · ek)ek = Rjkek so that:

x′
je′

j = x′
jRjkek = xkek =⇒ xkRjk = x′

j (43.2.4)

as desired.

Example. Suppose we want to rotate the cartesian system with basis {e1, e2, e3} by some
angleϕ about the e3 (anti-clockwisewhen viewed from the tip of e3), to get another cartesian
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system with basis {e′
1, e′

2, e′
3} then:

x′
1 = (e1 · e′

1)x1 + (e2 · e′
1)x2 + (e3 · e′

1)x3 = cosϕx1 + sin θx2 (43.2.5)
x′

2 = (e1 · e′
2)x1 + (e2 · e′

2)x2 + (e3 · e′
2)x3 = − sinϕx1 + cos θx2 (43.2.6)

x′
3 = (e1 · e′

3)x1 + (e2 · e′
3)x2 + (e3 · e′

3)x3 = x3 (43.2.7)

Therefore, we define the rotation vector:

R =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (43.2.8)

so that a vector x:
x′ = Rx (43.2.9)

◀

Theorem (Rotation operator R)
The rotation operator in three dimensions, defined as:

R =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

 (43.2.10)

is unitary/orthogonal, satisfying RT R = RRT = 1 and det R = ±1.

Proof. We can write that:
x′ = Rx ⇐⇒ x = R−1x′ (43.2.11)

or in component form:
x′

i = Rijxj ⇐⇒ xj = (R−1)jixi (43.2.12)

implying that (R−1)ji = Rij , or in other words:

RT = R−1 (43.2.13)

In other words, the rotation matrix R is unitary, and in hindsight it is quite obvious why it should
be unitary. A rigid cartesian rotation, as the name suggests, is rigid, and hence will preserve angles
between two vectors (we will prove this soon).

Immediately, we also find that:

1 = det In = det
(
RRT

)
= det R det RT = (det R)2 (43.2.14)

so that:
det R = ±1 (43.2.15)

Another important property of rigid rotation matrices is that their components are unitary:

RikRjk = δij , RikRil = δkl (43.2.16)
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Indeed:
e′

i · e′
j = (e′

i · ek)(e′
j · ek)ek · ek = RikRjk = δij (43.2.17)

Similarly:
ek · el = (e′

i · ek)(e′
i · el)e′

i · e′
i = RikRil = δkl (43.2.18)

as desired.

We could also see this by using the unitarity of R and write:

I = RR−1 = RRT =⇒ δij = RikRjk (43.2.19)

■

Geometrically, we see that this resultmakes sense. IndeedRik andRjk are the angles between e′
i, ek

and e′
j , ek. Since e′

i and e′
j are orthogonal, we cannot have that both terms in the product RikRjk

be non-zero unless i = j.

Definition (First order Cartesian tensor)
A first order Cartesian tensor (or vector) is defined as a geometric object v represented by
the components vi in the cartesian system C and represented by the components v′

i in the
cartesian system C′, such that they transform under rigid cartesian rotations as :

v′
i = Rijvj

vi = Rkiv
′
k

(43.2.20a)
(43.2.20b)

where R is the rotation matrix as defined (43.2.8).

Example. Consider the quantity v = (x2
1, x

2
2), which transforms under rotations as:

v′
1 = (x′

1)2 = (x1 cos θ + x2 sin θ)2 (43.2.21)
v′

2 = (x′
2)2 = (−x1 sin θ + x2 cos θ)2 (43.2.22)

If this were a first order cartesian tensor, we would need:

v′
1 = v1 cos θ + v2 sin θ = x2

1 cos θ + x2
2 sin θ (43.2.23)

v′
2 = −v1 sin θ + v2 cos θ = −x2

1 sin θ + x2
2 cos θ (43.2.24)

which clearly isn’t the case. Consequently this is not a first order cartesian tensor.
Consider instead the quantity u = (x2,−x1), which transforms under rotations as:

u′
1 = x′

2 = −x1 sin θ + x2 cos θ (43.2.25)
u′

2 = −x′
1 = x1 cos θ + x2 sin θ (43.2.26)

If this were a first order cartesian tensor, we would need:

u′
1 = u1 cos θ + u2 sin θ = x2 cos θ − x1 sin θ (43.2.27)
u′

2 = −u1 sin θ + u2 cos θ = x2 sin θ − x1 cos θ (43.2.28)
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which is true for all θ. Consequently u is a first order cartesian tensor. ◀

Proposition (Scalar product invariance)
The scalar product of two vectors, u · v, is invariant under rotations.

Proof. We consider:

u′
iv

′
i = RijujRikuk = RijRikujvk = δjkujvk = ujvj (43.2.29)

as desired. Hence the scalar product of first order cartesian tensors is a zeroth order cartesian
tensor. ■

The definition of a second order cartesian tensor is quite similar to that of a first order cartesian
tensor, only that rotations must be repeated twice due to the presence of two indices.

Definition (Second order Cartesian tensor)
A second order Cartesian tensor is defined as a geometric object T represented by the com-
ponents Tij in the cartesian system C and represented by the components T ′

ij in the cartesian
system C′, such that they transform under rigid cartesian rotations:

T ′
ij = RikRjlTkl

Tkl = RmkRnlTmn

(43.2.30a)
(43.2.30b)

or alternatively T′ = RTRT .

Example. The gradient of a vector va, denoted ∇v is a second order cartesian tensor.
Indeed, the components of ∇v are:

(∇v)ij = ∂vi

∂xj
(43.2.31)

Wemay regard
{

∂
∂xj

}
as a basis, known as theholonomic basis or coordinate basis. Indeed:

∂

∂x′
i

= ∂xj

∂x′
i

∂

∂xj
= Rij

∂

∂xj
=⇒ Rij = ∂xj

∂x′
i

(43.2.32)

from which it follows that ∇ is a first rank cartesian tensorb.
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Hence the components of ∇v transform as:

(∇v)′
ij = ∂v′

i

∂x′
j

(43.2.34)

= ∂v′
i

∂xk

∂xk

∂x′
j

(43.2.35)

= ∂

∂xk
(Rilvl)

∂xk

∂x′
j

(43.2.36)

= Ril
∂vl

∂xk

∂xk

∂x′
j

(43.2.37)

= RilRjk(∇v)lk (43.2.38)

as would be expected from a second order tensor. ◀
athis is a first order cartesian tensor
bSimilarly:

Rji =
∂x′

i

∂xj
(43.2.33)

Definition (Outer product)
The outer product of two vectors v, u is defined as:

(u⊗ v)ij = uivj (43.2.39)

and is a second order tensor.

It is easy to see that:

(u⊗ v)′
ij = u′

iv
′
j = RikRjlukvl = RikRjl(u⊗ v)kl (43.2.40)

as desired. Moreover, since u = uiei and v = viei then:

u⊗ v = uivjei ⊗ ej (43.2.41)

where ei ⊗ ej is a sparse matrix with the only non-zero element (ei ⊗ ej)ij = 1.

Example. Consider the matrix:

T =
(

x2
2 −x1x2

−x1x2 x2
1

)
(43.2.42)

Using s ≡ sin θ and c ≡ cos θ for shorthand we get that the components of T transform as:

T ′
11 = (x′

2)2 = (−x1s+ x2c)2 = x2
1s

2 + x2
2c

2 − 2x1x2cs (43.2.43)
T ′

12 = −x′
1x

′
2 = −(x1c+ x2s)(−x1s+ x2c) = x2

1sc− x2
2sc+ x1x2(s2 − c2) (43.2.44)

T ′
21 = x2

1sc− x2
2sc+ x1x2(s2 − c2) (43.2.45)

T ′
22 = (x′

1)2 = (x1c+ x2s)2 = x2
1c

2 + x2
2s

2 + 2x1x2sc (43.2.46)
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so that:

T′ =
(

x2
1s

2 + x2
2c

2 − 2x1x2cs x2
1sc− x2

2sc+ x1x2(s2 − c2)
x2

1sc− x2
2sc+ x1x2(s2 − c2) x2

1c
2 + x2

2s
2 + 2x1x2sc

)
(43.2.47)

If T were a tensor then we would find

T′ = RTRT =
(
c s

−s c

)(
x2

2 −x1x2
−x1x2 x2

1

)(
c −s
s c

)
(43.2.48)

=
(
c s

−s c

)(
x2

2c− x1x2s −x2
2s− x1x2c

−x1x2c+ s2
xs x1x2s+ x2

1c

)
(43.2.49)

=
(

x2
1s

2 + x2
2c

2 − 2x1x2cs x2
1sc− x2

2sc+ x1x2(s2 − c2)
x2

1sc− x2
2sc+ x1x2(s2 − c2) x2

1c
2 + x2

2s
2 + 2x1x2sc

)
(43.2.50)

so T is indeed a second order cartesian tensor.
More simply, we could have noticed that T = (x2,−x1) ⊗ (x2,−x1) and since (x2,−x1)
was proven to be a first order cartesian tensor, T will be a second order cartesian tensor as
desired. ◀

Definition (Cartesian Tensor) In general, a cartesian tensor is defined as a geometric
object T represented by the components Tij..k in the cartesian system C and represented
by the components T ′

ij...k in the cartesian system C′, such that they transform under rigid
cartesian rotations:

T ′
ij...k = RipRjq...RkrTpq...r

Tij...k = RpiRqj ...RrkT
′
pq...r

(43.2.51a)
(43.2.51b)

Theorem (Quotient law)
Suppose that B and C are tensors such that its components in any rotated basis satisfy:

Apq...k...mBij...k...n = Cpq...mij...n (43.2.52)

then Amust also be a tensor.

Proof. We consider the case for second order tensors (the general case follows exactly the same
logic, just with more indices). We are given that:

ApkBik = Cpi, A
′
pkB

′
ik = C ′

pi (43.2.53)

and that Bjl = RmjRnlB
′
mn, C ′

pi = RpqRijCqj then we get that:

A′
pkB

′
ik = C ′

pi (43.2.54)
= RpqRijCqj (43.2.55)
= RpqRijAqlBjl (43.2.56)
= RpqRijAqlRmjRnlB

′
mn (43.2.57)

= RpqRnlAqlB
′
in (43.2.58)
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so that:
(A′

pk −RpqRnlAql)B′
ik = 0 (43.2.59)

Since this must hold for any B′
ik we must have that:

A′
pk = RpqRnlAql (43.2.60)

as desired. ■

The quotient law is amuch faster way to prove that a quantity is a tensor, since it suffices to contract
this quantity with a known tensor and ensure that the resulting quantity is also a tensor.

Example. Let’s prove that:

T =
(

x2
2 −x1x2

−x1x2 x2
1

)
(43.2.61)

is a tensor. We have already done this in two ways, but a third way is by using the quotient
law:

T11x
2
1 = x2

1x
2
2 (43.2.62)

T12x1x2 = −x2
1x

2
2 (43.2.63)

T21x2x1 = −x2
1x

2
2 (43.2.64)

T22x
2
2 = x2

1x
2
2 (43.2.65)

so that Tijxixj = 0 which is a tensor. Since xixj is an outer product and thus a tensor, it
follows that T is also a tensor. ◀

43.3 The δij and ϵijk tensors
43.4 Physical examples of cartesian tensors
Consider the angular momentum L = r× p = mr× ṙ, this is a first order cartesian tensor.

Indeed if we write the components of L as:

Li = mϵijkrj ṙk (43.4.1)

they they will transform under rotations as:

L′
i = mϵijkr

′
j ṙ

′
k (43.4.2)

and since r′
j = Rjmrm and ṙ′

k = d
dt (Rknrn) = Rknṙn we will find that.

L′
i = mϵijkRjmRknrmṙn (43.4.3)

Consider the i, j component of the inertia tensor:

Iij =
∫

(δijr
2 − xixj)dm (43.4.4)
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In dirac notation, it is easy to see that Iij = 〈i|I|j〉 , δij = 〈i|j〉 , r2 = 〈r|r〉 , xi = 〈r|i〉 = 〈i|r〉.
Consequently:

〈i|I|j〉 = 〈i|
∫
〈r|r〉 I− |r〉 〈r| dm |j〉 (43.4.5)

from which it follows that:

I =
∫
r2I− dm (43.4.6)

This is a second order cartesian tensor.

43.5 Non-cartesian tensors

Definition (Contravariant and covariant bases)
We saw that for general curvilinear coordinates (u1, u2, u3), so that a position vector may be
expressed as r(u1, u2, u3) then we have two important sets of basis vectors:

ei = ∂r
∂ui

, ei = ∇ui (43.5.1)

We have slightly modified our summation convention to include superscripts. From now on, we
will assume that any lower case index that appears exactly once as a superscript and once as a
subscript must be summed over.

Proposition (Reciprocity relation)
The contravariant and covariant bases are orthonormal to each other:

ei · ej = δj
i (43.5.2)

Proof. We find that:

ei · ej = ∂r
∂ui
∇uj (43.5.3)

= ∂u1

∂ui

∂uj

∂u1
+ ∂u2

∂ui

∂uj

∂u2
+ ∂u3

∂ui

∂uj

∂u3
(43.5.4)

= ∂uj

∂ui
= δj

i (43.5.5)

as desired. ■

Consequently, given some vector a it may be expanded in both the contravariant and covariant
bases. We find that if

a = aiei = aiei (43.5.6)

where ai are the contravariant components while ai are the covariant components, then:

a · ej = aiδj
i = aj (43.5.7)

a · ej = aiδ
i
j = aj (43.5.8)
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as expected.

Let’s now consider an infinitesimal vector displacement dr = duiei. Then, the infinitesimal arc
length is:

(ds)2 = duidujei · ej = gijdu
iduj (43.5.9)

where gij ≡ eiej is defined as the metric tensor.

Definition (Metric tensor)
For a given set of curvilinear coordinates (ui) with contravariant and covariant bases {ei =
∂r

∂ui
} and {ei = ∇ui} respectively, the metric tensor is defined to be:

gij ≡ eiej (43.5.10)

Furthermore, the volume element may be expressed as:

dV = √gdui (43.5.11)

where g = det[gij ] is the determinant of the metric tensor.

Example. Let’s evaluate the metric tensor in spherical polar coordinates. We have that
the position vector of some general point (u1, u2, u3) = (r, θ, ϕ) is given by:

r = r sin θ cosϕex + r sin θ sinϕey + r cos θez (43.5.12)

The covariant basis is easily found to be:

e1 = ∂r
∂r

= sin θ cosϕex + sin θ sinϕey + cos θez (43.5.13)

e2 = ∂r
∂θ

= r cos θ cosϕex + r cos θ sinϕey − r sin θez (43.5.14)

e3 = ∂r
∂ϕ

= −r sin θ sinϕex + r sin θ cosϕey (43.5.15)

Consequently:

[gij ] =

1 0 0
0 r2 0
0 0 r2 sin2 θ

 (43.5.16)

As expected from an orthogonal coordinate system, the metric is diagonal. Moreover, we
find that the infinitesimal arc length may be expressed as

(ds)2 = dr2 + r2dθ2 + r2 sin2 θdϕ2 (43.5.17)

while the volume element is found to be:

dV = r2 sin θdrdθdϕ (43.5.18)

◀
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Just like vectors, tensors may also be expressed in both bases:

T = T ijei ⊗ ej = Tijei ⊗ ej = T j
i ei ⊗ ej (43.5.19)

Here T ij , Tij , T
j
i are known as the contravariant, covariant and mixed tensor components respec-

tively.

We can use the metric tensor to express the scalar product of two vectors. Indeed, using the covari-
ant and contravariant expansions:

a · b = aieib
jej = gija

ibj = aieibjej = gijaibj (43.5.20)

Finally, we also find that:
a · b = aieibjej = aibjδ

j
i = aibi = aib

i (43.5.21)

Consequently:
gija

ibj = aibi, gijaibj = aib
i (43.5.22)

This holds for any arbitrary a, so we get the following very useful result:

Theorem (Raising and lowering indices)
For a given vector b expressed in a set of curvilinear coordinates with metric tensor gij , its
covariant and contravariant components are related by:

gijb
j = bi, g

ijbj = bi (43.5.23)

The special case when b = ei then:

ei = gijej , ei = gijej (43.5.24)

Proposition (Contravariant and covariant components are inverses)
The contravariant gij and covariant gij components of a metric tensor obey:

gijgjk = δi
k (43.5.25)

Proof. Consider:

ai = δi
ka

k = gijaj = gijgjka
k =⇒ δi

k = gijgjk (43.5.26)

as desired. ■

43.6 Covariance and contravariance
Let’s now see what happens how covariant and contravariant components transform when we
perform a change of curvilinear coordinates, since this is how we initially defined a tensor.

Suppose we have a coordinate system {ui} which we transform to another system {u′i}. The new
sets of basis vectors are:

e′
i = ∂r

∂u′i , e
′i = ∇u′i (43.6.1)
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The new covariant basis can be related to the old one by:

e′
i = ∂r

∂u′i = ∂uj

∂u′i
∂r
∂uj

= ∂uj

∂u′i ej (43.6.2)

or alternatively:

ej = ∂u′i

∂uj
e′

i (43.6.3)

Therefore, expanding an arbitrary vector in both covariant bases:

a = aiei = ai ∂u
′j

∂ui
e′

j = a′je′
j (43.6.4)

implying that:

a′j = ∂u′j

∂ui
ai (43.6.5)

Similarly, the new contravariant basis can be related to the old one by:

e′i = ∇u′i = ∂u′i

∂uj
∇uj = ∂u′i

∂uj
ej (43.6.6)

or alternatively:

ei = ∂ui

∂u′j e
′j (43.6.7)

Therefore, expanding an arbitrary vector in both contravariant bases we find that:

a = aiei = ai
∂ui

∂u′j e
′j = a′

je′j (43.6.8)

implying that covariant components transform as:

a′
j = ∂ui

∂u′j ai (43.6.9)

Theorem (Transformation of co(ntra)variant components) For a given vector a, its
covariant and contravariant components transform under a change of basis as:

a′j = ∂u′j

∂ui
ai (43.6.10)

a′
j = ∂ui

∂u′j ai (43.6.11)

In a completely analogous way, we can show how the co(ntra)variant and mixed compo-
nents of a second rank tensor transform:

T ′ij = ∂u′i

∂uk

∂u′j

∂ul
T kl (43.6.12)

T ′i
j = ∂u′i

∂uk

∂ul

∂u′j T
k
l (43.6.13)

T ′
ij = ∂uk

∂u′i
∂ul

∂u′j Tkl (43.6.14)
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Proof. We have already proven the result for vectors. For second rank tensors, we find:

T ′ije′
i ⊗ e′

j = T ijei ⊗ ej (43.6.15)

T j
i

′
e′i ⊗ e′

j = T j
i ei ⊗ ej (43.6.16)

T ′
ije′i ⊗ e′j = Tijei ⊗ ej (43.6.17)

For example, we would find that:

T ′ije′
i ⊗ e′

j = T klek ⊗ el = T kl ∂u
′i

∂uk

∂u′i

∂uj
e′

i ⊗ e′
j (43.6.18)

implying

T ′ij = ∂u′i

∂uk

∂u′j

∂ul
T kl (43.6.19)

as desired. ■

Visually, we can explain covariant and contravariant components as follows: “contravariant compo-
nents transform as position vector components, while covariant components transform as gradient
vector components”. This makes physically sense, as the contravariant basis is parallel everywhere
to its coordinate curves, while the covariant basis is orthonormal everywhere to its coordinate sur-
faces. This is in alignment with the intuition that coordinate curves transform as position vectors,
while coordinate surfaces transform as gradient vectors.

Figure 43.1. By Maschen - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=
21043814

Clearly, if we increase the lengths of the contravariant basis vectors, the contravariant components
decrease (less arrows along each basis vector are needed), and vice versa. The contravariant com-
ponents “contra-vary” with the change of basis.

On the other hand, if I increase the lengths of the covariant bass vectors, the covariant components
increase (“more” planes can be packed along each basis vector), and vice versa. The covariant
components “co-vary” with the change of basis.
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Theorem (Metric tensor is a second rank tensor)
The metric tensor gµν is a second-rank tensor.

Proof. We have that :

gµνdx
µdxν = g′

αβdx
′αdxβ (43.6.20)

= g′
αβ

∂x′α

∂xµ

∂x′β

∂xν
dxµdxν (43.6.21)

=⇒
(
gµν − g′

αβ

∂x′α

∂xµ

∂x′β

∂xν

)
dxµdxν = 0 (43.6.22)

Seeing as this must hold for all dxµ, dxν , it follows that:

gµν = ∂x′α

∂xµ

∂x′β

∂xν
g′

αβ (43.6.23)

proving the required transformation rule. ■

43.7 Application to special relativity: four-vectors
In special relativity we deal with four vectors whose components transform like:

v′µ = ∂x′µ

∂xν
vν (43.7.1)

where ∂u′µ

∂uν are components of the Lorentz transformation. An important four vector is the dis-
placement vector:

dxµ = (cdt, dx, dy, dz) = (dx0, dx1, dx2, dx3) = (cdt, dr) (43.7.2)

We also know that the following quantity, known as the proper time, is an invariant under Lorentz
transformations:

(cdτ)2 = c2dt2 − dr · dr (43.7.3)

This suggests introducing the following metric tensor, known as the Minkowski metric:

[ηµν ] =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 =⇒ (cdτ)2 = gµnudx
µdxν (43.7.4)

This allows us to find the covariant components:

dxµ = (cdt,−dr) (43.7.5)

The importance of the proper time arises when we try to define a velocity four vector. Suppose we
naively define it to be:

uµ = ∂xµ

∂t
=
(
c,
dr
dt

)
(43.7.6)
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This result is quite worrisome, since the first component c of this supposed four vector is constant,
and therefore does not transform at all under a change of basis.

Suppose we instead define

uµ = ∂xµ

∂τ
= ∂xµ

∂t

∂t

∂τ
=
(
c,
dr
dt

)
dt

dτ
(43.7.7)

Then, since

c2dτ2 =c2dt2 − dr · dr = dt2
(
c2 − dr

dt
· dr
dt

)
(43.7.8)

=⇒ dt

dτ
= 1√

1− v2/c2
≡ γ (43.7.9)

where we defined v ≡ dr
dt , we find that the velocity four vector reads:

uµ = γ(c,v) (43.7.10)

and thus:
uµ = γ(c,−v) (43.7.11)
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44L10 Tensor calculus

44.1 Christoffel symbols
Let’s consider how we can take derivatives of basis vectors. For example, consider ∂ei

∂uj . Since this
is itself a vector, it can be expanded in the covariant basis as::

∂ei

∂uj
= Γk

ijek (44.1.1)

It is easy to see that:
Γk

ij = ek · ∂ei

∂uj
(44.1.2)

Also, we can differentiate the relation ei · ej to find:

∂

∂uk
(ei · ej) = ∂ei

∂uk
· ej + ei · ∂ej

∂uk
= 0 (44.1.3)

=⇒ ∂ei

∂uk
· ej = −Γi

jk (44.1.4)

=⇒ ∂ei

∂uj
= −Γi

kjek (44.1.5)

The Γk
ij are known as Christoffel symbols. Although it looks like a third rank tensor, it actually

does not follow the required transformation laws. Indeed:

Γ′k
ij = e′k · ∂e

′
i

∂u′j (44.1.6)

= ∂u′k

∂un
en · ∂

∂u′k

(
∂ul

∂u′iel

)
(44.1.7)

= ∂u′k

∂un
en ·

(
∂2ul

∂u′j∂u′i el + ∂ul

∂u′i
∂el

∂um

∂um

∂u′j

)
(44.1.8)

= ∂u′k

∂un

∂2ul

∂u′j∂u′i δ
n
l + ∂u′k

∂un

∂ul

∂u′i
∂um

∂u′j en ·
∂el

∂um
(44.1.9)

= ∂u′k

∂ul

∂2ul

∂u′j∂u′i + Γn
lm

∂u′k

∂un

∂ul

∂u′i
∂um

∂u′j (44.1.10)
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We can find another expression for the Christoffel symbols that allow for faster computation. Con-
sider the derivative of the metric tensor:

dgij

duk
= ∂ei

∂uk
· ej + ei ·

∂ej

∂uk
(44.1.11)

= Γl
ikel · ej + ei · elΓl

jk (44.1.12)

=⇒ dgij

duk
= Γl

ikglj + Γl
jkgil (44.1.13)

Now note that Γl
ik is symmetric, since:

∂ei

∂uj
= ∂2r
∂uiuj

= ∂ej

∂ui
(44.1.14)

Consequently, we can simply permute the indices in (44.1.13) and find the following:

dgik

duj
= Γl

ijglk + Γl
jkgil (44.1.15)

dgkj

dui
= Γl

ikglj + Γl
jigkl (44.1.16)

implying that:

dgij

duk
+ dgik

duj
− dgkj

dui
= 2Γl

jkgil (44.1.17)

⇐⇒
(
dgij

duk
+ dgik

duj
− dgkj

dui

)
gim = 2Γl

jkgilg
im (44.1.18)

⇐⇒ Γm
jk = 1

2
gim

(
dgij

duk
+ dgik

duj
− dgkj

dui

)
(44.1.19)

44.2 Differentiating tensors
Let’s consider a contravariant vector:

x′i = ∂x′i

∂xj
xj (44.2.1)

Its time derivative is transforms following:

∂x′i

∂u′j = ∂uk

∂u′j
∂x′i

∂uk
(44.2.2)

= ∂uk

∂u′j
∂

∂uk

(
∂u′i

∂ul
xl

)
(44.2.3)

= ∂uk

∂u′j

(
∂2u′i

∂ul∂uk
xl + ∂u′i

∂ul

∂xl

∂uk

)
(44.2.4)

= ∂uk

∂u′j
∂2u′i

∂uj∂uk
xj + ∂uk

∂u′j
∂u′i

∂ul

∂xl

∂uk
(44.2.5)

The ∂uk

∂u′j
∂2u′i

∂uj∂uk x
j term ruins the transformation rule, and if it is non-zero then ∂xi

∂xj cannot be con-
sidered a tensor. This is quite problematic, as from our experience things such as the velocity vector
should be a tensor.
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Luckily, we can use the Christoffel symbols to deal with this issue. Consider:

∂x
∂uj

= ∂xi

∂uj
ei + xiΓk

ijek (44.2.6)

=
(
∂xi

∂uj
+ xkΓi

kj

)
ei (44.2.7)

leading us to defining the covariant derivative as follows:

Definition (Covariant derivative)
Given a contravariant representation of a vector v = viei, its covariant derivative is defined
as:

vi
:j = ∂xi

∂uj
+ xkΓi

kj (44.2.8)

and similarly for the covariant representation:

vi:j = ∂xi

∂uj
− xkΓk

ij (44.2.9)

We see that the covariant derivative is different from the normal partial derivative in that the basis
vectors that don’t change over space for cartesian coordinates are variable in general coordinates.
Due to the product derivative rule, this creates an extra term in the derivative which we identify
using a Christoffel symbol.

Example. Let’s work out the covariant derivative of the contravariant components of a
second order tensor T .
The contravariant components T ij satisfy:

T = T ij(ei ⊗ ej) (44.2.10)

Consequently:
∂T

∂uk
= ∂T ij

∂uk
(ei ⊗ ej) + T ij ∂

∂uk
(ei ⊗ ej) (44.2.11)

We can simplify the second term on the RHS:

∂

∂uk
(ei ⊗ ej) = ∂ei

∂uk
⊗ ej + ei ⊗

∂ej

∂uk
(44.2.12)

= Γl
ikel ⊗ ej + ei ⊗ elΓl

jk (44.2.13)

giving

∂T

∂uk
= ∂T ij

∂uk
(ei ⊗ ej) + T ij(Γl

ikel ⊗ ej + ei ⊗ elΓl
jk) (44.2.14)

=
(
∂T ij

∂uk
+ T ljΓi

lk + T ilΓj
lk

)
(ei ⊗ ej) (44.2.15)

= T ij
:k (ei ⊗ ej) (44.2.16)
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where we defined a covariant derivative:

T ij
:k ≡

∂T ij

∂uk
+ T ljΓi

lk + T ilΓj
lk (44.2.17)

◀

44.3 Application to geometry: curvilinear coordinates
Let’s apply our knowledge of tensor calculus to study general curvilinear coordinates.

Gradient
The gradient of a scalar field ϕ is just:

∇ϕ ≡ ϕ:iei = ∂ϕ

∂ui
ei (44.3.1)

Divergence
The divergence of a vector field v is:

∇ · x ≡ vi
:i = ∂vi

∂ui
+ xkΓi

ki (44.3.2)

Note that the Christoffel symbol simplifies significantly:

Γi
ki = 1

2
gil

(
∂gil

∂uk
+ ∂gkl

∂ui
− ∂gki

∂ul

)
(44.3.3)

= 1
2
gil

(
∂gil

∂uk
+ ∂gkl

∂ui
− ∂gkl

∂ui

)
(44.3.4)

= 1
2
gil ∂gil

∂uk
(44.3.5)

giving:

∇ · x = ∂vi

∂ui
+ 1

2
xkgil ∂gil

∂uk
(44.3.6)

Proposition (Important determinant identity)
Let A = (aij),B = (bij) and A = B−1. Then:

∂|A|
∂uk

= |A|bji ∂aij

∂uk
(44.3.7)

Proof. We have that if the cofactor of the element aij is cij then:

bij = 1
|A|c

ji (44.3.8)
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Consequently, since |A| = aijc
ij with fixed i:

∂|A|
∂aij

= cij = |A|bij (44.3.9)

implying:
∂|A|
∂uk

= ∂|A|
∂aij

∂aij

∂uk
= |A|bij ∂aij

∂uk
(44.3.10)

as desired. ■

We can apply this proposition to the determinant of the metric tensor:

∂|g|
∂uk

= |g|gij ∂gij

∂uk
=⇒ gij ∂gij

∂uk
= 1
|g|

∂|g|
∂uk

= 1√
|g|

∂
√
|g|

∂uk
(44.3.11)

and hence when substituted into (44.3.6) we get:

∇ · x = ∂vi

∂ui
+ 1√

|g|
∂
√
|g|

∂ui
xi (44.3.12)

or alternatively:

∇ · v = 1√
|g|

∂(
√
|g|xi)
∂ui

(44.3.13)

Laplacian

Curl

44.4 Geodesics
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45DG1 Topology

45.1 Why differential geometry?
Broadly speaking, a manifold is a space that looks locally like Rn even though it may not be so
globally. For example, the surface of the Earth may be viewed as a locally flat surface embedded
in R3. Thus most tools from multivariable calculus may be employed. In general however, we
will discover that space-time does not seem to be naturally embedded in some higher-dimensional
Euclidean space. Traditional calculus is unequipped to deal with such objects, we must develop a
new formalism which is known nowadays as modern differential geometry.

45.2 Topology
We begin by introducing some important basic concepts from topology. Indeed, at its most funda-
mental (i.e. with least structure) level space-time may be viewed as a simple collection of points.
This alone is not enough to talk about things such as derivatives etc..., extra conditions must be
satisfied. However, we do not want to endow space-time with too much structure, just enough
so that good old calculus may be used. For example, the way we may classify these points into
sub-collections will be useful in giving structure to space-time. The first step is thus to define a
topological space.

Definition (Topological space)
A topological space (X,O) is a set X equipped with a collection O ⊆ P(X) of its subsets,
which we refer to as open sets forming the topology O ofX , such that the following condi-
tions are satisfied:
(i) the empty set ∅ and X are open sets
(ii) if A,B ∈ O then A ∩B is also open
(iii) if Ai ∈ O for some {i} then

⋃
i Ai is open.

Definition (Closed set)
Let (X,O) be a topological space. Then A ⊆ X is closed (relative to the topology O) if
X \A ∈ O.

There are trivial examples of topologies. LetX be any set, thenO = {∅, X} is a topology known as
the chaotic topology. Also, O = P(X) is a topology known as the discrete topology.

A very relevant example is the standard topology of the d-dimensional Eulidean space Rd. Before
defining it let us discuss what it means to be in the neighborhood of a point x.
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Definition (Neighborhood)
Let us define for all x ∈ Rd and d ∈ R+:

Nd(x) = {y ∈ Rd : ||y − x|| < d} (45.2.1)

which is an open (since the inequality is strict) ball centered at x with radius d. This is the
neighborhood of x of radius d.

Theorem (Standard topology)
The following is a topology on Rd known as the standard topology ORd :

A ∈ ORd ⇐⇒ ∀x ∈ A,∃δ ∈ R+ s.t. Nδ(x) ⊆ A (45.2.2)

that is, an open set is a member of this topology if we can always form a neighborhood of x
contained within A.

Proof. We check that the three topological axioms are satisfied:

(i) Firstly ∅ ∈ ORd since the neighborhood of the empty set is empty for any r ∈ R+ and ∅ ⊆ ∅.
Similarly Rd ∈ ORd since the neighborhood of any arbitrary point for any r ∈ R+ must by
definition lie in Rd

(iii) Let A,B ∈ ORd be open. This implies that ∃rA, rB ∈ R+ such that NrA
(x) ∈ A and NrB

(x).
Letting r = min{rA, rB} then Nr(x) ⊆ U an Nr(x) ⊆ V implying that Nr(x) ⊆ U ∪ V as
desired.

(iv) LetAi ∈ O for given {i}. Then for any j there exists rj ∈ R+ such thatNrj
(O) ∈ Aj implying

that Nrj (O) ∈ ∪iAi as desired.

■

Theorem (Induced topology)
Let (X,O) be a topological space, and let B ⊆ X . Then:

O|B = {A ∩B|A ∈ O} (45.2.3)
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is a topology on b known as the induced topology.

Proof. We verify the topology axioms:

(i) since ∅ ∈ O we have that ∅ ∩ B = ∅ is also an open set. Similarly since X ∈ O we have that
X ∩B = B is open as desired.

(ii) let U, V ∈ O|N . Then ∃S, T ∈ O such that U = S ∩B and V = T ∩B, implying that:

U ∩ V = (S ∩B) ∩ (T ∩B) = (S ∩ T )︸ ︷︷ ︸
∈O

∩B (45.2.4)

(ii) let Ui ∈ O|N for some {i}. Then ∃Si ∈ O such that Ui = Si ∩B so that

⋃
i

Ui =
⋃

i

(Si ∩B) =

∈O︷ ︸︸ ︷(⋃
i

Si

)
∪B (45.2.5)

■

An interesting example is the set C = {x ∈ Rd : ||x|| = 1}. We can establish a topology on C by
inducing the standard topology on S:

O = ORd |S (45.2.6)

This is because the empty set is the intersection of the ∅ ∈ ORd
and S, similarly S is the intersection

of Rd ∈ ORd . Also, given any subset of S, it can be written as the intersection of another circle and
S as shown below.

Definition (Product topology)
Let (A,OA) and (B,OB). Then OA,B is a topology, the product topology on A×B defined
by:

U ∈ OA×B ⇐⇒ ∀x = (a, b) ∈ U, ∃S ∈ OA, T ∈ OB s.t. S × T ⊆ U and a ∈ S, b ∈ T
(45.2.7)

Proof. We verify the topology axioms:

(i) of course ∅ ∈ OA×B since ∄x ∈ ∅, so any statement following this assumption is trivially
satisfied. Similarly U = A×B ∈ OA×B since given x = (a, b) ∈ U then a ∈ A ∈ OA, b ∈ B ∈
OB with A×B ⊆ U as desired.

(ii) Let U, V ∈ OA×B , and let SU,V ∈ OA and TU,V ∈ OB be the open sets satisfying the topolog-
ical conditions:

∀x = (a, b) ∈ U, ∃SU ∈ OA, TU ∈ OB s.t. SU × TU ⊆ U and a ∈ SU , b ∈ TU (45.2.8)
∀x = (a, b) ∈ V, ∃SV ∈ OA, TV ∈ OB s.t. SV × TV ⊆ U and a ∈ SV , b ∈ TV (45.2.9)
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Let x = (a, b) ∈ U ∩ V , and consider SU ∩ SV ∈ OA and TU ∩ TV ∈ OB . Then clearly
a ∈ SU ∩ SV and b ∈ TU ∩ TV , and moreover:

(SU ∩ SV )× (SU ∩ SV ) = (SU × TU ) ∩ (SV × TV ) ⊆ U × V (45.2.10)

as desired.

(iii) Let Ui ∈ OA×B for some set {i}. Then, we must have that:

∀i : ∀x = (a, b) ∈ Ui, ∃Si ∈ OA, Ti ∈ OB s.t. Si × Ti ⊆ Ui and a ∈ Si, b ∈ Ti (45.2.11)

Let x = (a, b) ∈
⋃

i Ui, and let us consider the unions
⋃

i Si and
⋃

i Ti. Clearly a ∈
⋃

i Si and
b ∈

⋃
i Ti. Moreover: (⋃

i

Si

)
×
(⋃

i

Ti

)
=
⋃

i

(Si × Ti) ⊆
⋃

i

Ui (45.2.12)

as desired.

■

This definition can be easily extended to any number of Cartesian products. Also, you can always
fit a circle in a square and vice-versa, S × T andNd(x) can be fit into each other. Therefore, ORd =
OR×...×R.

Definition (Convergence)
A sequence q : N→ X on a topological space (X,O) converges to a point a ∈ X if:

∀U ∈ O with a ∈ U,∃N ∈ N such that ∀n > N, q(n) ∈ U (45.2.13)

Theorem (Sequence convergence)
The sequence q : N→ R converges to a ∈ Rd if:

∀ϵ > 0, ∃N ∈ N s.t. ||q(n)− a|| < ϵ, ∀n > N (45.2.14)

Proof. Suppose the sequence q : N → Rd with standard topology converges to a. Let ϵ > 0, and
define:

Uϵ = {x ∈ Rd : ||x− a|| < ϵ} (45.2.15)

This, as we shall prove soon, is an open set. Also, we have that a ∈ Uϵ, so the definition of sequence
convergence implies that:

∃N ∈ N such that ||q(n)− a|| < ϵ, ∀n > N (45.2.16)

as desired. ■

Definition (Continuity)
Let (X,OX) and (Y,OY ) be topological spaces. Then the map ϕ : X → Y is continuous if
for all open sets U ∈ OY the set preImϕU ∈ OX .
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In other words, a continuous function maps open sets to open sets without disrupting the topolo-
gies of the domain and image. Consider for example ϕ : X → Y where X is equipped with the
topology P(X) while Y is equipped with another topology OY . Then ϕmust be continuous since
the pre-image of any V ∈ OY is necessarily a subset of the domain X , and must therefore be in-
cluded in the power set P(X). Similarly ϕ : X → Y where X is equipped with any topology and
Y is equipped with the chaotic topology {∅, Y } is also continuous.

We can visualize the definition of a continuous function asa map that preserved the “open-ness”
of subsets. It is good sanity check to show that this topological definition of continuity yields the

epsilon-delta definition of continuity we are familiar with from Real analysis.

Theorem (Continuity of Rn maps)
Let f : Rm → Rn be a map, where Rm and Rn are endowed with their standard topologies.
Themap ϕ is continuous according according to the topological definition iff it is continuous
according to the epsilon-delta definition.

Proof. =⇒ Suppose that the map f is topologically continuous. First, we claim that, given ϵ > 0,
the neighbourhood Nϵ(f(x)) is open

Nϵ(f(x)) = {z ∈ Rn : ||f(x)− z|| < ϵ} (45.2.17)

Indeed given z ∈ Nϵ(f(x)) then we see that choosing 0 < d+ ||z − f(x)|| < ϵ
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and letting z′ ∈ Nd(z) so that ||z′ − z|| < d then:

||z′ − f(x)|| < ||z′ − z||+ ||z − f(x)|| < d+ ||z − f(x)| < ϵ (45.2.18)

implying that
Nd(z) = {z′ ∈ Rn : ||z′ − z|| < d} ⊆ Nϵ(f(x)) (45.2.19)

as desired. Now since Nϵ(f(x)) is an open set, its preimage preImf (Nϵ(f(x))) must also be open,
and since x is in this preimage (because f(x) ∈ Nϵ(f(x))) we have that ∃δ > 0 such that

Nδ(x) = {y ∈ Rm : ||x− y|| < δ} ⊆ preImf (Nϵ(f(x))) =⇒ f(Nδ(x)) ⊆ Nϵ(f(x)) (45.2.20)

that is, if ||x− y|| < δ then ||f(y)− f(x)|| < ϵ as desired.

⇐= Suppose that the map f is continuous according to the epsilon-delta definition, so that if
x ∈ Rm, then for all ϵ > 0 there exists δ > 0 such that ||x − y|| < δ =⇒ ||f(x) − f(y)|| < ϵ.
Consequently:

Nδ(x) = {y ∈ Rm : ||x− y|| < δ} ⊆ {y ∈ Rm : ||f(x)− f(y)|| < ϵ} (45.2.21)

Let A ∈ Rn be an open set in the standard topology, and let z ∈ A. Then there exists ϵ > 0 such
that Nϵ(z) ⊆ A. Consider preImf (A), we claim this is open. Indeed let x ∈ preImf (A). Then by
the definition of ϵ− δ continuity:

f(Nδ(x)) = {f(y) : ||x− y|| < δ} ⊆ {y : ||f(x)− f(y)|| < ϵ} ⊆ {z : ||f(x)− z|| < ϵ} = Nϵ(z) ⊆ A
(45.2.22)

implying that Nδ(x) ⊆ preIm(A), as desired. So if A is open then preImf (A) is also open, as
desired. ■

Definition (Homeomorphism)
Let ϕ : X → Y be a bijective map, with (X,OX) and (Y,OY ) being topological spaces. Then
ϕ is a homeomorphism if
(a) ϕ : X → Y is continuous
(b) ϕ−1 : Y → X is continuous If such a ϕ exists then (X,OX) ∼= (Y,OY ), they are home-

omorphic.

45.3 Topological manifolds
Now that we have defined a topological space we can add additional structure, namely that of a
manifold which, as hinted earlier, is a topological space that locally looks Euclidean.

Definition (Topological manifold)
We define a d-dimensional topological manifold if it is a topological space (X,O) if for all
x ∈ X , there exists an open set A ⊆ X with x ∈ A such that there exists a map ∃ϕ : A →
ϕ(A) ∈ ORd satisfying:
(i) ϕ is invertible
(ii) ϕ is continuous
(iii) ϕ−1 is continuous
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where we choose the topology O on A and ORd on Rd (i.e. A is homeomorphic to Rd). The
choice (A,ϕ) is defined as a chart.

What this means is that all points x in the topological manifold (X,O) lie in some open setA that is
homeomorphic toRd. Consider as an example awireM ⊂ R2 that bifurcates into two branches. We

can embed the topologyOR2 |M onM creating a topological space. This however is not a topological
manifold, since for the bifurcation point we cannot find an open set it lies in that can be mapped
continuously bijectively to R2.

Definition (Atlas)
The set of charts A = {(Ai, ϕi : i ∈ S} is an atlas of the topological space (X,O) provided
that:

X =
⋃
i∈S

Ai (45.3.1)

Definition (Chart components)
For a given chart (A,ϕ) of an n-manifold we define its chart components ϕµ as the maps:

ϕµ : A→ Rn (45.3.2)
p 7→ [ϕ(p)]µ (45.3.3)

which map p ∈ A to the µth component of ϕ(p) ∈ Rn.

Consider two charts (A,ϕ) and (B,φ) with A ∩ B 6= ∅.
Then this implies that given some x ∈ A ∩ B, it can be
mapped to Rd using two charts, ϕ or φ. Can we find a
way to map between ϕ(x) and φ(x)? Well it is easy to
see from the commutative diagram that ψ ≡ φ ◦ ϕ−1

does precisely this. We call ψ the chart transition map,
it is akin to a change of basis map.

The reason topological manifold are so useful in
physics is that it allows us to describe objects (for ex-
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ample a curve γ : R→ X) in the real world by looking
at how they may be charted (e.g. consider the charts
(ϕ,X) and (φ,X)). The real physical object is γ but
physically we describe them using ϕ ◦ γ or φ ◦ γ. We
must however make sure that whatever properties we
are looking, it does not matter what charts we are look-
ing at. The advantage of this approach is that we have
all the tools of multivariable analysis in Rd at our dis-
posal. The disadvantage is that we are blurring the

lines between the real world and the charts we are studying them in by replacing γ, the real world
object, with its mathematical description ϕ ◦ γ within the chart (X,ϕ).

For example suppose ϕ ◦ γ is continuous, how do we know that φ ◦ γ is also continuous? From the
commutative diagram we see that φ ◦ γ = (φ ◦ ϕ−1) ◦ (ϕ ◦ γ) so φ ◦ γ is indeed continuous.

φ(X) ⊆ Rd

R X

ϕ(X) ⊆ Rd

φ◦γ

γ

ϕ◦γ
ϕ

φ

Can we say the same about differentiability? If we have that ϕ ◦ γ is differentiable, we still do not
know if this differentiability is shared in all charts since φ ◦ ϕ−1 is not necessarily differentiable
(they are continuous but can have kinks). We need to find some way to examine differentiability
using charts.

45.4 Multilinear algebra
Recall the normal definition of vector spaces.

Definition (Vector space)
A vector space (V,+, •) over a field F is a set V and two maps:

+ : V × V → V (45.4.1)
• : F × V → V (45.4.2)

known as addition and scalar multiplication such that for all u,v,w ∈ V, α, β ∈ F :
(i) v + w = w + v
(ii) (u + v) + w = u + (v + w)
(iii) ∃0 ∈ V such that v + 0 = v
(iv) ∃(−v) ∈ V such that v + (−v) = 0
(v) α • (β • v) = (αβ) • v
(vi) α • (v + w) = α • v + α •w
(vii) (α+ β) • v = α • v + β • v
(viii) given the identity element 1 of F , then 1 • v = v
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The element of a vector space is informally referred to as a vector. It is easy to see that the set Pn

of all polynomial functions p up to order n ∈ N is indeed a vector space:

Pn = {p(x) =
n∑

m=0
pmx

m : pm ∈ R} (45.4.3)

Definition (Linear map)
Let (V,+V , •V ) and (W,+W , •W ) be two vector spaces. Then the map ϕ : V → W is a linear
map if it is structure preserving:
(i) ϕ(u +V v) = ϕ(u) +W ϕ(v)
(ii) ϕ(α • V v) = α • Wϕ(v)

If such a map between V andW exists then we write that V ∼= W .

Definition (Set of linear maps)
We define the set of all linear maps between two vector spaces (V,+V , •V ) and (W,+W , •W )
(the latter defined over FW ) as Hom(V,W ). Together with the operations ⊕ and � defined
below this set becomes a vector space:

⊕ : Hom(V,W )×Hom(V,W )→ Hom(V,W ) (45.4.4)
(ϕ, φ) 7→ ϕ⊕ φ (45.4.5)

and

� : FW ×Hom(V,W )→ Hom(V,W ) (45.4.6)
(α, φ) 7→ α� φ (45.4.7)

where

(ϕ⊕ φ)(v) = ϕ(v) +W φ(v), ∀v ∈ V (45.4.8)
(α� φ)(v) = α • Wϕ(v), ∀v ∈ V, ∀α ∈ FW (45.4.9)

Definition (Dual vector space)
Given a vector space V defined over a field F , then the set V ∗ is defined as:

V ∗ ≡ {ϕ : V → F : ϕ is linear} = Hom(V, F ) (45.4.10)

Equipped with ⊕ and ⊗ defined previously then V ∗ is defined as the dual vector space.

Informally, the elementϕ ∈ V ∗ is referred to as a covector, for reasons that shall be clearer soon.

Definition (Dual basis)
Given a basis B = {e1, e2, ..., en} ⊂ V for V then the dual basis of the dual space V ∗ is
defined as B∗ = {ϵ1, ϵ2, ..., ϵn} ⊂ V ∗ such that:

ϵi(ej) = δj
i , ∀i, j (45.4.11)
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For the case of Pn, we can choose the basis B = {ei(x) = xi : i = 0, 1, ..., n}. The dual basis
B∗ = {ϵi : i = 0, 1, ...n} can be easily identified as:

ϵi = 1
i!
di

dxi

∣∣∣∣
x=0

(45.4.12)

Indeed one finds that

ϵi(ej) = 1
i!
di

dxi
(xj)

∣∣∣∣
x=0

=


0, i > j

1, i = j

0, i < j

= δij (45.4.13)

so the derivative operator may be regarded as a covector in the dual space of Pn. This will turn out
to be a more general property of differential geometry.

Definition (Tensor)
Let (V,+, •) be a vector space defined over a field F . Then an (r, s)-tensor T over V is a map:

T : (V ∗)r × V s 7→ F (45.4.14)

that is linear in all its entries, thus a multi-linear map.

Consider for example a (1, 1)-tensor T . Then we must have that:

T (ϕ+ φ,v) = T (ϕ,v) + T (φ,v) (45.4.15)
T (αϕ, v) = αT (ϕ,v) (45.4.16)

T (ϕ,v + w) = T (ϕ,v) + T (ϕ,w) (45.4.17)
T (ϕ, αv) = αT (ϕ,v) (45.4.18)

(45.4.19)

We can connect this to the typical view of a (1, 1)-tensor as a map that takes a vector and maps it
to another vector. Indeed let us construct:

ϕT : V → V (45.4.20)
v 7→ T (·,v) (45.4.21)

which takes in v and maps it to another map T (·,v) which takes covectors to F . But this map is of
the type V ∗ → F and thus T (·,v) ∈ (V ∗)∗ = V provided dimV < ∞. It follows that T (·,v) is a
vector, so ϕT does indeed map a vector to vectors of V .

Theorem (Vectors vs Covectors)
Let ϕ ∈ V ∗ be a covector. Then by definition it must be a (0, 1)-tensor since ϕ : V → F is
linear.
Similarly, let v ∈ V = (V ∗)∗ be a vector. Then by definition it must be a (1, 0)-tensor since
v : V ∗ → F .

Definition (Tensor components)
Let T be an (r, s)-tensor over a n-dimensional vector space V with basis B = {ei : i =
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0, 1, ...n} and dual space V ∗ with dual basis B∗ = {ϵi : i = 0, 1, ...n}. Then we define the
components of T as:

T i1...ir
j1...js

≡ T (ϵi1 , ..., ϵir , ej1 , ..., ejs
) (45.4.22)

so that:
T (ϕ,v) =

∑
ij

ϕiv
jT i

j (45.4.23)

where ϕ =
∑

i ϕiϵ
i ∈ V ∗ and v =

∑
j v

jej ∈ V .

For example, given a (1, 1)-tensor T then T i
j = T (ϵi, ej). Also, due to the linearity of the tensor map

the tensor components are very useful because they allow us to expand:

T (ϕ,v) = T

(∑
i

ϕiϵ
i,
∑

j

vjej

)
(45.4.24)

=
∑

ij

ϕiv
jT (ϵi, ej) (45.4.25)

=
∑

ij

ϕiv
jT i

j (45.4.26)

Note the careful placements of subscripts and superscripts, where basis vectors are given subscripts
and basis covectors are given superscripts. This ensures that multiply labelled indices always
appear in an up-down arrangement. Moreover, if we assume that an index appearing both up
and down is summed over, then we retrieve the Einstein summation convention. For example,
(45.4.23) becomes

T (ϕ,v) = ϕiv
jT i

j (45.4.27)
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46.1 Differenti
Weare now ready to tackle the problemmentioned in section 45.3 about the consistency in studying
the differentiability of topological spaces. The key lies in choosing the charts on the topological
space from a restricted set (which is still an atlas) so that all transition functions are differentiable.
Manifolds on which this can be done are known as differentiable manifolds.

Definition (Compatibility)
Let □ be some “property” (e.g. differentiability) of a topological space. Two charts (A,ϕA)
and (B,ϕB) are □-compatible if:
(i) A ∩B = ∅ or
(ii) ϕB ◦ ϕ−1

A and ϕA ◦ ϕ−1
B restricted to the domain A ∩B are □.

Moreover, an atlas A□ is an □-compatible atlas if given any two charts in A, they are □-
compatible.

If this happens then we can define a corresponding type of □-manifold (X,O,A□).

It can be shown that any Ck-atlas ACk contains a C∞-atlas. This is a substantial result because for
physical applications we can always consider C∞-manifolds (smooth manifolds) without loss of
generality.

Definition (Topological isomorphism)
Two topological spaces (A,OA) and (B,OB) are topologically isomorphic if there exists a
bijective homomorphism between them ϕ : A→ B.

Definition (Smooth map)
A map φ : M → N for two smooth manifolds (M,OM ) and (N,ON ) is said to be smooth
if for any two charts (X,ϕX) of (M,OM ) and (Y, ϕY ) of (N,ON ), the map ϕY ◦ φ ◦ ϕ−1

X is
smooth.

Definition (Diffeomorphism)
Two smooth manifolds (M,OM ,AM ) and (N,ON ,AN ) are diffeomorphic if there exists a
bijection ϕ : M → N such that both ϕ and ϕ−1 are smooth.
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Definition (Smooth structure of topological manifolds)
In d = 4 dimensions, the number of smooth manifolds that can be made out of a given
topological manifold (up to a diffeomorphism) is uncountably infinite.

We can now start talking about tangent vectors and spaces. Consider for example a sphereX = S2

embedded in R3. We know that given a point p on this sphere, we can define a plane tangent to
it at p. Any vector on this plane would then be a tangent vector. This visualization however relies
on the fact that the sphere can be embedded in a larger Euclidean space, something that cannot be
generally done. Thus we must develop a more abstract concept of tangent vector that does not live
outside of the manifold it is tangent to.

It turns out that the correct definition of a tangent vector is as a directional derivative.

Definition (Tangent vector)
Let (X,O,A) be a smooth manifold, and let γ : R → X be a smooth parametrized curve,
with γ(tp) = p ∈ X . Then the tangent vector Vγ,p of γ at the point p is the linear map:

Vγ,p : C∞(X)→ R (46.1.1)
f 7→ (f ◦ γ)′(tp) (46.1.2)

where C∞(X) = {f : X → R|f is smooth} and ′ represents differentiation with respect to
the parametrization parameter t.

In other words, suppose f is some scalar field, for example temperature. f ◦γ gives the temperature
as we go along the path γ, and thus the velocity is defined as the rate of change of this temperature
field as we run along γ. This is shown well in the following commutative diagram:

R X Rd

R

γ

f◦γ
f

ϕ

f◦ϕ−1

Differentiating f itself doesn’t make a lot of sense since it is not a typical type of map that is en-
countered in analysis. We resolved this issue by looking at the parametrization of f , which is a
“normal” map (i.e. from R to R) and can thus be differentiated in the usual way.
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We can write this result using the less rigorous, but more familiar differential notation

Vγ,p(f) = d

dt
f(γ(t))

∣∣∣∣
t=tp

(46.1.3)

Definition (Tangent space)
For each point p ∈ X we define the tangent space toX at p as the set of tangent vectors at p
for all smooth curves γ on X .

TpX = {Vγ,p : γ is a smooth curve} (46.1.4)

Note that the view that the tangent space is a plane works fine for classical geometry, but it requires
the concept of an ambient space surrounding the topological spaceX . If for example we’re consid-
ering the universe, then it doesn’t make sense to refer to a tangent plane outside of it. The strength
of this new definition of tangent space is that it makes no reference to things outside of X .

It is interesting to look at the structure of this tangent space, is it a vector space for example? We
can equip the tangent space TpX with the following operators:

⊕ : TpX × TpX → Hom(C∞(X),R) (46.1.5)
(Vγ1,p ⊕Vγ2,p)(f) 7→ Vγ1,p(f) +R Vγ:2,p(f) (46.1.6)

and

� : R × TpX → Hom(C∞(X),R) (46.1.7)
(α�Vγ,p)(f) 7→ α ·R Vγ,p(f), ∀α ∈ r (46.1.8)

with which the vector space axioms are satisfied. It is yet not understood however if the closure
relation is satisfied, that is if α ·R Vγ,p(f) and Vγ1,p(f) +R Vγ2,p(f) belong to the tangent space
themselves, and are thus tangent vectors to some smooth curve on X .

Thus, suppose there is some curve σ so thatVσ,p = α ·RVγ,p(f). Intuitively we should expect (from
now on any +, · operation is implicitly defined on the field R):

σ : R→ X (46.1.9)
t 7→ γ(αt+ tp) (46.1.10)

to do the job. Indeed σ(0) = γ(tp) = p so this curve passes through the required point. Also,
defining µα : λ → αλ + λ0 then (we do the calculation two ways, first using the rigorous map
notation and then using the familiar calculus notation):

Vσ,p = (f ◦ σ)′(0) = (f ◦ γ ◦ µα)′(0) = α · (f ◦ γ)′(λ0) = α · vγ,p (46.1.11)

Vσ,p = d

dt
f(σ(t))

∣∣∣∣
t=0

= d

dt
f(γ(at+ tp))

∣∣∣∣
t=0

= α · d
dt
f(γ(t))

∣∣∣∣
t=tp

= α ·Vγ,p (46.1.12)

The proof for ⊕ is slightly more involved, but the calculation will be used heavily later. We choose
a chart (A,ϕ) where p ∈ A, keeping in mind that if we make reference to a specific property of this
chart that is not compatible with the chosen smooth atlas then the proof will be faulty. We define
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the curve:

σ : R→ X (46.1.13)
t 7→ ϕ−1((ϕ ◦ γ1)(t+ tp) + (ϕ ◦ γ2)(t+ t′p)− (ϕ ◦ γ)(tp)) (46.1.14)

where γ1(tp) = γ2(t′p) = p. We summarize the situation in the situation in the commutative dia-
grams below, :

R A R

Rd

σ

ϕ◦σ
ϕ

f

f◦ϕ−1

t σ(t) f(σ(t))

x(t)

σ

ϕ◦σ
ϕ

f

f◦ϕ−1

where we defined x(t) = (ϕ ◦ γ)(t) ∈ Rd. Firstly, note that σ(0) = ϕ−1(ϕ(p) + ϕ(p) − ϕ(p)) = p so
this curve does indeed contain p. Moreover:

Vσ,p(f) = (f ◦ σ)′(0) = ((f ◦ ϕ−1) ◦ (ϕ ◦ σ))′(0) (46.1.15)

Vσ,p(f) = d

dt
f(σ(t))

∣∣∣∣
t=0

= d

dt
(f ◦ ϕ−1)(ϕ(σ(t)))

∣∣∣∣
t=0

(46.1.16)

We recognize x(t) = (ϕ ◦ σ)(t) Note that (f ◦ ϕ−1) is a map from Rd to R so we must use the
multi-dimensional chain rule:

Vσ,p(f) = (ϕ ◦ σ)µ′(0) · (∂µ(f ◦ ϕ−1))(xp) (46.1.17)

Vσ,p(f) = d

dt
ϕµ(σ(t))

∣∣∣∣
t=0
· ∂

∂xµ
(f ◦ ϕ−1)(x)

∣∣∣∣
x=xp

(46.1.18)

We substitute (46.1.13) into the first term in the above:

(ϕ ◦ σ)µ′(0) = (ϕ ◦ γ1)µ′(tp) + (ϕ ◦ γ2)µ′(t′p) (46.1.19)
d

dt
ϕµ(σ(t))

∣∣∣∣
t=0

= d

dt
ϕµ(γ1(t))

∣∣∣∣
t=tp

+ d

dt
ϕµ(γ2(t))

∣∣∣∣
t=t′

p

(46.1.20)

so that:

Vσ,p(f) = (ϕ ◦ γ1)µ′(tp) · (∂µ(f ◦ ϕ−1))(xp) + (ϕ ◦ γ2)µ′(t′p) · (∂µ(f ◦ ϕ−1))(xp) (46.1.21)

Vσ,p(f) = d

dt
ϕµ(γ1(t))

∣∣∣∣
t=tp

· ∂

∂xµ
(f ◦ ϕ−1)(x)

∣∣∣∣
x=xp

+ d

dt
ϕµ(γ2(t))

∣∣∣∣
t=t′

p

· ∂

∂xµ
(f ◦ ϕ−1)(x)

∣∣∣∣
x=xp

(46.1.22)

Using the inverse chain rule this becomes:

Vσ,p(f) = (f ◦ γ)′(λ0) + (f ◦ γ′)′(λ1) = vγ,p(f) + vγ′,p(f) (46.1.23)

as desired. Note that we made no restriction on what chart to use, any chart would have worked
as well as long as it was in a smooth atlas. To conclude, we have proven that:
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Theorem (The tangent space is a vector space) The tangent space TpX is a vector
space when equipped with the operations:

⊕ : TpX × TpX → TpX (46.1.24)
(vγ,p ⊕ vγ′,p)(f) 7→ vγ,p(f) +R vγ′,p(f) (46.1.25)

and

� : R × TpX → TpX (46.1.26)
(α� vγ,p)(f) 7→ α ·R vγ,p(f), ∀α ∈ r (46.1.27)

Let (A,ϕ) ∈ AC∞ be a chart in a smooth atlas. Let us define the curve:

γ : R→ A (46.1.28)
t 7→ γ(t) (46.1.29)

such that γ(tp) = p ∈ A and let x(tp) = ϕ(γ(tp)) = xp. Then we have that by the same calculation
as before:

Vγ,p(f) = (f ◦ γ)′(tp) = ((f ◦ ϕ−1) ◦ (ϕ ◦ γ))′(tp) (46.1.30)
= (ϕ ◦ γ)µ′(tp) · (∂µ(f ◦ ϕ−1))(xp) (46.1.31)

= d

dt
ϕµ(γ(t))

∣∣∣∣
t=tp

· ∂

∂xµ
(f ◦ ϕ−1)(x)

∣∣∣∣
x=xp

(46.1.32)

We now define the partial derivative for f as the usual partial derivative of the chart representation
of f :

∂

∂xµ

∣∣∣∣
t=tp

f = ∂

∂xµ
(f ◦ γ)(t)

∣∣∣∣
t=tp

= ∂

∂xµ
(f ◦ ϕ−1)(x)

∣∣∣∣
x=xp

(46.1.33)

giving:

Vγ,p(f) = dxµ(t)
dt

∣∣∣∣
t=tp

· ∂

∂xµ

∣∣∣∣
t=tp

f (46.1.34)

We may thus define the components of the velocity vector:

Definition (Velocity components)
Let (A, x) ∈ A be a chart a smooth atlas. Let us define the curve:

γ : R→ A (46.1.35)
t 7→ γ(t) (46.1.36)

Then the velocity vector of γ at p is:

Vγ,p = dxµ(t)
dt

∣∣∣∣
t=tp

· ∂

∂xµ

∣∣∣∣
t=tp

(46.1.37)

where dxµ

dt

∣∣∣
t=tp

are the velocity components and ∂
∂xµ

∣∣∣
t=tp

are the basis elements of TpX

induced by the chart (A, x).
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Definition (Chart induced basis for tangent space)
Given a chart (A,ϕ) with p ∈ A in a smooth atlas then

{
∂f

∂xµ

∣∣
p

}
⊂ TpX is a basis of TpA.

Proof. We have seen that all velocity vectors Vγ,p may be written in this basis so Span
{

∂f
∂xµ

∣∣
p

}
=

TpA. To check linear independence we let f = ϕν :

V µ ∂

∂xµ

∣∣∣∣
t=tp

ϕν = 0 =⇒ V µ ∂

∂xµ
(ϕν ◦ γ)(t)

∣∣∣∣
t=tp

= 0 =⇒ V µ ∂x
ν

∂xµ
= 0 =⇒ V µδν

µ = V ν = 0

(46.1.38)

as desired. ■

46.2 Vectors and 1-forms
It is interesting to see how the tangent vector components transform under a change of chart. Con-
sider two overlapping charts (A,ϕ) and (Ã, φ) with p ∈ U ∩ Ũ . Let V ∈ TpM be a tangent vector
at p along some smooth curve γ, and which can therefore be expanded in the two chart induced
bases

{
∂

∂xµ

}
and

{
∂

∂x̃µ

} 1:

V = V µ ∂

∂xµ
= Ṽ ν ∂

∂x̃ν
(46.2.1)

We see that for f ∈ C∞(X):

∂

∂xµ
f = ∂µ(f ◦ ϕ−1)(x) (46.2.2)

= ∂µ((f ◦ ϕ̃−1) ◦ (ϕ̃ ◦ ϕ−1))(x) (46.2.3)
= (∂µ(ϕ̃ ◦ ϕ−1))ν(x) · ∂ν(f ◦ ϕ̃−1))(x̃) (46.2.4)
= (∂µ(ϕ̃ν ◦ ϕ−1))(x) · ∂ν(f ◦ ϕ̃−1))(x̃) (46.2.5)

= ∂x̃ν

∂xµ

∂

∂x̃ν
f (46.2.6)

Consequently:
Ṽ ν = ∂x̃ν

∂xµ
V µ (46.2.7)

so the tangent vector components V ν transforms contravariantly, they are contravariant vector
components.

Since the tangent space TpX is a vector space, we can consider its dual vector space.

Definition (Cotangent space)
Given the tangent space TpX for p ∈ x then its cotangent space is defined as T ∗

pX ≡
Hom(TpX,R).

For example, let f ∈ C∞(X) be a smooth function. We introduce the followingmap in the cotangent
1where x̃µ = (ϕ̃ ◦ γ)(t) and xµ = (ϕ ◦ γ)(t)
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space:

df |p : TpX → R (46.2.8)
V→ V(f) (46.2.9)

known as the gradient of f at p. This is a (0, 1)-tensor over TpX , a covector as defined earlier, also
known as a 1-form. Its components in the chart induced basis are:

(df |p)µ = df |p(eµ) = df |p
(

∂

∂xµ

∣∣∣∣
p

)
= ∂

∂xµ

∣∣∣∣
p

f (46.2.10)

giving the standard definition of gradient from vector calculus.

Theorem (Chart induced basis for cotangent space)
Let (A,φ) be a chart in the smooth atlas. Then {dφ1|p, dφ2|p, ..., dφd|p} is the dual basis of
T ∗

pX .

Proof. We have that:

dφµ|p(eν) = dφµ|p
(

∂

∂xν

∣∣∣∣
p

)
= ∂

∂xν

∣∣∣∣
p

φµ = ∂xµ

∂xν

∣∣∣∣
p

= δµ
ν (46.2.11)

so {dφ1|p, dφ2|p, ..., dφd|p} is indeed the dual basis. ■

Again, much like with tangent vectors we are interested in how the components of a 1-form trans-
form. We have that given ω ∈ T ∗

pX it can be written as:

ω = ωµdx
µ|p = ω̃νdx̃

ν |p (46.2.12)

Therefore:

dφµ|p(V) = V(φµ) = (φµ ◦ γ)′(tp) (46.2.13)
= ((φµ ◦ (φ̃−1)ν) ◦ (φ̃ν ◦ γ))′(tp) (46.2.14)
= (φ̃ν ◦ γ)′(tp) · (φµ ◦ (φ̃−1)ν)′(x̃ν

p) (46.2.15)
= V(φ̃ν) · ∂̃ν(φµ ◦ (φ̃−1)ν)(x̃ν

p) (46.2.16)

and since:
∂̃ν(φµ ◦ (φ̃−1)ν)(xν

p) = ∂

∂x̃ν
φµ ◦ (φ̃−1)ν

∣∣∣∣
x̃ν

p

= ∂φµ(p)
∂x̃ν

= ∂xµ

∂x̃ν
(46.2.17)

we get that:
dφµ|p(V) = ∂xµ

∂x̃ν
dx̃ν |p(V) (46.2.18)

and hence the covector components of ω transform as:

ω̃ν = ∂xµ

∂x̃ν
ωµ (46.2.19)

This transformation law is in sharp contrast to (46.2.7), the transforming matrices are inverses of
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each other:
Ṽ = JV, ω̃ = J−1ω (46.2.20)

where J is known as the Jacobian matrix.

Definition (Push-forward)
Let ϕ : X → Y be a smooth map between two smooth manifolds. Then we define the
push-forward ϕ∗ of ϕ at the point p ∈ X is the linear map:

ϕ∗ : TpX → Tϕ(p)Y (46.2.21)
V 7→ ϕ∗(V) (46.2.22)

where we define for any f ∈ C∞(X)

ϕ∗(V)(f) = V(f ◦ ϕ) (46.2.23)

We call ϕ∗ the derivative of ϕ.

Note that f ◦ ϕ ∈ C∞(X). Also note that the definition of ϕ∗(V)f is forced upon us since there are
no other linear maps from the two tangent spaces. Let’s apply this definition to the tangent vector

Vγ,p ∈ TpX of some curve γ at p ∈ X . Then:

ϕ∗(Vγ,p)(f) = Vγ,p(f ◦ ϕ) = ((f ◦ ϕ) ◦ γ)′(tp) = (f ◦ (ϕ ◦ γ))(tp) (46.2.24)

but the tangent vector to ϕ ◦ γ at ϕ(p) is:

Vϕ◦γ,ϕ(p)(f) = (f ◦ (ϕ ◦ γ))(tp) (46.2.25)

since (ϕ ◦ γ)(tp) = ϕ(p).

TpX TϕpY

X Y R

πTpX

ϕ∗

πTϕ(p)Y

ϕ

f◦ϕ

f
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Therefore, the push forward map maps a tangent vector at a point along some curve to the tangent
vector at the image of that point along the image of that curve:

ϕ∗(Vγ,p) = Vϕ◦γ,ϕ(p) (46.2.26)

Definition (Pull-back)
Let ϕ : X → Y be a smooth map between two smooth manifolds. Then we define the
pull-back ϕ∗ of ϕ at the point ϕ(p) ∈ Y is the linear map:

ϕ∗ : T ∗
pX ← T ∗

ϕ(p)Y (46.2.27)

ϕ∗(ω)←[ ω (46.2.28)

where we define for any ω ∈ T ∗
ϕ(p)X ,V ∈ TpX :

ϕ∗(ω)(V) = ω(ϕ∗(V)) (46.2.29)

Working in a local basis yµ for Y and ∂ν for X we find that

(ϕ∗)µ
ν = ϕ∗(dyµ)(∂ν) = dyµ(ϕ∗(∂ν)) = (ϕ∗)µ

ν (46.2.30)

so the components of the push-forwards and pull-backs are the same! These can be expressedmore
simply as:

dyµ(ϕ∗(∂ν)) = ϕ∗(∂ν)yµ = ∂

∂xν
(yµ ◦ ϕ) = ∂Xµ

∂xν
(46.2.31)

where we defined Xµ = yµ ◦ ϕ.

46.3 Interlude: Embeddings and immersions
The concept of an embedding/immersion is quite intuitive: wewant some smoothmanifold to “sit”
within some Rn. As we shall learn, there are two known ways a manifold can sit, one way gives an
immersion while the other gives an embedding.

Definition (Immersion)
Let ϕ : M → Rn be a smooth map. Then ϕ is an immersion ofM into Rn if ϕ∗ is injective at
any p ∈M .

Consider the map ϕ : S1 → R2 as shown below.

Even though ϕ is not injective, it is easy to see that ϕ∗ is injective so this is indeed an immer-
sion.

Definition (Embedding)
Let ϕ : M → Rn be an immersion. Then it is an embedding if ϕ(M) is homeomorphic toN .

We see that ϕ defined previously is not an embedding since ϕ(S1) is not a manifold and cannot
thus be homeomorphic.
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Theorem (Whitney embedding theorems)
Any smooth manifoldM can be:
(i) embedded in R2 dim M .
(ii) immersed in R2 dim M−1

There is a weaker form of Whitney’s theorem that is quite amusing:

Theorem (Immersion theorem)
Any smoothmanifoldM can be immersed inR2 dim M−a(dim M) where a(dimM) is the num-
ber of 1s appearing in the binary form of dimM .

46.4 The tangent bundle
We begin by introducing the concept of bundles, fibres and sections that will be fundamental in
defining tensor fields.

Definition (Bundle)
A bundle is a triple (X,Y, π) where X,Y are topological manifolds and π is a continuous
surjective map from X to Y .

Definition (Fibre bundle)
Let p ∈ Y and let (X,Y, π) be a bundle. Then preImπ(p) is the fibre at point p. Moreover, let
Z be another manifold. If for all p ∈ Y , preImπ(p) is homeomorphic to some manifoldM ,
then (X,Y, π) is a fibre bundle.

Definition (Section)
Let (X,Y, π) be a bundle. Then σ : Y → X is a section of (X,Y, π) if π ◦ σ = idM .

We see that the section σ maps p ∈ Y to some σ(p) ∈ preImπ(p) so that π maps it back to itself.
We can visualize bundles, fibres and sections as in Figure ??. Here we con-
sider the surjective map π : F → C1 mapping the cylindrical manifold F to
the ring manifold C1. The green line crossing p can be viewed as the fibre at p
since it is π’s preimage at that point. For the same reason the blue line is the
fibre at q. A section σ would then map p to a point on the green line.

A special type of bundle is the tangent bundle, defined as the disjoint union
of the tangent spaces at all points on a manifold.

Definition (Tangent bundle)
Let X be a smooth manifold. Then its tangent bundle TX is defined
as:

TX =
∐
p∈X

TpX (46.4.1)

− 436 −



46.5. TENSOR FIELDS

Similarly we may define the projective map of the tangent bundle as fol-
lows.

Definition (Bundle projection)
Let TM be the tangent bundle of some smooth manifoldX . Then the
bundle projection of the tangent bundle is

π : TX → X (46.4.2)
V 7→ p (46.4.3)

where p is the point in X such that V ∈ TpX .

Note that since the tangent spaces TpX are disjoint, there exists only one such
p. Note however that to claim that this indeed a bundle would require TX
to be itself a manifold. We now prove this.

We can make TX a smooth manifold by using the smooth atlasAX onX . Take some chart (U, ϕ) ∈
AX and consider (preImπ(U), η) where η is some chart map to R2 dim X .

Let V ∈ TX . Then we can define:

η(V) = (ϕ1π(V), ..., ϕdim Xπ(V), ...) (46.4.4)

where we are missing dimX coordinates that specify how “far” V is from U .
The basis of Tπ(ϕ)X (this tangent space con-
tains V) is {

∂

∂xµ

∣∣∣∣
π(x)

}
(46.4.5)

which can be used to expand V as:

V = V µ ∂

∂xµ

∣∣∣∣
π(x)

(46.4.6)

Wedefine themissing components asV µ:

η(V) = (ϕ1π(V), ..., ϕdim Xπ(V), V 1, ..., V dim X)
(46.4.7)

It is easy to verify that any two such charts areC∞-compatiblemaking the tangent bundle a smooth
manifold. Now that we know that the tangent bundle is a smooth manifold, we can provide a
rigorous definition for tensor fields (that is not simply “something that assigns a tensor at every
point on a manifold”)..

46.5 Tensor fields

Definition (Vector field)
Let X be a smooth manifold and let TX be its tangent bundle with bundle projection π.
Then a vector field is a smooth section of TX . We further define the set of all vector fields
Γ(TX).
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Intuitively, this means that a vector field smoothlymaps to each point p in themanifoldX a tangent
vector in its fibreV ∈ TpX . Note that had TX not been a smooth manifold wewould not have been
able to define the vector field as a smooth section.

We can equip Γ(TX) with two operations:

⊕ : Γ(TX)× Γ(TX)→ Γ(TX) (46.5.1)
(σ, τ) 7→ σ ⊕ τ (46.5.2)

where
(σ ⊕ τ)(p) = σ(p) + τ(p) (46.5.3)

and

� : C∞(X)× Γ(TX)→ Γ(TX) (46.5.4)
(G, σ) 7→ f � σ (46.5.5)

where
(f � σ)(p) = f(p)σ̇(p) (46.5.6)

It is easy to check that these two operations satisfy the vector space axioms.

Note that (C∞(X),+, ·) where · is the familiar scalar multiplication is a vector space over R. In
contrast, (C∞(X),+, )̇ is not a vector space but has the structure of a ring since if a function in
C∞(X) has a zero somewhere then it will not have a multiplicative inverse function. Therefore,
Γ(TX) satisfies the typical vector space axiomswhen equippedwith⊕ and� only that it is defined
over a ring rather than a field. Such spaces are known as ring modules, as we shall now see.

Definition (Ring)
A ring is a triplet (R,+, •) satisfying C+A+N+I+(C•)A•(N •)(I•)D where •-commutativity
only applies to commutative rings, •-neutrality only applies to unital element, and •-
invertibility only applies to division rings. Commutative, unital division rings are fields.

Consider once again (C∞(X),+, •). It is easy to see that it is a commutative, unital ring.

Definition (Ring module)
Let (M,⊕,�) defined over a ring R equipped with two operations:

⊕ : M ×M →M (46.5.7)
� : R×M →M (46.5.8)

satisfying the vector space axioms is an R-module (ring-module).

Therefore, (Γ(TX),⊕,�) is a C∞(X)-module.

Note that this definition implies that modules don’t necessarily have a basis (but division modules
do).

Consider for example the sphere S2 and let v ∈ Γ(TS2) be a vector field on it. There is an important
result in algebraic topology, known as the hairy ball theorem, that states that one cannot have a
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vector field on a sphere that is smooth and non-zero everywhere. This is a problem because it
means that one cannot produce a set of linearly independent vector fields on S2.

Generally the following result holds:

Theorem (Division ring basis)
Let D be a division ring and let V be a D-module. Then V has a basis.

Definition (R-module terminology)
A free module is a module over a ring that possesses a basis. A projective module is a
module Γ over a ring R such that there exists another R-module Q whose direct sum gives
a free module:

∃Q s.t. Γ⊕Q = F (46.5.9)

Theorem (Serre, Swan et al)
The set of all smooth functions of a vector fibre bundle over a smooth manifoldX is finitely
generated projective C∞(X)-module Γ(E).

Theorem (Homomorphism space is finitely generated)
Let P,Q be finitely generated (projective) modules over a commutative ring R. Then:

HomR(P,Q) = {φ : P → Q, φ is linear } (46.5.10)

equipped with ⊕ and � is a finitely generated (projective) module.

This result in particular shows that:

HomC∞(X)(Γ(TX), C∞(X)) = Γ(TX)∗ = Γ(T ∗X) (46.5.11)

is a module.

Definition (Tensor field)
An (r, s)-tensor field T on a smooth manifold X is a C∞(X)-multilinear map:

T : Γ(T ∗X)× ...× Γ(T ∗X)︸ ︷︷ ︸
r

×Γ(TX)× ...× Γ(TX)︸ ︷︷ ︸
s

→ C∞(X) (46.5.12)

and the space of all (r, s)-tensor fields is denoted by T r
s .

We can define the differential operator the same way for tensor fields:

df : T r
s → C∞(M) (46.5.13)
T 7→ T (ω1, ...,V1, ...) (46.5.14)
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47.1 Differentiable forms

Definition (Differentiable form)
Let X be a smooth manifold, then a differentiable n-form is a (0, n)-tensor field ω:

ω : Γ(TX)× ...× Γ(TX)︸ ︷︷ ︸
n

→ C∞(X) (47.1.1)

that is totally anti-symmetric:

ω(V1, ...,Vn) = sgn(π)ω(Vπ(1), ...,Vπ(n)), ∀π ∈ Sn,Vi ∈ Γ(TM) (47.1.2)

whereSn is the symmetric group of order n. We denote the set of all n-forms onX byΩn(X).

It is important to note that Ω0(X) = C∞(X) and Ω1(X) = Γ(T ∗X).

Definition (Wedge product)
The wedge product is defined as:

∧ : Ωn(X)× Ωm(X)→ Ωn+m(X) (47.1.3)
(ω1, ω2) 7→ ω1τω2 (47.1.4)

where:

(ω1 ∧ ω2)(V1, ...,Vn+m) = 1
n!

1
m!

∑
π∈Sn+m

sgn(π)(ω1 ⊗ ω2)(Vπ(1), ...,Vπ(n+m)) (47.1.5)

For example, if ω1, ω2 ∈ Ω1(X) are one forms then:

ω1 ∧ ω2 = ω1 ⊗ ω2 − ω2 ⊗ ω1 (47.1.6)

Theorem (Basis for Γn(X))
Let X be a smooth n-manifold with a chart (U,φ). Taking the wedge product of the chart
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induced covariant basis {dφµ}:

{dφµ1 ∧ dφµ2 ... ∧ dφµk : 1 ≤ µ1 < ... < µk ≤ n} (47.1.7)

gives an ordered basis for Ωk(X).

Proof. We begin by proving that this basis spans Ωn(X). Let ω ∈ Ωk(X) and define:

ωµ1...µn
= ω(eµ1 , ..., eµk

) (47.1.8)

where {eµ} is the chart-induced contravariant basis. We claim that

ω = ωµ1...µk
dφµ1 ∧ ... ∧ dφµk (47.1.9)

To see why this holds, note that since ω is multi-linear we just need to look at the action of the
candidate basis on (eν1 , ..., eνk

):

ωµ1...µk
(dφµ1 ∧ ... ∧ dφµk )(eν1 , ..., eνk

) (47.1.10)

Due to the duality of eνj and dφµi , the contributing terms will be delta functions δµi
νj
. It is helpful

to consider the k = 2 case:

ωαβ(dφα ∧ dφβ)(eµ, eν) = ωαβ(δα
µδ

β
ν − δα

ν δ
β
µ) = 1

2
(ωµν − ωνµ) = ωµν (47.1.11)

where the 1
2 comes because the sum is restricted to α < β. Note that these Kronecker-deltas act

independently of each other, that is given a (µ, ν) then only one of these products of δ will be non-
zero, yielding:

ω12(dφ1 ∧ dφ2)(e1, e2) = ω12 (47.1.12)
ω12(dφ1 ∧ dφ2)(e2, e1) = −ω12 = ω21 (47.1.13)

as desired. Hence more generally we have that:

(dφµ1 ∧ ... ∧ dφµk )(eν1 , ..., eνk
) =

∑
π∈Sk

sgn(π)(dφµ1 ⊗ ...⊗ dφµk )(eπ(ν1), ..., eπ(νk)) (47.1.14)

=
∑
π∈Sk

sgn(π)δµ1
π(ν1)...δ

µk

π(νk) (47.1.15)

Whenwe contract this with ωµ1...µk
, the sum over µ1...µk is restricted to 1 ≤ µ1 < µ2 < ... < µk−1 <

µk ≤ n, giving 1
k! many terms as the unrestricted sum1. Consequently

ωµ1...µk
(dφµ1 ∧ ... ∧ dφµk )(eν1 , ..., eνk

) = 1
k!
∑
π∈Sk

sgn(π)ωµ1...µk
δµ1

π(ν1)...δ
µk

π(νk) (47.1.16)

= 1
k!
∑
π∈Sk

sgn(π)ωπ(ν1)...π(νk) = ω(eν1 , ..., eνk
) (47.1.17)

1indeed if ωµ1...µk (dφµ1 ∧ ... ∧ dφµk ) appears in the restricted sum, then the unrestricted sum will contain
ωµ1...µk (dφµ1 ∧ ... ∧ dφµk ) plus all k! − 1 permutations of the indices. Since ω is anti-symmetric and so is the wedge
product, permuting indices gives no sign change so the unrestricted sum will indeed be k! times larger.
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where by anti-symmetry sgn(π)ωπ(ν1)...π(νk) = ω(eν1 , ..., eνk
). Thus every form ω ∈ Ωk(X) can be

expanded locally in the basis {dφµ1 ∧ ... ∧ dφµk}.

Linear independence immediately follows from the fact that if:

ωµ1...µk
(dφµ1 ∧ ... ∧ dφµk ) = 0 (47.1.18)

then ωµ1...µk
(dφµ1 ∧ ... ∧ dφµk )(eν1 , ..., eνk

) = ων1...νk
= 0 as desired. ■

Since we can define bases for differential forms we should be interested in their transformation
properties.

Theorem (Transformation of n-form)
LetM be a smooth n-manifold and let ω, τ be two differentiable 1-forms onM related by:

ωµ = Aµ
ντ

ν (47.1.19)

Then:
ωµ1 ∧ ... ∧ ωµn = (detA)τν1 ∧ ... ∧ τνn (47.1.20)

Proof. We have that:

ωµ1 ∧ ... ∧ ωµn = (Aµ1
ν1
τν1) ∧ ... ∧ (Aµn

νn
τνn) (47.1.21)

=
∑

σ∈Sn

Aµ1
σ(ν1)...A

µn

σ(νn)τ
σ(ν1) ∧ ... ∧ τσ(νn) (47.1.22)

We can now rearrange the τσnu1 so that the run from τν1 to τνn which of course comes with a
sgn(σ) factor:

ωµ1 ∧ ... ∧ ωµn =
∑

σ∈Sn

sgn(σ)Aµ1
σ(ν1)...A

µn

σ(νn)τ
ν1 ∧ ... ∧ τνn (47.1.23)

= (detA)τν1 ∧ ... ∧ τνn (47.1.24)

as desired. ■

An immediate consequence of this theorem is that:

dφµ1 ∧ ... ∧ dφµn = det
(
∂xµ

∂x̃ν

)
dφ̃ν1 ∧ ... ∧ dφ̃νn (47.1.25)

which will be a fundamental result in generalizing our notion of integration on manifolds. Of
course, this also implies that when a n-form ω is expanded in these two bases as 2:

ω = adφ1 ∧ ... ∧ dφn = ãdφ̃1 ∧ ... ∧ dφ̃n (47.1.26)
2note that there is only one way to order the differentials so that the superscripts are increasing
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the components transform according to

a′ = adet
(
∂xµ

∂x̃ν

)
(47.1.27)

It will also be useful to extend our notion of push-forward and pull-back to n-forms.

Definition (Pull-back)
Let ω ∈ Ωn(Y ) and let ϕ : X → Y be smooth. Then we define the pull-back of ω as:

Φ∗(ω)(V1, ...,Vn) = ω(Φ∗(V1), ...,Φ∗(Vn)) (47.1.28)

Theorem (Pull-back of wedge product)
The pull-back distributes over the wedge product:

Φ∗(ω1 ∧ ω2) = Φ∗(ω1) ∧ Φ∗(ω2) (47.1.29)

Proof. It is easy to verify that if ω1 is a p-form and ω2 is a q-form and n = p+ q then:

Φ∗(ω1 ∧ ω2)(V1, ...,Vn) = (ω1 ∧ ω2)(Φ∗(V1), ...,Φ∗(Vn)) (47.1.30)

= 1
n!

1
m!

∑
π∈Sn+m

sgn(π)(ω1 ⊗ ω2)(Φ∗(Vπ(1), ...,Φ∗(Vπ(n))) (47.1.31)

= 1
n!

1
m!

∑
π∈Sn+m

sgn(π)(Φ∗(ω1)⊗ Φ∗(ω2))(Vπ(1)), ...,Vπ(n)) (47.1.32)

= Φ∗(ω1) ∧ Φ∗(ω2) (47.1.33)

as desired. ■

It would be nice to have a space that is closed under the wedge product.

Define the following space:

Ω(X) =
dim X⊕

i=0
Ωi(X) (47.1.34)

Then (Ω(X),+, ·,∧) is known as the Grassman algebra on X , and:

∧ : Ω(X)× Ω(X)→ Ω(X) (47.1.35)

For example, let σ = ω1 + ω2 where ω1 ∈ Ω1(X) and ω2 ∈ Ω2(X), and let τ ∈ Ωn(X). Then:

τ ∧ σ = τ ∧ (ω1 + ω2) := τ ∧ ω1 + τ ∧ ω2 (47.1.36)

where since τ ∧ω1 ∈ Ωn+1(X) and τ ∧ω2 ∈ Ωn+3(X), the addition + of these forms must be in the
Grassman algebra Ω(X).

Let’s look at the commutativity of the wedge product:
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Proposition (Wedge commutativity)
Let ω1 ∈ Ωn(X) and ω2 ∈ Ωm(X) be two forms. Then:

ω1 ∧ ω2 = (−1)nmω2 ∧ ω1 (47.1.37)

Proof. We have that:

(ω1 ∧ ω2)(V1, ...,Vn+m) = 1
n!m!

∑
π∈Sn+m

sgn(π)(ω1 ⊗ ω2)(Vπ(1), ...,Vπ(n+m)) (47.1.38)

= (−1)n

n!m!
∑

π∈Sn+m

sgn(π)(ω1 ⊗ ω2)(Vπ(n+1), ...Vπ(n),Vπ(1), ...Vπ(n+m))

(47.1.39)
...

= (−1)nm

n!m!
∑

π∈Sn+m

sgn(π)(ω1 ⊗ ω2)(Vπ(n+1), ...,Vπ(n+m),Vπ(1), ...,Vπ(n))

(47.1.40)

= (−1)nm

n!
1
m!

∑
π∈Sn+m

sgn(π)(ω2 ⊗ ω1)(Vπ(1), ...,Vπ(n+m)) (47.1.41)

= (−1)nmω2 ∧ ω1 (47.1.42)

as desired. ■

47.2 The exterior derivative

Definition (Exterior derivative)
We define the exterior derivative:

d : Ωn(X)→ Ωn+1(X) (47.2.1)
ω 7→ dω (47.2.2)

where ∀Vµ ∈ Γ(TX):

(dω)(V1, ...,Vn+1) =
∑

i

(−1)i+1Vi(ω(V1, ...,��ZZVi, ...,Vn+1)) (47.2.3)

+
∑
i≤j

ω([Vi,Vj ],V1, ...,��ZZVi, ...,��@@Vj , ...,Vn+1) (47.2.4)

where��ZZVi means that the vector field Vi is omitted.

For example, we have that if n = 1 then the exterior derivative reads

dω(V,W) = V(ω(W))−W(ω(V))− ω([V,W]) (47.2.5)

Then we see that:
dω(V,W) = −dω(W,V) (47.2.6)
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by standard commutator rules. Moreover:

dω(V, fW) = V(ω(fW))− fW(ω(V))− ω(V(fW) + fWV) (47.2.7)
= fV(ω(W)) + V(f)ω(W)− fW(ω(V))− ω(V(f)W + fVW− fWV) (47.2.8)

The last term can be written as:
V(f)ω(W) + fω([V,W]) (47.2.9)

so that:

dω(V, fW) = fVω(W)− fW(ω(V))− fω([V,W]) (47.2.10)
= fdω(V,W) (47.2.11)

as desired.

Now let’s looka t how d acts on the wedge product.

Proposition (Exterior derivative of wedge product)
Let ω1 ∈ Ωn(X) and ω2 ∈ Ωm(X). Then:

d(ω1 ∧ ω2) = dω ∧ ω2 + (−1)nω1 ∧ dω2 (47.2.12)

Proof. ■

Theorem (Exterior derivative commutes with pull-back)
Let ϕ : X → Y be a smooth map between two manidolds. Then exterior derivative d com-
mutes with the pull-back Φ∗:

Φ∗(dω) = d(Φ∗(ω)), ∀ω ∈ T ∗Y (47.2.13)

where ω is an n-form on Y .

Proof. ■

Definition (Anti-symmetrisation bracket)
Let Aµ1...µn

be some object with n indices. Then we define:

A[µ1...µn] = 1
n!
∑

π∈Sn

sgn(π)Aπ(µ1)...π(µn) (47.2.14)

The same goes for superscripts.
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It follows from this definition is:

AµνB
[µν] = 1

n!
∑

π∈Sn

sgn(π)AµνB
π(µ1)π(µ2) (47.2.15)

= 1
n!
∑

π∈Sn

sgn(π)Aπ−1(µ)π−1(ν)B
µν (47.2.16)

= 1
n!
∑

π∈Sn

sgn(π)Aπ(µ)π(ν)B
µν (47.2.17)

= A[µν]B
µν (47.2.18)

It also follows from this definition that:

Definition (Exact and closed forms)
Let ω ∈ Ωn(X). Then ω is exact if ω ∈ Im(dn) and closed if ω ∈ ker(dn+1). We letBn denote
the set of exact n-forms on X and Zn denote the set of closed n-forms on X .

47.3 de Rham cohomology and Electromagnetism

Theorem (d2 = 0)
Given any n-form ω ∈ Ωn(M), then the n+ 2-form d2ω ≡ (d ◦ d)(ω) = 0 is closed.

Let ωinΩn(X), then given a chart (U, ϕ) with induced local basis {dϕµ}:

dω = (∂νωµ1,...,µn
)dϕν ∧ dϕµ1 ∧ ... ∧ dϕµn (47.3.1)

=⇒ d2ω = (∂α∂νωµ1,...,µn
)dϕαdϕν ∧ dϕµ1 ∧ ... ∧ dϕµn (47.3.2)

Note that the α, ν indices in the wedge product are anti-symmetric by definition. However, as long
as ωµ1,...,µn

∈ C2 then α, ν are symmetric since partial derivatives can be commuted. The contrac-
tion o symmetric and anti-symmetric indices gives zero so we find that d2ω = 0 as desired.

Let’s now look at the following sequence of maps:

Ωn−1(X) −→
dn

Ωn(X) −−−→
dn+1

Ωn+1(X) (47.3.3)

Since d2 = 0 it follows that Imdn ⊆ kerdn+1. In other words all exact forms are closed:

Bn ⊆ Zn (47.3.4)

However, it is not generally true that Bn is equivalent to Zn. One important case is when we are
working in euclidean topologies:

Theorem (Poincare lemma)
If X = Rm then Bn = Zn for n > 0.

Let F be the electromagnetic field strength. Then we know that

F = dA =⇒ dF = 0 (47.3.5)
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for some A ∈ Ω1(X). This reproduces the homogeneous Maxwell equations!

Definition (de Rham cohomology groups)
The n-th deRham cohomology group is the quotient vector space:

Hn(X) = Zn/Bn (47.3.6)
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48DG4 Connections and parallel trans-
port

48.1 Covariant derivatives
Recall that a vector field V ∈ Γ(TM) can be used to produce a directional derivative V(f) of a
smooth map f ∈ C∞(X). For notational simplicity we will define:

∇Vf ≡ V(f) (48.1.1)

One might wonder why we should have this cumbersome notation, especially sine df was already
defined so that df(V) = V(f). However, note that

X : C∞(X)→ C∞(X) (48.1.2)
df : Γ(TX)→ C∞(X) (48.1.3)

so V and df are different things. Moreover, ∇V, which as of now only works on smooth functions
((0, 0)-tensors), will soon be extended so as to act onC∞(X)-tensor fields, thus requiring a different
symbol.

A directional derivative should have a list of properties that we would like to be satisfied.

Definition (Connection)
A connection∇ on a smooth manifoldX is a map that maps a pair of a vector (field)V and
a (p, q) tensor field T to (p, q)-tensor (field) ∇VT , such that:
(i) Extension rule: ∇Vf = V(f), ∀f ∈ C∞(M)
(ii) Additivity 1 rule: ∇V(T + S) = ∇VT +∇VS, ∀T, S ∈ T p

q (M)
(iii) Additivity 2 rule: ∇fV+UT = f∇VT +∇UT

(iv) Leibniz rule: ∇V T (ω,W)︸ ︷︷ ︸
∈C∞(X)

= (∇VT )(ω,W)+T (∇Vω,W)+T (ω,∇VW) and analogously

for any (p, q) tensor field T .

How many such connections are there, is the definition above enough to fix just one connection?
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Let V,W be vector fields, then working in a local basis:

∇VW = ∇V µ∂µ
W ν∂ν (48.1.4)

= V µ

[(
∇∂µW

ν

)
∂ν +W ν∇∂µ∂

ν

]
(48.1.5)

= V µ ∂W
ν

∂xµ

∂

∂xν
+ V µW ν∇∂µ

(
∂

∂xν

)
(48.1.6)

Now the second term is not fixed since we do not know what the action of the connection is on a
vector. However, we note that the result of ∇∂µ

∂
∂xν will itself be a vector so it may be expanded

as:
∇∂µ

(
∂

∂xν

)
= Γα

νµ

∂

∂xα
⇐⇒ Γα

νµ = dφα

(
∇∂µ

∂

∂xν

)
(48.1.7)

where Γα
νµ are the connection coefficient functions, and can be recognized asChristoffel symbols.

Therefore:
(∇VW)α = V(Wα) + Γα

νµV
µW ν (48.1.8)

We are not done yet, we still have to see if given the connection coefficient functions, the action of
∇V on a 1-form is also fixed. By similar reasoning as before:

∇Vω = ∇V µ∂µ
ωνdφ

ν (48.1.9)

= V µ

[(
∇∂µ

ων

)
dφν + ων∇∂µ

dφν

]
(48.1.10)

= V µ ∂ων

∂xµ
dφν + V µων∇∂µ

(dφν) (48.1.11)

Note however that:

∇∂µ
(dφν(eα)) = ∇∂µ

(δν
α) = 0 (48.1.12)

and using the Leibnitz rule:

∇∂µ(dφν(eα)) = ∇∂µ(dφν)(eα) + dφν

(
∇∂µ(eα)

)
= 0 (48.1.13)

=⇒ ∇∂µ
(dφν)(eα) = −dφν

(
Γβ

αµ

∂

∂xβ

)
(48.1.14)

=⇒ ∇∂µ
(dφν)(eα) = −Γν

αµ ⇐⇒ ∇∂µ
(dφν) = −Γν

αµdφ
α (48.1.15)

Consequently:
(∇Vω)α = V(ωα)− Γν

αµV
µων (48.1.16)

Similarly we get that for a (1, 1)-tensor T , the covariant derivative acts as:

(∇VT )α
β = V(Tα

β ) + Γα
νµV

µT ν
β − Γν

βµV
µTα

ν (48.1.17)

This can be seen by applying the Leibnitz rule toT = T⊗τ , whereT ∈ Γ(TX) and τ ∈ Γ(T ∗X).

Definition (Divergence)
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Let V be a vector field on a manifold. The divergence of V is given by:

divV =
(
∇∂µV

)µ (48.1.18)

We have not checked the change of the components of Γ when we perform a chart transition. Let
(U,φ) and (Ũ , φ̃) be two smooth charts with U ∩ Ũ 6= ∅. Then, starting from Γ′ and transforming
all x̃ to x:

Γ̃α
νµ = dφ̃α

(
∇∂̃µ

∂

∂x̃ν

)
= ∂x̃α

∂xβ
dφβ

(
∇∂̃µxδ∂δ

∂xη

∂x̃ν

∂

∂xη

)
(48.1.19)

= ∂x̃α

∂xβ
dφβ

{
∂xδ

∂x̃µ

[
∇∂δ

(
∂xη

∂x̃ν

)
∂

∂xη
+ ∂xη

∂x̃ν
∇∂δ

(
∂

∂xη

)]}
(48.1.20)

= ∂x̃α

∂xβ

∂xδ

∂x̃µ

[
∂

∂xδ

(
∂xη

∂x̃ν

)
δβ

η + ∂xη

∂x̃ν
Γβ

ηδ

]
(48.1.21)

=⇒ Γ̃α
νµ = ∂x̃α

∂xβ

∂xδ

∂x̃µ

∂xη

∂x̃ν
Γβ

ηδ + ∂x̃α

∂xβ

∂

∂x̃µ

(
∂xβ

∂x̃ν

)
(48.1.22)

So we see that in general the connection coefficient functions do not transform as tensor compo-
nents. Note that the even if Γ is zero in some chart, it may not be zero in another chart.

Theorem (Symmetric part of Γ vanish)
Let p ∈ X be a point in a smooth connection. Then one can always construct a chart (U,φ)
containing p such that the symmetric part of the connection coefficient functions vanish at
that point Γα

(νµ) = 0. The corresponding coordinates are known as normal coordinates.

Proof. Let (U,φ) be some smooth chart with p ∈ V , so that Γ does not necessarily vanish. We
construct a new chart (Ũ , φ̃) with p ∈ Ũ with chart transition map:

(φ̃ ◦ φ−1)α(x1, ..., xd) = xµ − Γα
(νµ)(p)x

µxν (48.1.23)

where (x1, ..., xd) ∈ Rd and Γα
(νµ) is evaluated at the point p and is thus a constant. Then we see

that:

∂x̃β

∂xν
= ∂

∂xν
(φ̃β ◦ ϕ) = δµ

ν − Γβ
(νµ)(p)x

µ (48.1.24)

=⇒ ∂

∂xµ

∂x̃β

∂xν
= −Γβ

(νµ)(p) (48.1.25)

Consequently the new connection coefficient function at p takes the form:

Γ̃α
(νµ)(p) = 0 (48.1.26)

as desired. ■

48.2 Parallel transport
Suppose you are on an expedition in the North pole, with your nose pointing out of this page,
and start walking down until you reach the equator. You then move east along one fourth of the
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equator, and up back to the initial point, always keeping your nose pointing in the same direction
relative to your body. It is clear that your nose at the end will be pointing in a different direction to
when it started! This is an example of parallel transport, the movement of a vector fieldW along a
path γ on a smooth manifold so that it stays parallel to the connection ∇we impose on it.

Definition (Parallel transport) LetX be a smooth manifold with a connection∇ and let
W be a vector field onX . Then we say thatW is parallely transported along a smooth curve
γ on X if:

V µ∇µW = ∇VW = 0 (48.2.1)

Consider the three curves and vectors fields below:

In the first case the vector field is parallely transported along γ. In the second case the vector field
is just parallel to γ, but since its magnitude changes along it there is no parallel transports. Finally,
in the third case the curve is neither parallel nor parallely transported.

Definition (Autoparallel transport)
Let γ : R→ X be a smooth curve on a smooth manifoldX with tangent vector V. Then γ is
autoparallelly transported if:

∇VV = 0 (48.2.2)

Such curves γ are knows as geodesics.

Suppose we choose a chart (U, ϕ) ∈ AC∞ and consider the portion of γ in U . Working in the local
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chart-induced basis, we can write ∇µ ≡ ∇∂µ as long as we are working just in one chart:

∇VV = V µ∇µ(V ν∂ν) (48.2.3)

= V µ

(
(∇µV

ν) ∂

∂xν
+ V νΓσ

νµ

∂x

∂xσ

)
(48.2.4)

=
(
V µ ∂V

σ

∂xµ
+ V µV νΓσ

νµ

)
∂x

∂xσ
(48.2.5)

Recalling that if γ is parametrised by t then V µ = dxµ

dt , we see that V µ ∂V σ

∂xµ = d2xσ

dt2 , giving the
following, very important equation:

d2xσ

dt2
+ Γσ

µν

dxµ

dt

dxν

dt
= 0 (48.2.6)

known as theGeodesic equation. This is the condition for a curve γ with coordinates xµ in a given
chart to be autoparallelly transported.

For example, in Euclidean spaceR2 with standard topology, andwhere Γi
jl by definition, wewould

have that straight lines:
d2xσ

dt2
= 0 =⇒ xσ(t) = Aσt+Bσ (48.2.7)

are the geodesics.

Consider a universe with at least two particles interacting gravitationally. Here Newton’s first law
is completely useless since there is no particle such that the force acting upon it is zero. To salvage
the first law one could envisage gravity not as a force but a curvature of space-time. Then we
could have a particle with no force acting upon it (gravity is not a force anymore), and the path
that it takes would be the geodesics described by the geodesic equation which is mathematically
equivalent to the path given by the second law. This is qualitatively the same description given by
General relativity, as we shall see in the subsection on Newtonian space-time.

Definition (Torsion)
The torsion of a connection ∇ is:

T (ω,V,W) = ω
(
∇VW−∇WV− [V,W]

)
(48.2.8)

where
[V,W](f) = V(W(f))−W(V(f)) (48.2.9)

Proof. Wemust check that this is a tensor field. Linearity in the first argument is trivial, but for the
other two some care is needed. Indeed, given f ∈ C∞:

T (ω, fV,W) = ω
(
∇fVW−∇W(fV)− [fV,W]

)
(48.2.10)

= ω(f∇VW− (W(f))V− f∇WV− f [V,W] + (W(f))V (48.2.11)
= fω

(
∇VW−∇WV− [V,W]

)
= fT (ω,V,W) (48.2.12)
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where to go from the second to third step we used the property:

[fV,W](g) = fV(W(g))−W(fV(g)) (48.2.13)
= fV(W(g))−W(f)V(g)− fW(V(g)) (48.2.14)
= f [V,W](g)−W(f)V(g) (48.2.15)

Similarly we find that for additivity:

T (ω,V1 + V2,W) = ω
(
∇V1+V2W−∇W(V1 + V2)− [V1 + V2,W]

)
(48.2.16)

= ω(∇V1W +∇V2W−∇WV1 −∇WV2 − [V1,W]− [V2,W] (48.2.17)
= T (ω,V1,W) + T (ω,V2,W) (48.2.18)

as desired. Linearity in the second argument follows from the anti-linearity of the tensor field inV
and W. ■

Definition (Torsion-free manifold)
A manifold with connection ∇ is torsion free if T = 0.

Working in a chart, the condition for a manifold with connection to be torsion free is that:

Tα
µν = T (dxα, ∂µ, ∂ν) = dxµ(∇µ∂ν −∇ν∂µ) = Γα

νµ − Γα
µν = 0 =⇒ Γα

[µν] = 0 (48.2.19)

so theChristoffel symbolsmust have vanishing anti-symmetric components. Note that for a torsion-
free manifold we can always locally set the Christoffel symbols to zero since we can make both its
symmetric and anti-symmetric components equal to zero.

We can visualize torsion as the failure of parallelograms to
close. Indeed let us take two vectors fields X and Y in TxM .
It is clear that the points r and swill have coordinates

r : xµ + ϵXµ, s : xµ + ϵY µ (48.2.20)

where ϵ is infinitesimal. Suppose we parallelly transport X
along Y giving a new vector

X ′µ = Xµ − ϵΓρ
µνX

µY ν (48.2.21)

The corresponding point q then has coordinates

q : xµ + ϵ(Xµ + Y µ)− ϵ2Γρ
µνX

µY ν (48.2.22)

On the other hand the point t has coordinates

t : xµ + ϵ(Xµ + Y µ)− ϵ2Γρ
µνY

µXν (48.2.23)

In general, unless torsion vanishes we will find that q and t do not coincide, in other words the
parallelogram formed by parallely transporting two vectors does not necessarily close. It is clear
how for most physical applications we can safely take torsion to vanish as we do not want any
openings in our space-time manifold.
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48.3 Riemannian curvature

Definition (Riemann curvature)
The Riemannian curvature of a connection ∇ is the tensor field:

R(ω,U,V,W) = ω
(
∇V∇WU−∇W∇VU−∇[V,Y]U

)
(48.3.1)

Working in one chart:

Rα
σµν = dxα(∇µ∇ν∂σ −∇ν∇µ∂σ −∇∂µ∂ν∂σ +∇∂ν ∂µ∂σ) (48.3.2)

= dxα[∇µ(Γα
σν∂α)−∇ν(Γα

σµ∂α)−∇∂µ∂ν
∂σ +∇∂ν ∂µ

∂σ] (48.3.3)
= dxα[Γτ

σνΓγ
τµ∂γ − Γτ

σµΓγ
τν)∂γ

+ (∂µΓτ
σν)∂τ − (∂νΓτ

σµ)∂µ] (48.3.4)

=⇒ Rα
σµν = Γτ

σνΓα
τµ − Γτ

σµΓα
τν + ∂µΓα

σν − ∂νΓα
σµ (48.3.5)

Geometrically, the Riemann curvature tensor captures the failure of vector field U to be parallelly
transported to the same vector alongV orW on a smooth manifoldX . The more curved our mani-
fold is, the greater the discrepancies between the different parallel transports.
Indeed, consider the figure beside. We take two vector
fields X and Y along which we transport another vec-
tor field Z taking two different paths, p → q → r and
p → u → r on a torsion-free Riemannian manifold. We
can thus take xµ to be normal coordinates in which the
Christoffel symbols evaluated at p vanish. We perform
all approximations up to second order.

To go from p to q it is clear that:

(∇XZ)ρ = Xν dZ
µ

dxν
+ Γρ

µνZ
µXν = 0 (48.3.6)

Letting Xµ ∂
∂xµ = ∂

∂s then
d2Zρ

ds2 = −Xσ∂σ(Γρ
µνZ

µXν) (48.3.7)

We can now perform a Taylor expansion about p:

Zρ(q) = Zρ(p) + dZµ

ds

∣∣∣∣
p

δs+ 1
2
d2Zµ

ds2

∣∣∣∣
p

(δs)2 (48.3.8)

but it is clear that dZµ

ds

∣∣
p
must vanish so we find that:

Zρ(q)− Zρ(p) = −1
2

(XσZµXν∂σΓρ
µν)
∣∣
p
(δs)2 (48.3.9)

Now we go from q to r:

Zρ(r)− Zρ(q) = dZµ

ds

∣∣∣∣
q

δt+ 1
2
d2Zµ

ds2

∣∣∣∣
q

(δt)2 (48.3.10)

= −(Γρ
µνZ

µY ν)|qδt−
1
2

[Xσ∂σ(Γρ
µνZ

µY ν)]
∣∣
q
(δt)2 (48.3.11)
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but recall that expanding (Γρ
µνZ

µY ν)|q to first order (since we already have a δt)

(Γρ
µνZ

µY ν)|q =�������:0
(Γρ

µνZ
µY ν)|p +Xσ∂σ(Γρ

µνZ
µY ν)

∣∣
p
δs (48.3.12)

= XσZµY ν∂σΓρ
µν |pδs (48.3.13)

hence

Zρ(r)− Zρ(q) = −XσZµY ν∂σΓρ
µν |pδsδt−

1
2

[Y σ∂σ(Γρ
µνZ

µY ν)]
∣∣
q
(δt)2 (48.3.14)

Similarly we may expand [Xσ∂σ(Γρ
µνZ

µY ν)]
∣∣
q
, this time to just zeroth order since it comes with

(δt)2. We can thus evaluate this term at p and simplify:

Zρ(r)− Zρ(q) = −Y σZµY ν∂σΓρ
µν |pδsδt−

1
2

(Y σZµY ν∂σΓρ
µν)
∣∣
p
(δt)2 (48.3.15)

Thus, we find that:

(Zρ(r)− Zρ(p))pqr = −1
2
∂σΓρ

µν(XσXν(δs)2 + Y σY ν(δt)2 + 2XσY νδsδt)Zµ|p (48.3.16)

By simply replacing X↔ Y and δs↔ δt we find that

(Zρ(r)− Zρ(p))pur = −1
2
∂σΓρ

µν(Y σY ν(δt)2 +XσXν(δs)2 + 2Y σXνδsδt)Zµ|p (48.3.17)

We can now compute the difference between Zρ(r) transported along γ′ : pqr and along γ :
pur

Zρ
(γ′) − Z

ρ
(γ)

δsδt
= ∂σΓρ

µν(Y σXν −XσY ν)Zµ|p (48.3.18)

= ZµXνY σ(∂σΓρ
µν − ∂νΓρ

µσ)|p (48.3.19)

=⇒
Zρ

(γ′) − Z
ρ
(γ)

δsδt
= (ZµY σXνRρ

µσν)|p (48.3.20)

where we used the fact that at p, the Riemann curvature tensor reads Rρ
µσν = ∂σΓρ

µν − ∂νΓρ
µσ in

normal coordinates. Note also that this result is not an artifact of working within a special chart.
Indeed our end result is a relation between tensor so there is no coordinate dependence.

So when we parallelly transport a vector field along two different paths their final differences is
encoded in the Riemann curvature tensor.

− 455 −
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49.1 The metric tensor
We are missing a notion of length and angles in our formulation of differential geometry, which we
can establish by imposing a metric on our manifold.

Definition (Metric tensor)
Let X be a smooth manifold, then a metric g on X is a (0, 2)-tensor field such that:
(i) symmetry: g(V,W) = g(W,V)
(ii) non-degeneracy: define themap ♯ : Γ(TX)→ Γ(T ∗X) such that (♯(V))(W) = g(V,W).

Then ♭ is a C∞-isomorphism.

We not discuss a bit of convention. we can denote the components of the ♯-map acting on V as
simply:

(♯(V))µ ≡ Vµ = gµνV
ν (49.1.1)

where the last equality was established by definition.

Definition (Inverse metric)
The symmetric (2, 0)-tensor field g−1 related to the metric tensor field g is defined by:

g−1 : Γ(T ∗X)× Γ(T ∗X)→ C∞(X) (49.1.2)
(ω, τ) 7→ ω(♯−1(τ)) (49.1.3)

This is not really the inverse of g since the domains and images don’t match up, but can be naively
viewed as such when looking at it purely as a matrix. Indeed we have that

♯(∂ν) = gµνdx
µ =⇒ ♯−1(gµνdx

µ) = ∂ν (49.1.4)

and hence

(g−1)µνgνσ = dxµ(♯−1(dxν))gνσ = dxµ(♯−1(gνσdx
ν)) = dxµ(∂σ) = δµ

σ (49.1.5)

Hence, since ♯ is an isomorphism it is invertible we may write:

(♯−1(ω)) ≡ ωµ = ων♯
−1((g−1)νµgµσdx

σ) = (g−1)µνων∂µ (49.1.6)
=⇒ ωµ = (g−1)µνων (49.1.7)
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For simplicity we will often write g−1)µν ≡ gµν since the indices being up already indicate that
we are taking components of g−1 and not g. Hence we have found that we can raise and lower the
operators of covectors and vectors using the metric:

Vµ = gµνV
ν , ωµ = gµνων (49.1.8)

We claim that a metric tensor can always be reduced to a diagonal formwhere the entries are either
+1,−1, 0. If this diagonal form of the metric contains p 1’s and q -1’s then we say that the metric
has (p, q) signature.

Definition (Metric types)
A metric is said to be:
(i) Riemannian if the signature is (+ + ...+).
(ii) pseudo-Riemannian otherwise, with the special case of a Lorentzian metric if the

signature is (+− ...−)
A manifold equipped with a Riemannian metric is a Riemannian manifold.

Definition (Curve length)
LetX be a Riemannian manifold with metric g. Then the speed of a smooth curve γ(0, 1) 7→
X parametrised by t at p = (ϕ ◦ γ)(tp) ∈ X is given by

s(tp) =
√
g(Vγ,p,Vγ,p) (49.1.9)

The length of γ is then given by:

L[γ] =
∫ 1

0
dt s(t) =

∫ 1

0
dt
√
g(Vγ ,Vγ) (49.1.10)

Of course, the length of a curve should not depend on the way it is parametrised. This is indeed
the case:

Theorem (Curve reparametrisation)
Let γ : (0, 1) → X be a curve and let σ : (0, 1) → (0, 1) be a smooth, increasing bijection.
Then:

L[γ] = L[γ ◦ σ] (49.1.11)

Proof. We have that:

Vγ◦σ,tp = d

dt
f(γ(σ(t)))

∣∣∣∣
tp

= dσ(t)
dt

d

dσ(t)
f(γ(σ(t)))

∣∣∣∣
tp

= dσ(t)
dt

d

dt
f(γ(t))

∣∣∣∣
σ(tp)

(49.1.12)

= dσ

dt
Vγ,σ(tp) (49.1.13)
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This then gives

L[γ ◦ σ] =
∫ 1

0
dt
√
g(Vγ◦σ,t,Vγ◦σ,t) (49.1.14)

=
∫ 1

0
dt
√
g(Vγ,σ(t),Vγ,σ(t)) (49.1.15)

=
∫ 1

0
dt
dσ(t)
dt

√
g(Vγ,σ(t),Vγ,σ(t)) (49.1.16)

We now use change variables s = σ(t) =⇒ ds = dσ
dt dt. The bounds of integration remain the same

since σ is bijective and increasing, implying that σ(0) = 0, σ(1) = 1. Thus:

L[γ ◦ σ] =
∫ 1

0
ds
√
g(Vγ,s,Vγ,s) = L[γ] (49.1.17)

as desired. ■

In the context of metric manifolds, we should define geodesics as curves that have the shortest
possible length defined by the metric.

Definition (Geodesic)
A curve γ is a geodesic on a Riemannian manifold if it is a stationary curve of L.

We would of course like this geodesic to be the same geodesic defined by autoparallel transports,
thus requiring the connection on a manifold to be determined by the metric we impose on it. Of
course we can express the minimum length principle of geodesics using the Euler-Lagrange equa-
tion:

∂L
∂xµ(t)

= d

dt

∂L
∂ẋµ(t)

(49.1.18)

using the Lagrangian:

L : TX → R (49.1.19)

V 7→
√
g(V,V) (49.1.20)

so that L(xµ, ẋµ) =
√
gµν ẋµẋν . Letting

√
g(V,V) = g we find that

∂L
∂xα

= 1
2g
∂αgµν(x)ẋµẋν (49.1.21)

Also:
∂L
∂ẋα

= 1
2g

2gαµ(x)ẋµ = 1
g
gαµ(x)ẋµ (49.1.22)

so that

d

dt

∂L
∂ẋα

= d

dt

(
1
g

)
gαµ(x)ẋµ + 1

g

(
gαµ(x)ẍµ + ẋν ∂

∂xν
(gαµ(x))ẋµ

)
(49.1.23)

Now recall that we can re-parametrise our curve without affecting the length functional. Thus we
can choose a parametrisation such that g(V,V) = cnst, that is such that the speed of the curve is
constant (note that the metric can never give zero so this can always be done). The first term then

− 458 −



49.2. LIE DERIVATIVES AND SYMMETRY

vanishes, and hence:
gαµẍ

µ + ∂ν(gαµ)ẋµẋν − 1
2
∂αgµν ẋ

µẋν = 0 (49.1.24)

We can now use the inverse matrix to raise the α index, and use gαβgβρ = δα
ρ :

ẍσ + gασ

(
∂νgαµ −

1
2
∂αgµν

)
ẋµẋν = 0 (49.1.25)

Since the i, j indices are symmetric, wemay double the term in parenthesis bywriting its copywith
i, j exchanged, and hence write that:

d2xσ

dt2
+ 1

2
gασ

(
∂νgαµ + ∂µgαν − ∂αgµν

)
dxµ

dt

dxν

dt
= 0 (49.1.26)

Now suppose we wish to establish a connection on our Riemannian manifold, such that the au-
toparallel geodesics are exactly the geodesics described above. Comparing (48.2.6) with (49.1.26)
it follows that the Christoffel symbols must be defined so that:

Γσ
µν = 1

2
gασ

(
∂νgαµ + ∂µgαν − ∂αgµν

)
(49.1.27)

The connection with these Christoffel symbols is known as the Levi-Civita connection. There are
several useful curvatures that one may define with the Levi-Civita connection.

Definition (Important curvatures)
On a Riemannian manifold with the Levi-Civita connection, the
(i) Riemann Christoffel curvature is defined as

Rρσµν = gραR
α

σµν (49.1.28)

(ii) Ricci curvature is defined as:
Rµν = Rσ

µσν (49.1.29)

(iii) Scalar curvature:
R = gµνRµν (49.1.30)

(iv) Einstein curvature:
Gµν = Rµν −

1
2
gµνR (49.1.31)

49.2 Lie derivatives and symmetry
We saw how we could push forward vectors between tangent spaces, and pull back 1-forms be-
tween dual tangent spaces, but having seen metrics it is reasonable to wonder whether the same
can be done with a metric tensor.

If we start with a metric manifold N and embed a smaller manifoldM in it, then we can define a
metric onM by pushing forward vectors onM using the embedding and use the metric for N on
them. This defines the so-called induced metric.
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Definition (Induced metric)
Suppose we have a metric g on a manifold N , and suppose ϕ is an embedding (injective
map) of a manifoldM into N . We define the induced metric gM onM as:

gM (V,W) = g(ϕ∗(V), ϕ∗(W)) (49.2.1)

or alternatively

(gM )µν = gαβ
∂Xα

∂xµ

∂Xβ

∂xν
(49.2.2)

where recall that Xα = yα ◦ ϕ.

Definition (Integral curve)
LetM be a smoothmanifold and letW be a vector field onM . A curve γ is an integral curve
of W if the value of the vector field on the curve coincides everywhere with the tangent
vectors V along the curve:

Vγ,γ(t) = Wγ(t) (49.2.3)

Furthermore, W is complete if all its integral curves have a domain that can be extended to
R.

It would also be nice if given some complete vector field, we could create a family of integral curves
passing through all the points on the manifold. This would generate a flow of the vector field, with
every point flowing along it by some distance t.

Definition (Vector field flow)
The flow of a complete vector field W onM is:

hW : R ×M →M (49.2.4)
(t, p) 7→ γp(t) (49.2.5)

where γp : R → M is an integral curve of W traversing p at t = 0. This flow is also a one
parameter group of diffeomorphisms.

We can fix t in the flow map to get hWt . Its action is to take every point p on the manifold and map
it to the point γp(t) on the integral curve passing through it at t = 0, thus shifting it a parameter
distance t.

The differential equation that the coordinates yµ(t) of an integral curve must satisfy is thus

dyµ

dt
= Xµ, yµ(0) = xµ (49.2.6)

where x0
µ are the coordinates of p. For infinitesimal flows then we see that to leading order in

t

yµ(hWt ) = xµ + tWµ (49.2.7)

Theorem (Vector fields form Lie algebra)
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LetΓ(TM)denote the set of all vector fields on amanifoldM , and let [·, ·] be the commutator:

[V,W]f = V(W(f))−W(V(f)) (49.2.8)

which satisfies the following properties:
(i) [V,W] = −[W,V]
(ii) [λV + U,W] = λ[V,W] + [U,W]
(iii) [U, [V,W]] + [W, [U,V]] + [V, [W,U]] = 0
Then (Γ(TM), [·, ·]) is a Lie algebra.

Proof. We prove Jacobi’s identity (iii) only as the first two are trivial. ■

Definition (Lie subalgebra)
Let {Vi}i=0,1,... be vector fields on X such that:

[Vi,Vj ] = Ck
ijVk (49.2.9)

where Ck
ij are known as structure constants of the Lie subalgebra (span

R
{Vi}, [·, ·].

Definition (Symmetry)
ALie subalgebraL on a smoothmetric manifold is a symmetry of ametric g if for any vector
fields V in L a then:

((hVt )∗g)(X,Y) ≡ g((hVt )∗(X), (hVt )∗(Y)) = g(X,Y), ∀X,Y ∈ Γ(TM), ∀t (49.2.10)
awhich are guaranteed to be complete by a very nice theorem assuming they are compactly supported

This definition makes intuitively sense, it says that if L is a symmetry, then moving the metric
(backwards) along the flows generated by any of its vector fields has no effect at all. We can take
the metric of two vector fields at some point, move them along the flows generated by a vector field
in the symmetry, and get the same result back.

Despite the intuitiveness behind this definition it is often very difficult to check for symmetries by
looking at the pull-back of the metric, it is a very tedious task. A much faster approach involves
defining the Lie derivative.

Definition (Lie derivative)
We define the Lie derivative of a tensor T along some vector field V in a Lie sub-algebra L
as

LVT ≡ lim
t→0

((hV−t)∗T )p − Tp

t
(49.2.11)

so that if the Lie subalgebra L is a symmetry then LVg = 0, ∀V ∈ L.

This definition is quite close to how we define normal derivatives. Indeed a naive guess would be
to simply write

LVT = lim
t→∞

Tp+t − Tp

t
(49.2.12)

− 461 −



49.2. LIE DERIVATIVES AND SYMMETRY

but there are two problems with this definition. Firstly, the notion of adding points on a manifold
makes no sense, p + t is not a thing. We need an alternative notion that is physically equivalent,
that of flowing the point p along a V by an amount t, which is precisely what the flow map does.

Secondly, the tensorsTht(p) andTp donot belong to the same tensor space so it doesn’tmake sense to
simply take their difference (this is like taking the difference of tangent vectors at different points).
We can resolve this problem by pushing forward Tht(p) to the tangent space at p, so that the differ-
ence may be evaluated. The end result is the definition we provided previously

We can define special coordinates to write the Lie derivative in a nice way. Suppose that we have
generated the integral curves of some vector field V in a n-manifold. Let p ∈ M and let us create
a n− 1 dimensional hypersurface Σ ofM that is not tangent to the integral curve through p. Then
we can let the parametrisation variable t be the nth coordinate together with the xi coordinates of
Σ.

It follows that the push-forward of the flow h∗
t maps a point pwith coordinates (tp, xi

p) to the point
q with coordinates (tp + t, xi

p). Therefore

((ht)∗)µ
ν = ∂yµ

∂xnu
= δµ

ν (49.2.13)

implying that

((hV−t)∗T
µ1...µn

ν1...νn
)p = ∂yµ1

∂xσ1
...
∂yµn

∂xσn

∂xρ1

∂yν1
...
∂xρn

∂yνn
(Tσ1...σn

ρ1...ρn
)ϕ(p) (49.2.14)

= (Tµ1...µn
ν1...νn

)(tp + t, xi) (49.2.15)

Hence we get that

(LVT )µ1...µn
ν1...νn

= ∂

∂t
Tµ1...µn

ν1...νn

∣∣∣∣
(tp,xi)

(49.2.16)

so the Lie derivative in this particular coordinate frame is just the partial derivative of the tensor
components.

It can be shown that this limit definition of the Lie derivative is equivalent to the following algebraic
definition:

Definition (Lie derivative)
The Lie derivative L on a smooth manifold maps a vector field and a (p, q) tensor field to
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another (p, q) tensor field such that:
(i) LVf = Vf
(ii) LVW = [V,W]
(iii) LV(T + S) = LVT + LVS

(iv) LVT (ω,W) = (LVT )(ω,W) + T (LVω,W) + T (ω,LVW) and similarly for any other
tensor T

(v) LV+WT = LVT + LWT

It may seem like the Lie derivative is pretty much like a covariant derivative, but with even less
structure. Indeed the Lie derivative has no C∞ linearity which can be verified by looking at (ii)
and evaluating [fV,W] 6= f [V,W]. We could not have used this Lie derivative in place of the
covariant derivative for exactly this reason, we need the linearity to differentiate tensors and talk
about parallel transport, geodesics etc...

Theorem (Lie derivative components)
In a local basis, we have that:

(LVW)µ = V ν ∂W
µ

∂xν
− ∂V µ

∂xν
W ν (49.2.17)

Proof. The proof is immediate from the definition of the commutator

(LVW)f = V(W(f))−W(V(f)) = V ν ∂

∂xν

(
Wµ ∂

∂xµ
f

)
−Wµ ∂

∂xµ

(
V ν ∂

∂xν
f

)
(49.2.18)

=
(
V ν ∂W

µ

∂xν
− ∂V µ

∂xν
W ν

)
∂

∂xµ
f (49.2.19)

as desired. ■

Compare this to the definition of the covariant derivative:

(∇VW)µ = V µ ∂W
ν

∂xµ
− Γµ

ρνV
νW ρ (49.2.20)

then we see that while ∇ does not require information about the vector fields outside of the point
it is evaluated at, L does due to the partial derivatives.

We can use the Leibniz rule to write:

(LVT )µ
ν = V α ∂

∂xα
Tµ

ν + ∂V α

∂xν
Tµ

α −
∂V µ

∂xα
Tα

ν (49.2.21)

There is a second, more intuitive definition of the Lie derivative which is equivalent to the first, and
can be used in treating symmetries.
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50DG6 Integration on manifolds

Let us take a smooth manifold M and consider a function f : M → R. Working in a chart (U, ϕ)
we integrate f ◦ϕ in ϕ(U), we want to transition to another chart (U,φ) and integrate f ◦ϕ in φ(U).
This situation is summarized in the following commutative diagram.

φ(U)

U R

ϕ(U)

fφ

f

ϕ

φ

φ◦ϕ−1

fϕ

where we defined fϕ = f ◦ ϕ−1 and fφ = f ◦ φ−1. We can integrate in Rd and use the typical rule
of change of variables to find:∫

φ(U)
dnx̃fφ(x̃) =

∫
ϕ(U)

dnx
∣∣ det

(
∂a(φ ◦ ϕ−1)b

)
(x)
∣∣(fφ ◦ (φ ◦ ϕ−1))(x) (50.0.1)

=
∫

ϕ(U)
dnx

∣∣∣∣ det
(
∂yb

∂xa

)
(ϕ−1(x))

∣∣∣∣fϕ(x) (50.0.2)

6=
∫

ϕ(U)
dnxfϕ(x) (50.0.3)

so if we want to define integration so that it is not hart-dependent then we must insert a factor
that takes care of the Jacobian. One object which we know transforms inversely to the Jacobian are
differential forms. Let for example α be a differential form which we expand in some local basis
as:

α = a(x1, ..., xn)dφ1 ∧ ... ∧ dφn (50.0.4)

Then if we define ∫
U

α =
∫

φ(U)
a(x1, ..., xn)dφ1...dφn (50.0.5)
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we find that working in some other chart (U, φ̃):∫
U

α =
∫

φ̃(U)
ã(x̃1, ..., x̃n)dφ̃1...dφ̃n (50.0.6)

=
∫

φ(U)
det
(
∂xµ

∂x̃ν

)
a(x1, ..., xn) det

(
∂x̃µ

∂xν

)
dφ1...dφn (50.0.7)

=
∫

φ(U)
a(x1, ..., xn)dφ1...dφn (50.0.8)

as desired. It is therefore clear that we can use special differential forms, known as volume forms,
to clear up the mess from the Jacobians.

Definition (Volume form)
Consider a smooth, n-dimensional manifoldM . Then a (0, n)-tensor field Ω such that:
(a) Ω does not vanish anywhere
(b) Ω is totally antisymmetric

is known as a volume form.

Definition (Metric volume form)
On a metric manifold we can always construct a metric volume form in a chart (U, ϕ) from
the metric g:

Ωϕ =
√

det
(
gϕ

µν

)
dϕ1 ∧ ... ∧ dϕn (50.0.9)

Proof. Our definition is seemingly chart-dependent so we must make sure that transformation un-
der chart transitions are well-defined. Suppose we have two charts (U, ϕ) and (U,φ) with local
bases x and x̃ respectively. We then have that:

Ωφ =
√

det(gφ
µν)dφ1 ∧ ... ∧ dφn (50.0.10)

=

√
det
(
gϕ

αβ

)
det
(
∂xα

∂x̃µ

∂xβ

∂x̃ν

)
det
(
∂x̃

∂x

)
dϕ1 ∧ ... ∧ dϕn (50.0.11)

=
√

det
(
gϕ

αβ

)∣∣∣∣ det
(
∂x

∂x̃

)∣∣∣∣ det
(
∂x̃

∂x

)
dϕ1 ∧ ... ∧ dϕn (50.0.12)

=
√

det
(
gϕ

αβ

)
sgn
(

det
(
∂x

∂x̃

))
dϕ1 ∧ ... ∧ dϕn (50.0.13)

so this is only equal to Ωϕ if the Jacobian is positive, that is we must impose

sgn
(

det
(
∂x

∂x̃

))
= 1 (50.0.14)

In this case thenwe do indeed find thatΩϕ = Ωφ sowemay simplywrite the volume form asΩ. ■

Definition (Integration on a metric manifold)
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Let f be a function on a chart domain U . Then:∫
U

f ≡
∫

ϕ(U)
dnx

√
det(gµν)fϕ(x) (50.0.15)
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Complex analysis
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51CA1 Complex numbers

51.1 What are complex numbers

Definition (Complex numbers and functions)
Let x, y ∈ R and let us denote by i the quantity such that i2 = −1. Thenwe say that z = x+iy
is a complex number expressed in Cartesian form, with Re z = x representing the real part
of z, and Im z = y representing the imaginary part of z. The set of all complex numbers is
C and has the structure of a field with the operations:

+ : C× C→ C (51.1.1)
(z1, z2) 7→ z1 + z2 (51.1.2)

and

· : C× C→ C (51.1.3)
(z1, z2) 7→ z1 · z2 (51.1.4)

where if z1 = x1 + iy1 and z2 = x2 + iy2 then:

z1 + z2 = (x1 + x2) + i(y1 + y2) (51.1.5)
z1 · z2 = x1x2 − y1y2 + i(x1y2 + x2y1) (51.1.6)

Definition (Complex conjugate)
Let z = x+ iy ∈ C. Then its complex conjugate is defined as z = x− iy.

There are several useful properties that come with the complex conjugate:

Proposition (Complex conjugate properties)
Let z1, z2 ∈ C, then:
(i) z1 + z1 = 2 Re z1
(ii) z1 − z1 = 2i Im z1
(iii) (z1) = z1
(iv) z1 ± z2 = z1 ± z2
(v) z1 · z2 = z1 · z2
(vi)

(
z1
z2

)
= z1

z2
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Sice the arithmetic of real numbers applies equally well to complex numbers, it is not so surprising
that the Binomial theorem holds in C.

Theorem (Complex binomial theorem)
Let z1, z2 ∈ C and n ∈ N, then:

(z1 + z2)n =
n∑

k=0

(
n

k

)
(z1)n−kzk

2 (51.1.7)

Proof. Identical to the R counterpart. ■

Similarly, the following result from real analysis still holds:

Theorem (Geometric series)
Let z1, z2 ∈ C and n ∈ N, then:

zn
1 − zn

2 = (z1 − z2)(zn−1
1 + zn−2

1 z2 + ...+ zn−1
2 ) (51.1.8)

Due to the isomorphismbetweenC andR2, we can represent complex numbers in a two-dimensional
plane, known as the complex plane, with the x-axis replaced by the real axis, and the y-axis re-
placed by the imaginary axis. Recall also that in real analysis, the modulus of a real number gave
the distance between the origin and this point. Similarly, we may define the complex counterpart
as follows

Definition (Complex modulus)
Let z = x+ iy ∈ C be a complex number. Then the complex modulus of z is defined as:

|z| =
√
x2 + y2 (51.1.9)

We list some important properties of the modulus.

Proposition (Complex modulus properties)
Let z ∈ C, then:
(i) |z| ≥ 0, with equality only iff z = 0
(ii) |z̄| = |z| and | − z| = |z|
(iii) |z|2 = zz̄

(iv) |z1z2| = |z1||z2|
(v)

∣∣ z1
z2

∣∣ = |z1|
|z2|

Note that the modulus of a complex number is not enough to fully specify it (unless it is zero).
Indeed the set of all numbers in Cwith the samemodulus r form a circle of radius r. It follows that
the second piece of information needed to specify a complex number is the angle it makes with the
real axis, known as the argument.

Definition (Argument)
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Let z = x+ iy ∈ C. Then we define its argument θ ∈ R so that:

sin θ = y

r
, cos θ = x

r
(51.1.10)

where r = |z|.

Recall that by convention, positive angles are measured anti-clockwise. Also, note that a given
number there has an infinite number of arguments. Indeed if θ is an argument then so is θ + 2kπ
for any k ∈ Z.

Definition (Principal argument)
The argument θ of z ∈ C satisfying −π < z ≤ π is known as the principal argument arg z.

Since the modulus and argument of z are enough to fully specify it, we may define a new form
other than the Cartesian form in which complex numbers may be expressed.

Definition (Polar form)
Let z be a complex number with |z| = r, arg z = θ. Then z may be expressed in the form

z = r(cos θ + i sin θ) = reiθ (51.1.11)

known as its polar form.

This polar form allows us to express the product/quotient of two complex numbers with the same
easewe express the sum/difference of two complex numbers in cartesian form. Let z1 = r1e

iθ1 , z2 =
r2e

iθ2 , then

z1z2 = r1r2e
i(θ1+θ2) = r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)) (51.1.12)

z1

z2
= r1

r2
ei(θ1−θ2) = r1

r2
(cos(θ1 − θ2) + i sin(θ1 − θ2)) (51.1.13)

This provides an alternative derivation of the identities |z1z2| = |z1||z2|,
∣∣ z1

z2

∣∣ = |z1|
|z2| . Also, note that

while the sum of an argument of z1 and z2 is an argument of z1z2, the same does not hold for the
principal argument. Indeed the sum of two principal arguments could be larger than π, and thus
not qualify. Instead we have the weaker result that

arg(z1z2) = arg z1 + arg z2 + 2nπ, n = −1, 0, 1 (51.1.14)

In the special case where z1 = 1 = ei·0 then letting z2 = z = reiθ we find that

1
z

= 1
r
e−iθ =

(
1
r
eiθ

)
= z

|z|2
(51.1.15)

from which it follows that:

arg z = arg z−1 = − arg z (51.1.16)
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Theorem (De Moivre’s theorem)
It holds that if θ ∈ R and n ∈ N then:

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ) (51.1.17)

Proof. We notice that cos θ + i sin θ = eiθ so:

(cos θ + i sin θ)n = (eiθ)n = ei(nθ) = cos(nθ) + i sin(nθ) (51.1.18)

as desired. ■

Theorem (Complex roots)
Let w = ρ(cosϕ+ i sinϕ) be a non-zero complex number, and define the solutions to zn = w

to be the nth roots of w. These roots are given by:

zm = ρ1/n

[
cos
(
ϕ

n
+ 2mπ

n

)
+ i sin

(
ϕ

n
+ 2mπ

n

)]
, m ∈ Zn (51.1.19)

Proof. We need to solve zn = w, so let z = r(cos θ + i sin θ). Using DeMoivre’s theorem yields

zn = rn(cos(nθ) + i sin(nθ)) = ρ(cosϕ+ i sinϕ) (51.1.20)

It is then clear that rn = ρ by equating moduli. Moreover, arguments can only differ by a multiple
of 2π so nθ = ϕ+ 2mπ wherem ∈ Z.Consequently solutions are of the form:

zm = ρ1/n

[
cos
(
ϕ

n
+ 2mπ

n

)
+ i sin

(
ϕ

n
+ 2mπ

n

)]
, m ∈ Zn (51.1.21)

Note that these are not infinitely many solutions, one for eachm. However, ifm1 andm2 differ by
an integer multiple kn then:

ϕ

n
+ 2m2π

n
= ϕ

n
+ 2m1π

n
+ 2kπ (51.1.22)

so zm1 = zm2 . Consequently the only distinct solutions can be formed from k = 0, 1, 2, ..., n − 1.
Note that the angle between zk and zk+1 is the same for all k, and their moduli are all the same.
Consequently these roots lie on a circle and form the vertices of a regular n-polygon. ■

Complex inequalities work the same way as real inequalities. We repeat the standard rules for
rearranging inequalities for completeness:

(i) a < b ⇐⇒ 0 < b− a

(ii) a < b ⇐⇒ a+ c < b+ c

(iii) a < b ⇐⇒ ac < bc for c > 0 and a < b ⇐⇒ ac > bc for c < 0

(iv) a > b ⇐⇒ 1
a <

1
b for a, b > 0

(v) a < b ⇐⇒ ap < bp if a, b ≥ 0 and p > 0

(vi) |a| < b ⇐⇒ −b < a < b
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(vii) a < b and b < c =⇒ a < c

(viii) a < b and c < d =⇒ a+ c < b+ d

(ix) a < b and c < d =⇒ ac < bd if a, c ≥ 0

The triangle inequalities are also quite useful:

Proposition (Triangle inequalities)
If z1, z2 ∈ C then:

|z1 + z2| ≤ |z1|+ |z2| (51.1.23)
||z1| − |z2|| ≤ |z1 − z2| (51.1.24)

Proof.

|z1 + z2|2 = (z1 + z2)(z1 + z2) (51.1.25)
= (z1 + z2)(z1 + z2) (51.1.26)
= |z1|2 + z1z2 + z1z2 + |z2|2 (51.1.27)
= |z1|2 + 2 Re(z1z2) + |z2|2 (51.1.28)
≤ |z1|2 + 2|z2z2|+ |z2|2 (51.1.29)
= (|z1|+ |z2|)2 (51.1.30)

Applying one of the rules for rearranging inequalities gives (51.1.23).

Also, note that:
|z1| ≤ |z1 − z2|+ |z2| =⇒ |z1| − |z2| ≤ |z1 − z2| (51.1.31)

and similarly:

|z2| ≤ |z2 − z1|+ |z1| =⇒ |z2| − |z1| ≤ |z2 − z1| (51.1.32)

Consequently:

− |z1 − z2| ≤ |z2| − |z1 ≤ |z1 − z2| =⇒ ||z2| − |z1|| ≤ |z1 − z2| (51.1.33)

■

The geometrical interpretation of the first triangle inequality is that the diagonal of a parallelogram
cannot be longer than the sum of the lengths of its two adjacent sides. The geometrical interpre-
tation of the second triangle inequality is that the distance between two points on two concentric
circles cannot be larger than the difference in the circles’ radii.

As a consequence of the fact thatC is not a complex field, we cannotwrite an inequality between two
complex numbers z1 ≤ z2, it simply does not make sense. Nevertheless one can use the modulus
and argument of complex numbers to construct meaningful inequalities with geometric interpre-
tations.
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Definition (Subsets of C)
A line is a set of the type {z : aRe z + b Im z > c} where a, b, c ∈ R with the first two not
both equal to zero. An open half-plane is a set of the type {z : aRe z + b Im z > c} and a
closed half-plane is a set of the type {z : aRe z + b Im z ≥ c}.
The circle centered at α ∈ C with radius r > 0 is the set {z : |z − α| = r}. Analogously,
an open disc is a set of the type {z : |z − α| < r} and a closed disc is a set of the type
{z : |z − α| < r}.
A half-line is a set of the form {z : arg(z−α) = θ}where α ∈ C and −π < θ ≤ π. Hence an
open sector is a set of the form {z : a < arg(z−α) < b} or {z : arg(z−α) < a∨arg(z−α) > b}.

51.2 Complex functions

Definition (Complex functions)
Let A,B ⊆ C. Then we define the map:

f : A→ B (51.2.1)
z 7→ f(z) (51.2.2)

to be a complex function. The domain of f is A, the co-domain of f is B, and the image of
f is:

f(A) ≡ {f(z) : z ∈ A} (51.2.3)

If f(A) = B then f is surjective, while if f(z1) = f(z2) =⇒ z1 = z2 then f is injective.

Example. Consider for example f(z) = 3z+1
z+i . It is implied that the domain of f is defined

to be the subset of C where its rule is applicable. In this case, the domain of f is thus A =
C \ {−i} and the codomain is C. Consequently:

f(A) =
{
w = 3z + 1

z + i
: z ∈ C \ {i}

}
(51.2.4)

Now note that:

w = 3z + 1
z + i

=⇒ w(z2 + 1) = 3z2 + (1− 3i)z − i (51.2.5)

=⇒ (w − 3)z2 − (1− 3i)z + (w + i) = 0 (51.2.6)

which has a well defined solution:

z =
(1− 3i)±

√
(1− 3i)2 − 4(w − 3)(w + i)

2(w − 3)
= (51.2.7)

as long as w 6= 3. Thus f(A) = C \ {3}, and due to this f is not surjective. However it is
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injective, since:

f(z1) = f(z2) ≡3z1 + 1
z1 + i

= 3z2 + 1
z2 + i

=⇒ 3z1z2 + i+ 3iz1 + z2 = 3z2z1 + i+ 3iz2 + z1

(51.2.8)
=⇒ 3i(z1 − z2) = z1 − z2 =⇒ z1 = z2 (51.2.9)

as desired. ◀

The standard operations of sums, products/quotients and compositions can be performed on com-
plex functions just like with real functions.

Example. Let f(z) = 1
z with domain z ∈ C \ {0} and g(z) = z+3i

z2−z with domain z ∈
C \ {0, 1}. We see that the complex functions:

(f + g)(z) = 2z − 1 + 3i
z2 − z

, (fg)(z) = z + 3i
z(z2 − z)

(51.2.10)

have domain C \ {0, 1}. Similarly, we have that:

f

g
= z2 − z
z2 + 3iz

= z − 1
z + 3i

(51.2.11)

has domain C \ {0, 1,−3i}. Also, we can compose these functions to obtain:

(g ◦ f)(z) =
1
z + 3i
1

z2 − 1
z

= 3iz2 + z

1− z
(51.2.12)

Its domain is:

{z ∈ C \ {0} : f(z) ∈ C \ {0, 1}} = C \ {0, 1} (51.2.13)

Similarly, we obtain that

(f ◦ g)(z) = z2 − z
z + 3i

(51.2.14)

whose domain is

{z ∈ C \ {0, 1} : g(z) ∈ C \ {0}} = C \ {0, 1,−3i} (51.2.15)

◀

Definition (Inverse of complex function)
Let f : A→ B be a complex injective function. Then the inverse function of f is defined as:

f−1 : B → B (51.2.16)
z 7→ f−1(z) (51.2.17)

such that:
f−1(w) = z ⇐⇒ f(w) = z (51.2.18)
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It follows that the existence of an inverse function boils down to whether or not one can find for
every w ∈ B a z ∈ A such that f(z) = w. In many cases this cannot be done for a given B, but can
be done if we somehow restrictB to some new codomainB′, redefining our function to f |B . Thus,
a function is invertible if for all w ∈ f(A) there exists a unique z ∈ A such that f(z) = w.

Example. Let A = {0} ∪ {z : −π/3 < arg z ≤ π/3} be the domain of f(z) = z3. This
function has an inverse. Indeed, note that the images set of A is:

f(A) = {z3 : z ∈ {0} ∪ {z : −π/3 < arg z ≤ π/3}} (51.2.19)
= {z3 : z = reiθ,−π/3 < θ ≤ π/3, r ≥ 0} (51.2.20)
= {r3e3iθ : −π/3 < θ ≤ π/3, r ≥ 0} (51.2.21)
= C (51.2.22)

Hence, given w ∈ C we need to find a unique z ∈ A such that z3 = w. If w = 0 then clearly
f(0) = 0 =⇒ f−1(0) = 0. If instead w 6= 0 then:

z3 = w = reiθ, r > 0,−π < θ ≤ π (51.2.23)

but using De Moivre’s theorem we have that:

z = r1/3ei(θ+2kπ)/3, ∀k = 0, 1, 2 (51.2.24)

Since we need z ∈ A, the only possible choice is k = 0. Consequently, the inverse of f is:

f−1(0) = 0, f−1(w) = r1/3eiθ/3, w 6= 0 (51.2.25)

with domain C and co-domain A. ◀

Definition (Real-valued functions)
Given a complex function f , we say that it is real valued if f(A) ⊆ R and a real function if
A ⊆ R and B ⊆ R.

Note that any complex function can be decomposed into real functions. For example consider
f(z) = 1

z . Then:

(Re f)(z) = Re(f(z)) = Re
(

1
z

)
= Re z
|z|2

, (z ∈ C \ {0}) (51.2.26)

and similarly:

(Im f)(z) = Im(f(z)) = Im
(

1
z

)
= − Im z

|z|2
, (z ∈ C \ {0}) (51.2.27)

so that:

f(z) = (Re f)(z) + i(Im f)(z) = Re z − i Im z

|z|2
= z∗

|z|2
(z ∈ C \ {0}) (51.2.28)

as expected.

Definition (Complex function parametrisation)
A path Γ ⊆ C is the image set of a continuous function γ : I → C where I ⊆ R, known as
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the parametrisation of Γ.

Consider for example the unit circle Γ in the complex plane. It can be parametrised by:

γ(t) = cos t+ i sin t, t ∈ [0, 2π] (51.2.29)

which traverses the circle anti-clockwise. Consider the effect of letting z vary on Γ following the
parametrisation γ, and seeing the effects on f(z) = 1

z . We saw that letting z = x + iy and w =
f(z) = u+ iv then

u = x

x2 + y2 , v = − y

x2 + y2 (51.2.30)

Thus, letting x = cos t and y = sin t then we find that:

u = cos t, v = − sin t, t ∈ [0, 2π] =⇒ z = u+ iv = cos(−t) + i sin(−t), t ∈ [0, 2π] (51.2.31)

Consequently, the unit circle in the w plane will be traversed clockwise as z traverses the unit circle
anti-clockwise.

51.3 Mappings under complex functions
51.4 Special complex functions
We now extend notions of exponential, logarithmic, trigonometric and hyperbolic functions to the
complex domain.

Definition (Complex exponential)
Let z ∈ C. Then we have define:

ez = eRe z(cos(Im z) + i sin(Im z)) (51.4.1)

Proposition (Exponential identities)
Let z1, z2 ∈ C, then:
(i) ez1+z2 = ez1ez2

(ii) |ez| = eRe z

(iii) e−z = 1
ez

(iv) ez+2πi = ez

Proof. (i) We find that

■

Example. Note that for z ∈ C then

|ez| =
∣∣eRe z(cos(Im z) + i sin(Im z))

∣∣ = eRe z (51.4.2)

and since Re z ≤ |z| we have that |ez| ≤ e|z| by the monotonicity of the real exponential
function. ◀
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Interestingly, we have that ez+2inπ = ez for all n ∈ Z, so going up the complex plane in steps of 2iπ
brings you back to your starting point under complex exponentiation. This suggests that we take
the line Γ : γ(t) = a+ it, and look at how it is mapped by w = f(z) = ez . We have that if z = x+ iy

then:
w = u+ iv = ex(cos y + i sin y) =⇒ u = ex cos y, v = ex sin y (51.4.3)

thus:
u = ea cos t, v = ea sin t (51.4.4)

so that u2 + y2 = e2a. As expected, the straight line gets mapped to a circle. Similarly, taking the
path Γ : γ(t) = t+ ib then:

w = u+ iv = et(cos b+ i sin b) =⇒ u = et cos b, v = et sin b (51.4.5)

thus:
u = et cos b, v = et sin b (51.4.6)

which is a half-line with arg z = b. Hence if we take a grid of x = cnst and y = cnst then it will
get mapped to outward radial lines with concentric circles. A rectangular region gets mapped to
a quarter annulus. Points in the left half-plane with Re z < 0 get mapped to points inside the unit
circlewhile points in the right halfplane getmapped outside the unit circle as a result of |ez| = eRe z .
Finally, note that the image of the strip {x+ iy : −π < y ≤ π} under f(z) = ez is C \ {0}.

We have seen that f(z) = ez is not injective on C, but we can make it injective by restricting its
domain, for example, to a strip of width 2π (with one edge removed), such as:

A = {x+ iy : −π < y ≤ π} (51.4.7)

Then we can show that f(z) = ez has an inverse on this domain.

Example. We firstly look at the image set of f(z):

f(A) = {w = ex+iy : −π < y ≤ π} = {w = exeiy : −π < y ≤ π} = {w = ρeiθ : ρ > 0,−π < θ ≤ π}
(51.4.8)

= C \ {0} (51.4.9)

Now, given any w ∈ C \ {0} then w = ρeiθ with ρ > 0 and −π < θ ≤ pi. We claim that
z = log(ρ) + iθ ∈ A is the required inverse (well defined since ρ 6= 0):

f(z) = ez = elog(ρ)eiθ = ρeiθ = w (51.4.10)

as desired. We could have also chosen z = log(ρ) + iθ + 2inπ but this would not be in A.
Consequently, f is an injective function with image set C \ {0} and inverse:

f−1(z) = log |z|+ i arg z (51.4.11)

with domain C \ {0}. ◀

Much like how a complex number can have infinitely many arguments, its logarithm is also multi-
ply valued. However we can define the principal logarithm by restricting the argument of w to its
principal argument.
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Definition (Principal logarithm)
Let z ∈ C \ {0}. The principal logarithm of z is defined as:

log(z) = log |z|+ i arg z (51.4.12)

We collect some useful properties of the principal logarithm below:

Proposition (Logarithm identities)
For arg z1, arg z2 ∈ (−π/2, π/2] then:

log(z1z2) = log z1 + log z2 (51.4.13)

and for arg z ∈ (−π, π) then:

log
(

1
z

)
= − log z (51.4.14)

Proof. Suppose arg z1, arg z2 ∈ (−π/2, π/2] so that arg(z1z2) = arg z1 + arg z2 ∈ (−π, π]. Then:

log(z1z2) = log |z1z2|+ i arg(z1z2) = log |z1|+ log |z2|+ i arg z1 + i arg z2 = log(z1) + log(z2)
(51.4.15)

Similarly, if arg z ∈ (−π, π) then arg 1
z = − arg z so that:

log
(

1
z

)
= log

∣∣∣∣1z
∣∣∣∣+ i arg 1

z
= − log |z| − i arg z = − log z (51.4.16)

as desired. ■

We can view the geometric effect of the complex logarithm in the same (or inverse) way for the
complex exponential. Going back to the complex exponential, we can invert Euler’s identity to
express cos z and sin z as follows:{

eiθ = cos θ + i sin θ
e−iθ = cos θ − i sin θ

=⇒

{
cos θ = 1

2 (eiθ + e−iθ)
sin θ = 1

2i (eiθ − e−iθ)
(51.4.17)

This motivates us to make the following definitions:

Definition (Complex trigonometric functions I)
We define for all z ∈ C:

cos z = 1
2

(eiz + e−iz), sin z = 1
2i

(eiz − e−iz) (51.4.18)

Interestingly, the zeros of the complex trigonometric functions are the same as their real counter-
parts. Indeed:

sin z = 0 =⇒ eiz = e−iz =⇒ e2iz = 1 = e0 =⇒ 2z = 2nπ =⇒ z = nπ∀n ∈ Z (51.4.19)
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and similarly:

cos z = 0 =⇒ eiz = −e−iz =⇒ e2iz = −1 = eiπ (51.4.20)

=⇒ 2z = π + 2nπ =⇒ z =
(
n+ 1

2

)
π, ∀n ∈ Z (51.4.21)

Thus, we may define the tangent, secant, cotangent and cosecant as follows:

Definition (Complex trigonometric functions II)
We define for all z ∈ C \ {z = (n+ 1/2)π : n ∈ Z}:

tan z = sin z
cos z

, sec z = 1
cos z

(51.4.22)

and for all z ∈ C \ {z = nπ : n ∈ Z}:

cot z = cos z
sin z

, csc z = 1
sin z

(51.4.23)

Proposition (Trigonometric identities)
(i) Addition:

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2 (51.4.24)
cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2 (51.4.25)

tan(z1 + z2) = tanh z1 + tanh z2

1− tanh z1 tanh z2
(51.4.26)

(ii) Squares:

cos2 z + sin2 z = 1 (51.4.27)
sec2 z = 1 + tan2 z (51.4.28)
csc2 z = 1 + cot2 z (51.4.29)

Proof. The proof is identical to the real case. ■

Suppose we remove the i in the exponentials defining sin z and cos z. We know from real analysis
that the result are hyperbolic functions:

sinh x = 1
2

(ex − e−x), cosh x = 1
2

(ex + e−x) (51.4.30)

Thus, extending these definitions to C, we get:

Definition (Complex hyperbolic functions)
We define for all z ∈ C:

cosh z = 1
2

(ez + e−z), sinh z = 1
2

(ez − e−z) (51.4.31)
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We define for all z ∈ C \ {z = i(n+ 1/2)π : n ∈ Z}:

tanh z = sinh z
cosh z

, sech z = 1
cosh z

(51.4.32)

and for all z ∈ C \ {z = inπ : n ∈ Z}:

coth z = cosh z
sinh z

, csch z = 1
sinh z

(51.4.33)

Proposition (Trigonometric functions are hyperbolic)
For all z ∈ C:

cosh(iz) = cos z, sinh(iz) = i sin z (51.4.34)

Proof. We find:

cosh(iz) = 1
2

(eiz + e−iz) = cos z (51.4.35)

sinh(iz) = i
1
2i

(eiz − e−iz) = i sin z (51.4.36)

as desired. ■

Proposition (Hyperbolic identities)
(i) Addition:

sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2 (51.4.37)
cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2 (51.4.38)

tanh(z1 + z2) = tanh z1 + tanh z2

1 + tanh z1 tanh z2
(51.4.39)

(ii) Squares:

cosh2 z − sinh2 z = 1 (51.4.40)
sech2 z = 1− tanh2 z (51.4.41)
csch2 z = coth2 z − 1 (51.4.42)

Proof. Can be found from the trigonometric identities using the previous proposition’s correspon-
dence between sin z, sinh z and cos z, cosh z. ■
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52.1 Complex sequences
We begin our study of continuity by extending some results from the rReal analysis of sequences
to C.

Definition (Convergence in C)
The complex sequence (zn) converges to α if ∀ϵ > 0 there exists an integer N such that

|zn − α| < ϵ, ∀n > N (52.1.1)

If the sequence converges to zero then it is a null sequence. Equivalently, (zn) converges to
α if (zn − α) is null. If a sequence is not convergent then it is divergent.

The geometrical intuition behind the epsilon-delta definition is clear. If (zn) converges to α then
given a circle centered at α with finite radius, all terms after a given number will fall within this
circle. This implies that every convergent sequence is bounded.

Proposition (Bounded ⇐= convergent)
Every convergent sequence is bounded.

Proof. Let (zn) converge to α. Applying the triangle inequality to the epsilon-delta definition with
ϵ = 1 we get

|zn − α| ≤ |zn| − |α| < 1 =⇒ |zn| < 1 + |α|, ∀n > N (52.1.2)

ChoosingM = max{z1, z2, ..., zN , 1 + |α|} it is clear that |zn| < M for all n. ■

Example. Wewant to prove that the sequence (zn) with zn = 1+i
n is convergent. We claim

that it converges to 0. Indeed let ϵ > 0, we need to find an integer N such that∣∣∣∣1 + i

n

∣∣∣∣ < ϵ =⇒
√

2
n

< ϵ, ∀n > N (52.1.3)

which is clearly satisfied if N >
√

2
ϵ . Thus (zn) is a null sequence. ◀

As usual most sequence converges theorems from real analysis still apply. One important example
is the Squeeze rule.
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Theorem (Squeeze rule)
If (an) is a null non-negative sequence and if (zn) is a sequence such that

|zn| ≤ an, n = 1, 2, ... (52.1.4)

then (zn) is a null sequence.

Example. Let us prove that (zn) with zn =
(

i
2

)n

is a null sequence. We have that

|zn| =
1
2n
≤ 1
n

(52.1.5)

but
(

1
n

)
is a null sequence. Hence by the Squeeze rule (zn) is null. ◀

Theorem (Standard null sequences)
The following sequences are null
(a)

( 1
np

)
for p > 0

(b) αn for |α| < 1

Example. Let us find the limit of (zn) with zN = (3+i)n+(2+2i)n

(1+2i)n+2(3+i)n . We can guess that the
dominant term will be (3 + i)n so we divide everything by it:

zn = 1 + (2 + 2i)n/(3 + i)n

2 + (1 + 2i)n/(3 + i)n
(52.1.6)

We have that (2+2i)n

(3+i)n is a null sequence since

∣∣∣∣ (2 + 2i)n

(3 + i)n

∣∣∣∣ =
(√

4
5

)n

(52.1.7)

Similarly (1+2i)n

(3+i)n is a null sequence since∣∣∣∣ (1 + 2i)n

(3 + i)n

∣∣∣∣ = 1
√

2n (52.1.8)

Consequently we find that
lim

n→∞
zn = 1

2
(52.1.9)

so zn converges to 1
2 . ◀

Proposition (Limit properties)
If limn→∞ zn = α then
(a) limn→∞ |zn| = |α|
(b) limn→∞ zn = α
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(c) limn→∞ Re(zn) = Re(α)
(d) limn→∞ Im(zn) = Im(α)

Proof. (a) We have that ||zn| − |α|| ≤ |zn − α| ≤ ϵ by definition for all n > N . Hence for a given
ϵ > 0, a value of N which proves the convergence of zn will also prove the convergence of
|zn|. In other words, the result follows from the Squeeze rule.

(b) Immediate from |zn − α| = |zn − α|

(c) Immediate from |Re(zn)−Re(α)| = |Re(zn−α)| ≤ |zn−α| and the application of the Squeeze
rule.

(d) Immediate from |Im(zn)−Im(α)| = |Im(zn−α)| ≤ |zn−α| and the application of the Squeeze
rule.

■

We can visualize the above proposition in the following figure

Finally, it is also useful to be able to combine different limits using the standard operations of ad-
dition, multiplication and division.

Proposition (Limit combinations)
Let limn→∞ zn = α and limn→∞ wn = β. Then
(i) limn→∞(zn + wn) = α+ β

(ii) limn→∞(λzn) = λα for λ ∈ C

(iii) limn→∞(znwn) = αβ

(iv) limn→∞
zn

wn
= α

β if β 6= 0
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Proof. Since zn converges to α and wn converges to β we have that for all ϵz, ϵw > 0 there exists Nz

and Nw such that

|zn − α| < ϵz, ∀n > Nz (52.1.10)
|wn − β| < ϵw, ∀n > Nw (52.1.11)

(i) Let ϵ > 0 and set ϵz = ϵw = 1
2ϵ. Then, letting N = max(Nz, Nw) we have that

|(zn + wn)− (α+ β)| ≤ |zn − α|+ |wn − β| < ϵ, ∀n > N (52.1.12)

as desired.

(ii) Let ϵ > 0 and set |ϵz| = ϵ
|λ| . Then, letting N = Nz we have that

|λzn − λα| = |λ||zn − α| < |λ|ϵz = ϵ, ∀n > N (52.1.13)

as desired.

(iii) Let ϵ > 0. We have that

lim
n→∞

(znwn − αβ) = lim
n→∞

[zn(wn − β) + β(zn − α)] (52.1.14)

The second term vanishes by the convergence of zn and the scalar multiple property we
proved in (ii). Furthermore, since zn is convergent it is also bounded by some real number
M . Hence

znwn − αβ ≤M(wn − β) =⇒ lim
n→∞

(znwn − αβ) = 0 (52.1.15)

as desired.

(iv) Let ϵ > 0. We have that ∣∣∣∣ zn

wn
− α

β

∣∣∣∣ = |β||zn − α| − |α||wn − β|
|β||wn|

(52.1.16)

Our main worry is that |wn| = 0 for some n making this quantity ill-defined. However, |wn|
must eventually be positive, since

|β| − |wn| < |wn − β| < |
1
2
|β| =⇒ |wn| >

1
2
|β| ∀n > N (52.1.17)

Consequently ∣∣∣∣ zn

wn
− α

β

∣∣∣∣ < 2
|β|2

(|β||zn − α| − |α||wn − β|) (52.1.18)

and since the RHS defines a null sequence, the LHS must also be null by the Squeeze rule. ■

We have given a brief rundown of convergent complex sequences. Now let us look at the opposite
case, that of divergent sequences. One very common family of divergent sequences are those that
tend to infinity which we define below.

Definition (Infinite sequence)
A sequence (zn) tends to infinity if ∀M > 0 there exists an integer N such that |zn| >
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M, ∀n > N .

In other words a sequence converges to infinity if its points in the complex plane cannot be enclosed
by a circle centered at the origin of finite radius. This is opposite to the case of a null sequence,
where all terms after a certain point fall into any given circle of finite radius. Recalling that taking
the reciprocal of a complex number is equivalent to scaling it by its norm and reflecting it in the
real axis, it seems like the reciprocal of a null sequence tends to infinity and vice-versa.

Theorem (Reciprocal rule)
Let (zn) b a sequence. Then (zn) tends to infinity iff

( 1
zn

)
is null.

Proof. Suppose that (zn) is null and let ϵ > 0 so that |zn| ≤ ϵ, ∀n > N for some integer N . Then∣∣∣∣ 1
zn

∣∣∣∣ = 1
|zn|

> ϵ, ∀n > N (52.1.19)

So given ϵ > 0 then by choosing theN which satisfies the epsilon-delta convergence of (zn) we also
find the N required to prove the divergence of

( 1
zn

)
. The converse proof is identical. ■

Example. We have that zn = n3 − in2 + (1 + i)n tends to infinity since

1
zn

= 1
n3 − in2 + (1 + i)n

= 1
n3

1
1− i/n+ (1 + i)/n2 → 0 · 1 = 0 (52.1.20)

◀

Theorem (Subsequence rules)
First subsequence rule: the sequence (zn) diverges if it has two convergent subsequences
with different limits.
Second subsequence rule: the sequence (zn) diverges if (zn) has a subsequence that tends
to infinity.

Proof. (i) Trivial by applicaation of epsilon-delta definition.

(ii) Trivial by boundedness of convergent sequences.

■

Example. Consider the sequence (zn) with zn = n2 sin(nπ/3). The subsequence z3k+1 =√
3

2 (3k + 1)2 clearly diverges. Indeed its reciprocal

1
z3k+1

= 2√
3

1
(3k + 1)2 ≤

2√
3

1
k2 (52.1.21)

is a null sequence. Hence by the second subsequence rule (zn) also diverges. ◀
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Proposition (Subsequence decomposition)
If a sequence (zn) can be decomposed into two subsequences converging to the same value
then (zn) also converges to the same value.

Proof. ■

52.2 Continuity of complex functions

Definition (Sequential continuity)
Let f : A→ C and α ∈ A, then f is continuous at α if for each sequence (zn) in A such that
zn → α:

f(zn)→ f(α) (52.2.1)

If f is continuous at all α ∈ A then we say that it is continuous on A. If f is not continuous
at α then it is discontinuous.

Example. We consider some examples
(i) Let f(z) = z whose trivial domain is C. We have that if (zn) is a sequence on C con-

verging to some α ∈ C then limn→∞ f(zn) = limn→∞ zn = α = f(α) so f is indeed
continuous.

(ii) Let f(z) = Im(z) whose trivial domain is C. We have that if (zn) is a sequence on C

converging to some α ∈ C then limn→∞ f(zn) = limn→∞ Im(zn) = Im(α) = f(α) so f
is indeed continuous.

(iii) Let f(z) = |z| whose trivial domain is C. We have that if (zn) is a sequence on C

converging to some α ∈ C then limn→∞ f(zn) = limn→∞ |z| = |α| = f(α) so f is
indeed continuous.

(iv) Consider f(z) = arg(z), defined on C, and let zn = ei(π+1/n) for n = 1, 2, .... Then we
have that f(limn→∞ zn) = arg(eiπ) = π while limn→∞ f(zn) = limn→∞

( 1
n −π

)
= −π.

Hence f(z) is discontinuous at z = −1. Consequently by themultiple rule for complex
limits, f(z) is discontinuous on the negative real line.

◀

In general we can combine continuous functions to get another continuous function back.

Theorem (Combination rules)
Let f, g be continuous functions at α and let λ ∈ C, then
(i) f + g is continuous at α
(ii) λf is continuous at α
(iii) fg is continuous at α
(iv) f/g is continuous at α provided g(α) 6= 0

Proof. These are immediate from the combination of limit theorems. ■

We can also compose continuous functions to get other continuous functions.
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Theorem (Composition rule)
Let f be continuous at α and let g be continuous at f(α). Then g ◦ f is continuous at α.

Proof. We have that for any sequence (zn) on C, if zn → α then f(zn) → f(α). Furthermore, g is
continuous at f(α) so given any sequence wn → β, we must have that g(wn) → g(β). In our case
we consider the sequence f(zn), then g(f(zn)) → g(f(α)). It thus follows that for any sequence
(zn)→ α, (g ◦ f)(zn)→ (g ◦ f)(α) as desired. ■

Proposition (Restriction rule)
Let f, g be functions defined on A,B respectively such that A ⊆ B. If
(i) f(z) = g(z) for all z ∈ A
(ii) g is continuous at α ∈ A

then f is continuous at α.

Proof. Let zn be a sequence on A, and thus also in B such that zn → α. Then we know that g(zn) =
f(zn)→ g(α) = f(α). Hence f is continuous at α. ■

Example. We consider some examples
(i) Consider f(x) = x2+i

x2−i defined for x ∈ R. This is a restriction of g(z) = z2+i
z2−i over

C \ {eiπ/4}. We have that z2 − i 6= 0 for z ∈ R so by the quotient combination rule we
have that g(z) is continuous for all z ∈ R, and thus so is f(x).

(ii) Consider f(z) = log |z| defined over C. We have that g(z) = |z| is a continuous func-
tion (this was proven earlier), and we know from real analysis that h(x) = log x is
continuous for x > 0. Since |z| > 0 for all z ∈ C, it follows from the composition rule
that f(z) is continuous.

◀

We now provide an equivalent definition of continuous functions.

Definition (ϵ− δ continuity)
Let f : A→ c and α ∈ A. Then f is continuous at α if for all ϵ > 0 there exists a δ > 0 such
that

|f(z)− f(α)| < ϵ, ∀z ∈ A s.t. |z − α| < δ (52.2.2)

Geometrically, this means that given any open disc of radius ϵ around f(α), there exists an open
disc of some radius δ around α such that its image under f lies within the disc of radius ϵ.

Theorem (Sequential and ϵ− δ continuity are equivalent)
A function f(z) is continuous according to the sequential definition iff it is continuous ac-
cording to the ϵ− δ definition.
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Proof. Let ϵ > 0. Suppose that |f(z)− f(α)| < ϵ for all z such that |z−α| < δ, where δ > 0. Let (zn)
be a sequence on A with zn → α, so there exists N such that ∀n > N , |zn − α| < δ. This however
implies that |f(zn)− f(α)| < ϵ, proving that f is continuous according to the ϵ− δ definition.

Now suppose that there is some ϵ > 0 such that for all δ > 0, |f(z)−f(α)| ≥ ϵ for z with |z−α| < δ.
So setting δ = 1

n then |f(zn) − d(α)| ≥ ϵ for zn ∈ A with |zn − α| < 1
n . Clearly zn → α but

f(zn) 6−→ f(α). ■

Example. Let us show that f(z) = arg(z) is continuous on A = C \ {x ∈ R : x ≤ 0}.
Let α ∈ A, and let ϵ > 0, then we need to find δ > 0 such that

|z − α| < δ =⇒ |f(z)− f(α)| < ϵ (52.2.3)

We choose δ so that the disc {z ∈ C : |z − α| < 0} does not cross the negative real axis. This
is important to ensure that the disc lies entirely in A. We also choose it so that the angular
size of the circle from the origin is less than 2ϵ, which is equivalent to saying that we choose
δ > 0 such that sin−1(δ/|α|) < ϵ.
Then we find that if z is in this disc then

|f(z)− f(α)| = |arg(z)− arg(α)| < ϵ (52.2.4)

as desired. ◀

52.3 Limits of complex functions

Definition (Accumulation point)
Let A ⊆ C. Suppose there exists a sequence (zn) in A \ {α} such that zn → α. Then α is an
accumulation point of A.

Definition (Limit of a function)
Let α be an accumulation point of A and let f(z) be defined on A. Then we say that
limz→α f(z)→ β if for any sequence zn inA\{α} such that zn → α, we have that f(zn)→ β.

Example.
(i) Consider the following limit

lim
z→i

z3 + i

z − i
(52.3.1)

The function f(z) = (z3 + i)/(z − i) is defined on C \ {i}, and i is a limit point in this
set. Indeed consider zn = i− 1

n , which lies entirely in the given region, it is clear that
zn → i as n→∞.
Therefore, if zn is a sequence in C \ {i} such that zn → i then we have that

f(zn) = z3
n + i

zn − i
= (z2

n + izn − 1)→ −3 (52.3.2)
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so
lim
z→i

z3 + i

z − i
= −3 (52.3.3)

(ii) Consider the limit
lim
z→0

z

Re(z)
(52.3.4)

Note that f(z) = z
Re(z) is defined on C \ {z : Re(z) = 0} and thus 0 is a limit point in

this domain. Consider x ∈ R \ {0}we have that x
Re(x) = 1. Instead ix

Re(ix) is ill-defined.
Consequently let us consider the sequence zn = 1

n → 0. We have that

f(zn) = 1/n
1/n
→ 1 (52.3.5)

On the other hand, consider the sequence wn = 1
n + i

n . Then we have that

f(wn) = (1 + i)/n
1/n

→ 1 + i (52.3.6)

so there is no β such that f(zn) converges to the same limit for all sequences zn.

◀

Theorem (Continuity with limits)
Let f be a function defined on A and let α ∈ A be a limit point of A. Then f is continuous at
α iff lim

z→α
f(z) = f(α).

Proof. Suppose that f be continuous at α. Then given any sequence zn → α we have that f(zn)→
f(α), which is the definition of lim

z→α
f(z) = f(α).

Now suppose that lim
z→α

f(z) = f(α). Then let (zn) be a sequence onA\{α} such that zn → α. Then
we can separate (zn) into a subsequence (znk

) such that f(znk
) = f(α) for all k, and a subsequence

(zmk
) such that f(zmk

) 6= f(α). Clearly f(znk
) → f(α) and f(zmk

) → f(α) by assumption, so we
have that f is continuous at α. ■

Finally, to facilitate computations with limits we have the typical combination rules which can be
proven using the sequence limit rules

Theorem (Combination rules)
Let f, g be functions with domains A,B respectively, and let α be a limit point of A ∪ B so
that

lim
z→α

f(z) = β, lim
z→α

g(z) = γ (52.3.7)

Then
(i) lim

z→∞
(f(z) + g(z)) = β + γ

(ii) lim
z→∞

(λf(z)) = λβ for λinC
(iii) lim

z→∞
(f(z)g(z)) = βγ
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(iii) lim
z→∞

f(z)
g(z) = β

γ if γ 6= 0

52.4 Topology on C

Definition (Open set)
A set A ⊆ C is open if ∀α ∈ A, there exists an open disc Dr(α) = {z ∈ C : |z − α| < r} of
some radius r > 0 that lies entirely in A, that is Dr(α) ⊆ A.

Example.
(i) The set A = C \ {0} is open. Let α ∈ A, then clearly D|α|(α) = {z ∈ C : |z − α| < |α|}

lies entirely in A.
(ii) The set A = {z : −2 < Re(z) < 2,−1 < Im(z) < 1} is open. Let α ∈ A, then let

r = min{Re(α)−2,Re(α)+2, Im(α)−1, Im(α)+i}which is non-zero since α = ±2,±i.
Then Dr(α) is entirely contained in A.

(iii) The setA = {z : 1 < |z| < 2} is open. Let us define for all αinA the following quantity

r =

{
|α| − 1, |α| < 3

2

2− |α|, |α| > 3
2

(52.4.1)

Then Dr(α) is entirely contained in A.
(iv) Let A = {z : π/3 < argz < 2π/3}, and let α ∈ A. Let θ = arg(α), and define

r =

{
|α| sin

( 2π
3 − θ

)
, α ≤ 0

|α| sin
(
θ − π

3
)
, α > 0

(52.4.2)

Then clearly Dr(α) lies entirely in A.

◀

Theorem (Combination of open sets)
If A1 and A2 are closed sets then
(i) A1 ∪A2
(ii) A1 ∩A2

are also open.

Proof. Sdgs

(i) Let α ∈ A1 ∪A2, and suppose α ∈ A1 wlog. Then, there exists some r > 0 such thatDr(α) ⊆
A1 ⊆ A1 ∪A2, as desired.

(ii) Let α ∈ A1 ∩ A2, so there exist r1, r2 > 0 such that Dr1(α) ⊆ A1 and Dr2(α) ⊆ A2. Choosing
r = min{r1, r2} then Dr(α) ⊆ A1 ∩A2.

■
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Definition (Closed set)
A set E ⊆ C is closed if its complement E ≡ C \ E is open.

The combination rules for open sets apply equally to closed sets.

Theorem (Combination of closed sets)
If E1 and E2 are open sets then
(i) E1 ∪ E2
(ii) E1 ∩ E2

are also open.

Proof. sdfs

(i) Since E1 and E2 are closed, their complements C \ E1 and C \ E2 are open. Consequently

C \ (E1 ∪ E2) = (C \ E1) ∩ (C \ E2) (52.4.3)

is open since it is the intersection of two open sets.

(ii) Similarly
C \ (E1 ∩ E2) = (C \ E1) ∪ (C \ E2) (52.4.4)

is open since it is the union of two open sets.

■

Definition (Interior, exterior and boundary)
LetA ⊆ C and let α ∈ C. Then α is an interior point ofA if there is an open disc centered at
α that lies inA. Similarly α is an exterior point ofA if there is an open disc centered at α that
lies outside of A. Finally, α is a boundary point of A any open disc centered at α contains
at least one point in A and one point in A.
The set of interior points of A forms the interior intA, the set of exterior points forms the
exterior extA and the set of boundary points forms the boundary ∂A.

Note that any point in an open set is an interior point by definition.

Definition (Connectedness)
A set A ⊆ C is (pathwise) connected if for any two distinct points α, β ∈ A, there exists a
path Γ ⊆ A joining the two.

Example. Let us prove that if A,B are both connected and A ∩ B 6= ∅ then A ∪ B is
connected.
Let α ∈ A ∪ B, and assume wlog that α ∈ A and β ∈ B (if both points lie in A then the
proof is trivial). Since A ∩ B 6= ∅ we may assume that there exists at least some δ ∈ A ∩ B.
Since δ ∈ A there exists a path ΓA connecting α with δ. Since δ ∈ B there exists a path ΓB

connecting δ with β. Consequently Γ1 ∪ Γ2 connects α with β as desired. ◀
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Proposition (Continuous functions preserve connectedness)
Let f be a continuous function on a connected domain A. Then f(A) is also connected.

Proof. Since A is connected, given α, β ∈ A we can find a curve Γ parametrised continuously by a
function

γ : [a, b]→ A, γ(a) = α, γ(b) = β (52.4.5)

Since f is continuous on A, it follows from the composition rule that f ◦ γ is continuous on [a, b].
Moreover, (f ◦ γ)(a) = f(α) and (f ◦ γ)(b) = β, so f ◦ γ parametrised a curve f(Γ) = (f ◦ γ)[a, b] ∈
f(A). ■

Definition (Region)
A regionR is a non-empty, open, connected subset of C.

Theorem (Point-removal of regions)
IfR is a region and α0 ∈ R thenR \ {α0} is also a region.

Proof. Since R is a region, and thus open, it cannot be a singleton and contains more than one
element. Consequently R \ {α0} is not empty. Now note that R \ {α0} = R ∩ (C \ {α0}) is the
intersection of two open sets, and so must also be open. Finally, let α, β ∈ R\ {α0}. Since α, β ∈ R
they can be joined by a curve Γ. If α0 /∈ Γ then this curve will lie inR \ {α0}. If instead α0 ∈ Γ, we
consider a disc Dr(α0) ∈ R and deform the curve so as to avoid α0. ■

Note that the above proof can be extended to the removal of a finite number of points, but breaks
down for infinitely many points. Indeed the removal of infinitely many points should of course not
necessarily read to a non-empty set, so the point-removal theorem is in general false for infinitely
many points.

Example. Let us prove that R = C \ {(n + 1
2 )π : n ∈ Z} is a region. It is obviously

non-empty.
Unfortunately we cannot use the point-removal theorem since we are removing an infinite
number of points, we go back to the original definition. Firstly note that R is non-empty,
since for example i ∈ R. Now let α ∈ R, and let m be the integer such that (m + 1

2 )π is
the closest removed point to α. Then letting r =

∣∣α − (m + 1
2 )π
∣∣ we have that Dr(α) lies

entirely inR. Finally, let α, β ∈ R and let Γ be the straight segment in C joining them. If no
removed point lies on Γ then this curve also lies in R. If one of the removed point lies on Γ
then we can take a neighborhood of the point and deform it so as to skip around it. In the
worst case scenario only finitely many such deformations will be necessary, and the curve
will lie entirely inR. ◀

We make one final definition that will be useful in the next section.

Definition (Compact sets)
A set E ∈ C that is contained in some closed disc is bounded. Otherwise it is unbounded.
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If E is both closed and bounded then it is compact.

52.5 Extreme value theorem

Theorem (Extreme value theorem)
Let f be a function that is continuous on a compact set E. Then ∃α, β ∈ E such that

|f(β)| ≤ |f(z) ≤ |f(α)|, ∀z ∈ E (52.5.1)

Proof. We begin by proving the following lemma

Lemma. If E is a closed set and (zn) is convergent in E to α, then α ∈ E.

Indeed suppose that α ∈ E, which is open and thus contains an open disc Dr(α). Then if zn → α

then Dr(α) ⊆ E contains all but a finite number of points of zn. This contradicts the fact that zn is
in E.

We will also need the following result

Theorem (Nested rectangles theorem)
LetR0, R1, R2, ... be a sequence of closed rectangular regions whose sides are parallel to the
real and imaginary axes, and whose diagonals’ lengths form a sequence s0, s1, s2, ... such
that

R0 ⊇ R1 ⊇ R2 ⊇ ..., lim
n→∞

sn = 0 (52.5.2)

Then ⋂
i

Ri = {α} (52.5.3)

for a unique complex number α. Furthermore, given ϵ > 0 then there is an integer N such
that

Rn ⊆ Dϵ(α), ∀n > N (52.5.4)

Proof. Let the nth rectangle be defined as

Rn = {x+ iy : an ≤ x ≤ cn, bn ≤ y ≤ dn} (52.5.5)

so that since the rectangles are nested within each other

a0 ≤ a1 ≤ a2 ≤ ... ≤ c2 ≤ c1 ≤ c0 (52.5.6)
b0 ≤ b1 ≤ b2 ≤ ... ≤ d2 ≤ d1 ≤ d0 (52.5.7)

Since an is an increasing, bounded sequence (an ≤ c0 for all n) it follows from the monotone
convergence theorem that an converges. Similarly bn also converges. Let lim

n→∞
an = a and lim

n→∞
bn =

b.

We also have that
0 ≤ cn − an ≤ sn, 0 ≤ dn − bn ≤ sn (52.5.8)
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implying that cn → a and dn → b by the Squeeze theorem. Let α = a + ib, then since by the
monotone convergence theorem an ≤ a ≤ cn and bn ≤ b ≤ dn for all n it follows that α is contained
in all the rectangles:

α ∈
⋂

i

Ri (52.5.9)

Now let z ∈ Rn, so that |z − α| ≤ sn since any two points in a rectangle are at most a diagonal
length apart. By assumption sn → 0 so for a given ϵ > 0 there exists N such that sn ≤ ϵ for all
n > N and thus such that |zn − α| < ϵ. It follows that

Rn ⊆ {z : |z − α| < ϵ}, ∀n > N (52.5.10)

Consequently, suppose that there is another complex number β satisfying

β ∈
⋂

i

Ri (52.5.11)

but then there for any ϵ we have that |β − α| < ϵ. If we let ϵ = |β − α| > 0 then we obtain a
contradiction, so α is the only element in the intersection of nested rectangles. ■

We can now tackle the Extreme value theorem. We begin by proving that there exists an α ∈ E

such that |f(z)| ≤ |f(α)| for all z ∈ E.

SinceE is compact it can be surrounded by a rectangleR0 of diagonal length s0. This rectangle can
be subdivided into four equivalent rectangles T1, T2, T3, T4 of diagonal length s0

2 . Then at least one
of the rectangles, Tj , is such that for all z ∈ E there exists w ∈ E ∩ Tj such that |f(z)| ≤ f(w)|. In
other words, there is at least one rectangle containing the value of z which bounds f from above.
Indeed if this were false, then there is a complex zk ∈ E with |f(zk)| > |f(w)| for all w ∈ E ∩ Tk.
But then

max{|f(z1)|, |f(z2)|, |f(z3)|, |f(z4)|} > |f(w)|, ∀w ∈ E (52.5.12)

which is false since > should be replaced with a ≥.

Now let R1 = Tj and repeat the process of subdividing and finding the quadrant containing the
maximal value of f . Iterating this indefinitely we will get a sequence Rn of nested closed rectan-
gular regions with the property that

Rn+1 ⊆ Rn, sn = 1
2n
s0 → 0 (52.5.13)

and for each z ∈ E ∩ Rn there exists some w ∈ E ∩ Rn+1 such that |f(z)| < |f(w)|. Using the
nested rectangle theorem we know that only one complex number α will lie in all rectangles, and
furthermore for a given ϵ > 0 there is a N such that Rn ⊆ Dϵ(α) for all n > N . We now claim that
the number αmust lie in E and that

f(z) ≤ f(α), ∀z ∈ E (52.5.14)

To see why, let z0 ∈ E and construct from it a sequence such that

zn ∈ E ∩Rn, (z0 ∈ E ∩R0 = E is trivially satisfied) (52.5.15)

and
|f(zn)| ≤ |f(zn+1)| (52.5.16)
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Since zn is a sequence on a closed setE converging to α it follows that α ∈ E, as desired. Moreover,
by the continuity of f on E it follows that

lim
n→∞

|f(zn)| = |f(α)| (52.5.17)

implying that
|f(z0)| ≤ |f(z1)| ≤ ... ≤ |f(α)| (52.5.18)

since |f(z0)| is an increasing sequence. Notice that this argument applies to any z0 ∈ E so it follows
that |f(z)| ≤ |f(α)| for any z.

We have proven the first part of the theorem, nowwe prove that there is β such that |f(β)| ≤ |f(z)|
for all z ∈ E.

If f(w) = 0 for some w then β = w will do the job. Otherwise f does not vanish on E, and thus
g(z) = 1

f(z) is a continuous function by the quotient rule. We can apply the argument used to prove
the first part of the theorem to prove that such a complex number β must exist. ■

Proposition (Map of compact set is compact)
Let f be a function that is continuous on a compact set E. Then f(E) is also compact.

Proof. We know that f(E) must be bounded by the Extreme value theorem.

To prove that f(E) is closed, we prove that A = C \ f(E) is open. Let α ∈ A and define

g(z) = f(z)− α (52.5.19)

By the extreme value theorem there is some β ∈ E such that

r ≡ |g(β)| ≤ |g(z)|, ∀z ∈ E (52.5.20)

implying that
|f(z)− α| ≥ r, ∀z ∈ E (52.5.21)

Therefore if |f(z) − α| < r then z /∈ E so f(z) /∈ f(E). Consequently we have that Dr(α) ⊆ A, as
desired. ■
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53.1 Derivatives of complex functions
Having discussed the concept of a limit of a complex function and its relation to continuity, we are
now ready to introduce the concept of differentiating complex functions.

Definition (Differentiability)
Let f be a complex function on A. Then it is said to be differentiable at α if the limit

lim
h→0

f(α+ h)− f(α)
h

(53.1.1)

exists. This limit is known as the derivative of f at α. If f is differentiable on every point in a
set B then it is differentiable on B. A differentiable function is differentiable on its domain.
A function differentiable on C is defined to be entire.

Note that for a function to be differentiable at a point we need that point to be a limit point of the
function’s domain.

Example. Let f(z) = 1
z be defined on C \ {0}. Letting α ∈ C \ {0} then we find that

lim
z→α

f(z)− f(α)
z − α

= lim
z→α

(α− z)/(zα)
z − α

= − lim
z→α

1
zα

= − 1
α2 (53.1.2)

so the derivative of f(z) = 1
z is f ′(z) = − 1

z2 , and is defined on C \ {0}. ◀

Note that while f(z) is not entire, it is still differentiable on a region. This property is useful and
deserves its own name, such functions are known as analytic functions.

Definition (Analyticity)
A function f(z) that is differentiable on a regionR is said to be analytic onR. If this region
is the domain of f then it is simply analytic. Also f is analytic at α if there exists a region
containing α on which it is differentiable.

Notice that if a function is differentiable at a point then it is not necessarily analytic at that point,
although the converse is true.

As usual we can also combine differentiable functions
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Theorem (Derivative properties) Let f, g have domains A and B, and be differentiable
at α. Then
(i) (f + g)′(α) = f ′(α) + g′(α).
(ii) (λf)′(α) = λf ′(α) for λ ∈ C

(iii) (fg)′(α) = f ′(α)g(α) + f(α)g′(α)

(iv)
(

f
g

)′

(α) = f ′(α)g(α)−f(α)g′(α)
(g(α))2 provided g(α) 6= 0.

Theorem (Differentiability =⇒ continuity)
Let f be differentiable at α, then it must be continuous at α.

Proof. Suppose that z → α, then

lim
z→α

(f(z)− f(α)) = lim
z→α

f(z)− f(α)
z − α

· lim
z→α

(f(z)− f(α)) = f ′(α) · 0 = 0 (53.1.3)

so f(z)→ f(α) as desired. ■

Consider for example the principal logarithm function log z = log |z|+ iarg(z). We know that at no
point on the negative real axis is this function continuous, so it is also not differentiable there.

A more striking example is that of the modulus function f(z) = |z|. In real analysis this function
is differentiable at all non-zero points, but in complex analysis we shall see that this no longer
holds.

The proof that f(z) = |z| is discontinuous at z = 0 is the same as in real analysis, so let α 6= 0 and
consider the circle centered at the origin passing through α. Assume Let us define (zn) to be the
sequence

zn = |α|exp
(
iarg(α) + i

n

)
(53.1.4)

and similarly let us define (wn) so that

wn =
(
|α|+ 1

n

)
eiarg(α)∗ (53.1.5)

Clearly zn → α and wn → α. However, note that

lim
n→∞

f(zn)− f(α)
zn − α

= lim
n→∞

|α| − |α|
zn − α

= 0 (53.1.6)

while

lim
n→∞

f(wn)− f(α)
wn − α

= lim
n→∞

1/n
eiarg(α)(|α|+ 1/n− |α|)

= e−iarg(α) (53.1.7)

Consequently the limit

lim
z→α

f(z)− f(α)
z − α

(53.1.8)

does not exist, and f(z) = |z| is not differentiable anywhere on C.
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Example. Consider the function f(z) = z defined over C. There are no points where f(z)
is differentiable. Indeed let α ∈ C and consider the sequence zn = α− 1

n . Then

lim
n→∞

f(zn)− f(α)
zn − α

= lim
n→∞

−1/n
−1/n

= 1 (53.1.9)

Now consider the sequence wn = α− i
n . Then

lim
n→∞

f(zn)− f(α)
zn − α

= lim
n→∞

i/n

−i/n
= −1 (53.1.10)

Since these two limits are not equal the function f is not differentiable at α which we as-
sumed to be any complex number. ◀

53.2 Cauchy-Riemann equations

Theorem (Cauchy-Riemann theorem)
Let f(x+iy) = u(x, y)+iv(x, y) be a complex function defined on a regionRwhich contains
a + ib. If f is differentiable at a + ib then the following Cauchy-Riemann equations are
satisfied:

∂u

∂x

∣∣∣∣
(a,b)

= ∂v

∂y

∣∣∣∣
(a,b)

,
∂v

∂x

∣∣∣∣
(a,b)

= −∂u
∂y

∣∣∣∣
(a,b)

(53.2.1)

Proof. Let that zn be any sequence on C \{α}where α = a+ ib and let zn = xn + iyn for all n. Firstly
we observe that

f(zn)− f(α)
zn − α

= u(xn, yn)− u(a, b)
(xn − a) + i(yn − b)

+ i
v(xn, yn)− v(a, b)

(xn − a) + i(yn − b)
(53.2.2)

Consequently, let us choose xn to be a sequence onR\{a} and define zn = xn +ibwhich converges
to α. Then we see that

f(zn)− f(α)
zn − α

= u(xn, b)− u(a, b)
(xn − a)

+ i
v(xn, b)− v(a, b)

(xn − a)
(53.2.3)

so after taking the limit we find

df

dz

∣∣∣∣
α

= ∂u

∂x

∣∣∣∣
(a,b)

+ i
∂u

∂x

∣∣∣∣
(a,b)

(53.2.4)

Now let us choose yn to be a sequence on R \ {b} and define zn = a + iyn which converges to α.
Then we see that

f(zn)− f(α)
zn − α

= u(a, yn)− u(a, b)
i(yn − b)

+ i
v(a, yn)− v(a, b)

i(yn − b)
(53.2.5)

so after taking the limit we find

df

dz

∣∣∣∣
α

= −i∂u
∂y

∣∣∣∣
(a,b)

+ ∂v

∂y

∣∣∣∣
(a,b)

(53.2.6)

− 498 −



53.2. CAUCHY-RIEMANN EQUATIONS

Since f is differentiable at α we require (??) and (??) to be equal to each other. This gives the
desired Cauchy-Riemann equations. ■

This theorem is extremely useful as it also tells us that if the Cauchy-Riemann equations fail then
the function is not differentiable. Let us apply it to f(x + iy) = x − iy which we have previously
determined to not be differentiably anywhere on C. Now we see that

∂u

∂x

∣∣∣∣
(a,b)

= 1 6= ∂v

∂y

∣∣∣∣
(a,b)

= −1 (53.2.7)

as desired.

Note that the converse of the Cauchy-Riemann theorem is not true, if a function satisfies (53.2.2)
then it is not necessarily differentiable. If we add some extra conditions however a converse-like
theorem can be proven.

Theorem (Cauchy-Riemann converse theorem)
Let f(x + iy) = u(x, y) + iv(x, y) be defined on a region R and let α = a + ib ∈ R. If the
derivatives ∂xu, ∂yu, ∂xv, ∂yv

(i) exist at (x, y) for all x+ iy ∈ R
(ii) are continuous at (a, b)
(iii) satisfy the Cauchy-Riemann equations
then f is differentiable at a+ ib and its derivative is given by

f ′(a+ ib) = ∂u

∂x

∣∣∣∣
(a,b)

+ i
∂v

∂x

∣∣∣∣
(a,b)

(53.2.8)

Example. Let us show that f(z) = sin z is entire. Indeed we have that

sin(x+ iy) = sin x cosh y + i sinh y cosx (53.2.9)

so that u(x, y) = sin x cosh y and v(x, y) = sinh y cosx. Consequently

∂u

∂x
= cosx cosh y ∂v

∂y
= cosh y cosx (53.2.10)

∂u

∂y
= sin x sinh y ∂v

∂x
= − sin x sinh y (53.2.11)

These derivatives exist and are continuous everywhere on C. Also they satisfy the Cauchy-
Riemann equations:

∂u

∂x

∣∣∣∣
(a,b)

= cos a cosh b∂v
∂y

∣∣∣∣
(a,b)

∂v

∂x

∣∣∣∣
(a,b)

= sin a sinh b = −∂u
∂y

∣∣∣∣
(a,b)

(53.2.12)

Since all criteria of the converse Cauchy-Riemann theorem are satisfied, we find that

f ′(a+ ib) = cos a cosh b− i sin a sinh b = cos(a+ ib) (53.2.13)

◀
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53.3 Derivative rules
We now prove the chain rule and the inverse function rule. They take the same form as in real
analysis. These properties are particularly useful in the computation of the derivatives of more
complex functions.

Theorem (Chain rule)
Let f, g be complex functions, letD be the domain of g ◦ f and let α be a limit point inD. If
f is differentiable at α and g at f(α) then g ◦ f is differentiable at α and

(g ◦ f)′(α) = g′(f(α))f ′(α) (53.3.1)

Proof. Let us define the following function with the same domain as g

h(w) =

{
g(w)−g(β)

w−β , w 6= β

g′(β), w = β
(53.3.2)

where w = f(z) and β = f(α). Notice that since g is differentiable at β, g′(β) = limw→β
g(w)−g(β)

w−β

so h(w) is continuous at β. Then we see that

g(f(z))− g(f(α))
z − α

= h(f(z))
(
f(z)− f(α)

z − α

)
(53.3.3)

for all z 6= α in the domain of f . Indeed if w = β then both sides vanish, while if w 6= β then

h(f(z))
(
f(z)− f(α)

z − α

)
= g(f(z))− g(β)

f(z)− f(α)
f(z)− f(α)

z − α
(53.3.4)

Taking the limit as z → α we find

lim
z→α

g(f(z))− g(f(α))
z − α

= lim
z→α

h(f(z)) lim
z→α

f(z)− f(α)
z − α

= g′(β)f ′(α) (53.3.5)

since h is continuous at f(α), g differentiable at β and f is differentiable at α. ■

Theorem (Inverse function derivative)
Let f : A → B be invertible, and suppose f−1 is continuous at β ∈ B. If f ′ is non-zero at
f−1(β) ∈ A then f−1 is differentiable at β with

(f−1)′(β) = 1
f ′(f−1(β))

(53.3.6)

Proof. Weknow thatα = f−1(β) is a limit point ofA so let zn be a sequence inA−{α} converging to
α. Then f(zn) will be a sequence in B −{β} since f(zn) 6= α (by injectivity). Since f is continuous
at α, f(zn) converges to β, thus proving that β is a limit point of B.
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Thus let wn be a sequence in B − {β} converging to β. Also, f−1 is continuous at β so if we define
zn = f−1(wn) then zn → f−1(β) = α. Consequently

lim
n→∞

f−1(wn)− f−1(β)
wn − β

= lim
n→∞

zn − α
f(zn)− f(α)

(53.3.7)

and since f is injective, f(zn) 6= f(α) showing that

(f−1)′(β) = 1
f ′(f−1(β))

(53.3.8)

as desired. ■

53.4 Smooth paths

Definition (Path)
Let I ⊆ R be an interval and let γ : I → Γ ⊆ C be a continuous function. The set Γ is known
as the path parametrised by γ.

It is often helpful, given a parametrisation γ(t) of a path Γ, to ex-
press it in cartesian form

γ(t) = ϕ(t) + iψ(t), t ∈ I (53.4.1)

where ϕ and ψ are real functions on I . It is clear that the differ-
entiability of both ϕ and ψ is equivalent to the differentiability of
γ.

Differentiability however is not enough to guarantee smoothness.
For example, the following parametrisation

γ(t) = t2 + it3, t ∈ R (53.4.2)

is certainly differentiable on R, but as we can see below Γ contains
a kink at the origin where the slope is zero.

Definition (Smooth parametrisation)
Let γ : I → R be a parametrisation such that
(i) γ is differentiable
(ii) γ′ is continuous
(iii) γ′ is non-zero
on I . Then γ is a smooth parametrisation and the associated path Γ is smooth.

The notion of paths allows us to provide a geometrical interpretation of derivatives. Indeed let f
be analytic onR and let Γ be a smooth path inR parametrised by γ : I → C. The image of Γ under
f , f(Γ) is then parametrised by f(γ(t)). We may view the derivatives of γ(t) and f(γ(t)) at t = c as
tangent vectors to Γ and f(Γ) at γ(c) and f(γ(c)) respectively.

Consider α = γ(c) ∈ Γ for some c ∈ I . Then f(α) ∈ f(Γ), and since Γ and f(Γ) are smooth it
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follows that
(f ◦ γ)′(c) = f ′(α)γ′(c) (53.4.3)

So the derivatives to the two paths are related by a scaling factor of f ′(α). In other words, one
should rotate the tangent vector at α by Arg(f ′(α)) and scaled by |f ′(α)|.

Viewing the derivative of the parametrisation as tangent vectors allows us to define the angle be-
tween two curves at a point. Suppose Γ1 and Γ2 parametrised by γ1 (I1) and γ2 (I2) intersect at
α = γ1(t1) = γ2(t2). Note that

γ′
2(t2) = γ′

2(t2)
γ′

1(t1)
γ′

1(t1) (53.4.4)

so the tangent vector to one path is given by the tangent vector to the other path rotated by the
argument of γ′

2(t2)
γ′

1(t1) .

Definition (Angle between paths)
Let Γ1 and Γ2 be smooth paths with parametrisations γ1 and γ2 respectively, intersecting at
α = γ1(t1) = γ2(t2). Then the angle from Γ1 to Γ2 at α is

θ = Arg
(
γ′

2(t2)
γ′

1(t1)

)
(53.4.5)

There are special types of analytic functions which conserve the angle between any two paths in its
domain. This angle-preserving property is known as conformality.

Definition (Conformal functions)
Let f be analytic at α. Then it is conformal at α if the angle from any smooth path through
α to any other smooth path through α is preserved under f .

Suppose f is analytic at α. Then the tangent vectors to f(Γ) at f(α) are given by the tangent vectors
to Γ at α through a rotation by Arg(f ′(α)), as long as f ′(α) 6= 0. Consequently the angle between
two paths at a point is preserved by analytic functions whose derivative does not vanish at that
point.
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We will later prove the converse of this result, namely that conformal functions at a point have
non-zero derivative at that point.

Theorem (Support of conformal function derivatives)
Let f be analytic at α, then f is conformal at α iff. f ′(α) 6= 0.
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54.1 Introduction to complex integration
Unlike in real analysis, where the integral from a to b of some function f(x) was well-defined since
it could only be taken along one path, in complex analysis the integral between two points must
also specify a smooth path to integrate over.

Letting Γ : γ(t) for t ∈ [a, b] be a smooth path with γ(a) = α and γ(b) = β then we say that∫
Γ
f(z) dz (54.1.1)

is the integral of f along Γ. There are two ways one could calculate such an integral. One way,
inspired by real analysis, is to

(i) choose a partition P = {Γ1, ...,Γn} of Γ.

(ii) calculate the Riemann sum

R(f, P ) =
n∑

k=1

f(zk)δzk (54.1.2)

where δzk = zk − zk−1.

(iii) Evaluate ∫
Γ
f(z) dz ≡ lim

n→∞
R(f, Pn) (54.1.3)

where (Pn) is a sequence of partitions such that ||Pn|| → 0 as n→∞.

One can then show that this limit exists and is independent of (Pn)when f is continuous. A quicker
approach is to treat the complex integral as two real integrals, just like howwe treated the complex
derivative as two real derivatives.

Let {t0, t1, ..., tn : a = t0 < t1 < ... < tn = b} be any set of parameter values, these define a partition
P = {Γ1,Γ2, ...,Γn} where Γi is the path from γ(ti−1) = zi−1 to γ(ti) = zi. The Riemann sum for
this partition is then

R(f, P ) =
n∑

k=1

f(zk)δzk (54.1.4)

Unlike before however, note that

δzk = zk − zk−1 = γ(tk)− γ(tk−1)
tk − tk−1

· (tk − tk−1) (54.1.5)
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and if δtk = tk − tk−1 is very small then we find that

δzk ≈ γ′(tk)δtk (54.1.6)

Thus if max{δt1, ..., δtn} is chosen to be very small then we can write the Riemann sum as

R(f, P ) ≈
n∑

k=1

f(γ(tk))γ′(tk)δtk (54.1.7)

and taking the limit as n→∞ then we get that∫
Γ
f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt (54.1.8)

Definition (Complex integral)
Let Γ : γ(t) for t ∈ [a, b] be a smooth path in C and let f be continuous on Γ. We then define∫

Γ
f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt (54.1.9)

If we let f(γ(t))γ′(t) = u(t) + iv(t) where u and v are real valued functions then∫
Γ
f(z) dz =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt (54.1.10)

Note that since Γ is smooth, its parametrisation γ(t) and its derivative γ′(t) is continuous on [a, b].
Also, f is continuous on [a, b], so the integral exists.

Example. Let’s calculate
∫

Γ
1
z dz where Γ is the unit circle {z : |z| = 1} traversed anti-

clockwise. A parametrisation for the unit circle is Γ : γ(t) = eit with t ∈ [0, 2π), so we see
that ∫

Γ

1
z
dz =

∫ 2

0
πe−it · ieit dt = 2πi (54.1.11)

Let us instead use the parametrisation Γ : γ(t) = e3it with t ∈ [0, 2π/3). Then we see that∫
Γ

1
z
dz =

∫ 2π/3

0
e−3it · 3ie3it dt = 2πi (54.1.12)

just as we found before. It is not just a coincidence that this integral is independent of the
chosen parametrisation, indeed we calculated the integral of the same function over the
same circle, we just went around the circle with a different speed. ◀

We have seen in the previous example that the integral
∫

Γ
1
z dz is parametrisation-independent.

Let’s prove this in the more general case.

Theorem (Parametrisation independence of integration)
Let γ1 and γ2 be two smooth parametrisations of a path Γ, and let f be continuous on Γ.
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Then the integral of f over Γ ∫
Γ
f(z) dz (54.1.13)

is independent of the used parametrisation so that∫ b1

a1

f(γ1(t))γ′
1(t) dt =

∫ b2

a2

f(γ2(t))γ′
2(t) dt (54.1.14)

Proof. Suppose that γ1 and γ2 are both injective (if they intersect themselves, split Γ into parts
where they are injective), and let h = γ−1

2 ◦ γ1 which by the inverse function and composition rule
is differentiable with a continuous derivative. We see that∫ b1

a1

f(γ1(t))γ′
1(t) dt =

∫ b1

a1

f(γ2(h(t)))γ′
2(h(t))h′(t) dt (54.1.15)

=
∫ h(a2)

h(a1)
f(γ2(s)) γ′

2(s) ds (54.1.16)

=
∫ b2

a2

f(γ2(s))γ′
2(s) ds (54.1.17)

as desired. ■

Upuntil nowwe have only dealt with smooth parametrisations and smooth paths. However, some-
times wemay be asked to integrate over a non-smooth (but continuous) path which can be decom-
posed into finitely many smooth paths.

Definition (Contour)
Let Γ1,Γ2, ...,Γn be smooth paths in Cwith matching endpoints. Then their oriented union
Γ =

⋃̃
iΓi is a contour, and the contour integral of f along Γ is given by∫

Γ
f(z) dz =

∫
Γ1

f(z) dz +
∫

Γ2

f(z) dz + ...+
∫

Γ1

f(z) dz (54.1.18)

Example. Let us evaluate ∫
Γ
z dz (54.1.19)

where Γ is a contour starting at z = −1, traversing the real axis until z = 1 and then re-
turning to −1 along a semi-circular arc in the upper-complex plane. A suitable piece-wise
parametrisation for Γ is

γ(t) =

{
t, t ∈ [−1, 1]
eit, t ∈ [0, π]

(54.1.20)

so that ∫
Γ
z dz =

∫ 1

−1
t dt+

∫ π

0
e−it · ieitdt = iπ (54.1.21)

◀

− 506 −



54.1. INTRODUCTION TO COMPLEX INTEGRATION

Definition (Reverse path)
Let Γ : γ(t) with t ∈ [a, b] be a smoth path. Its reverse path Γ̃ is defined as the path with
parametrisation

γ̃(t) = γ(a+ b− t), t ∈ [a, b] (54.1.22)

Proposition (Reverse contour theorem)
Let Γ be a contour and let f be continuous on Γ with reverse contour Γ̃. Then we have that∫

Γ
f(z) dz = −

∫
Γ̃
f(z) dz (54.1.23)

Proof. Initially, let us suppose that Γ is a smooth path with parametrisation γ(t). Then γ̃(t) =
γ(a+ b− t) so that∫

Γ̃
f(z) dz =

∫ a

b

f(γ̃(t))γ̃′(t) dt = −
∫ b

a

f(γ(a+ b− t))γ′(a+ b− t) dt (54.1.24)

= −
∫ a

b

f(γ(s))γ′(s)(−ds) = −
∫ b

a

f(γ(t))γ′(t) dt (54.1.25)

= −
∫

Γ̃
f(z) dz (54.1.26)

as desired. Now suppose that Γ = Γ1 + ...+ Γ2 is a contour made of smooth paths Γi for i = 1, 2...
Then we find that ∫

Γ̃
f(z) dz =

∫
Γ̃1

f(z) dz +
∫

Γ̃2

f(z) dz + ...+
∫

Γ̃n

f(z) dz (54.1.27)

= −
(∫

Γ1

f(z) dz +
∫

Γ2

f(z) dz + ...

∫
Γn

f(z) dz
)

(54.1.28)

= −
∫

Γ
f(z) dz (54.1.29)

■

Example. Let’s calculate ∫
Γ̃

1
z
dz (54.1.30)

where Γ is the unit circle. According to our proposition this should be −2iπ so let’s verify
this. We choose the parametrisation γ̃(t) = e−it, t ∈ [0, 2π) and find that∫

Γ̃

1
z
dz =

∫ 2π

0
eit · (−ie−it) dt = −2iπ (54.1.31)

as expected. ◀
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54.2 Calculating complex integrals

Theorem (Combination rules for integrals) Let Γ be a contour and let f, g be continuous
on Γ. Then ∫

Γ
(f + g)(z) dz =

∫
Γ
f(z) dz +

∫
Γ
g(z) dz (54.2.1)∫

Γ
(λf)(z) dz = λ

∫
Γ
f(z) dz (54.2.2)

for any λ ∈ C.

Proof. This follows immediately from the combination rules of Riemann integration. ■

Definition (Primitive)
Let f be a function on a regionR, then the primitive of f onR is the analytic function F on
R such that F ′(z) = f(z) for all z ∈ R.

Theorem (Fundamental theorem of Calculus)
Let Γ be a contour in a regionR starting at α and ending at β, and let f be continuous onR
with primitive F . Then ∫

Γ
f(z) dz = F (β)− F (α) (54.2.3)

Proof. Again, let us firstly prove this result for smooth paths, and then generalize to any contour.

Let Γ be a smooth path in R with parametrisation γ(t), and let f be analytic on R with primitive
F . Then ∫

Γ
f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =
∫ b

a

F ′(γ(t)) dt (54.2.4)

Let F ′(γ(t)) = u(t) + iv(t), then we get∫
Γ
f(z) dz =

∫ b

a

[u(t) + iv(t)]′ dt = u(b)− (a) + i[v(b)− v(a)] = F (β)− F (α) (54.2.5)

where we used the fundamental theorem of calculus from real analysis.

Now suppose that Γ is a contour made up of smooth paths Γ1, ...,Γn where Γk has left endpoint αk

and right endpoint βk. Due to the continuity of Γ we must have that βk = αk+1 for k = 1, 2... and
thus ∫

Γ
f(z) dz =

∫
Γ1

f(z) dz +
∫

Γ2

f(z) dz + ...+
∫

Γn

f(z) dz (54.2.6)

= [F (β1)− F (α1)] + [F (β2)− F (α2)] + ...+ [F (βn)− F (αn)] (54.2.7)
= F (βn)− F (α1) (54.2.8)

as desired. ■

− 508 −



54.2. CALCULATING COMPLEX INTEGRALS

It follows immediately from this theorem that if Γ1 and Γ2 are both smooth paths in a region with
the same starting and ending points then the integral of any continuous function with a primitive
will be the same over both paths. In other words under suitable conditions a contour integral will
only depend on the endpoints of the contour.

Example.
(i) Let’s evaluate

∫
Γ e

3iz dz where Γ is a path from 2 to −2. We have that f(z) = e3iz is
continuous on C, and has a primitive F (z) = − 1

3 ie
3iz on C. Consequently we have

that ∫
Γ
e3iz =

[
− 1

3
ie3iz

]−2

2
= 1

3
i(e6i − e−6i) = −2

3
sin(6) (54.2.9)

(ii) Let’s evaluate
∫

Γ sinh z dz where Γ is any contour from 2 to 2i + 1
3 . We know that

f(z) = sinh z is continuous on C (since it is made up of exponentials) and that it has
a primitive F (z) = cosh z. Consequently∫

Γ
sinh z dz =

[
cosh z

]2i+ 1
3

2 = cosh
(

1
3

+ 2i
)
− cosh(2) (54.2.10)

(iii) Let’s evaluate
∫

Γ
sin z

cos2 z dz where Γ is a contour from 0 to π lying in C \ {(n + 1/2)π :
n ∈ Z}. Since cos z = 0 only has roots at z = (n + 1/2)π, n ∈ Z, it follows from the
reciprocal rule of continuity that f(z) = sin z

cos2 z is continuous on the region the contour
is specified in. Furthermore, it has a primitive F (z) = 1

cos2 z so that∫
Γ

sin z
cos2 z

dz =
[

1
cos z

]π

0
= −2 (54.2.11)

◀

There are some important immediate applications of the fundamental theorem of calculus.

Proposition (Corollary of Fundamental theorem)
Let f be continuous and with a primitive F onR, then∫

Γ
f(z) dz (54.2.12)

is independent of contour Γ and vanishes if Γ is closed.

Indeed by the fundamental theorem of calculus, the integral over a contour only depends on the
endpoint (as long as that path lies in a regionwhere f is continuous. Furthermore, ifΓ is closed then
its endpoints α and β are equal, implying that F (α) = F (β), and that the integral vanishes.

Proposition (Integration by parts)
Let f, g be analytic onR and let their derivatives f ′ and g′ be continuous onR. Then∫

Γ
f(z)g′(z) dz = [f(z)g(z)]βα −

∫
Γ
f ′(z)g(z) dz (54.2.13)
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for any smooth path Γ ⊆ R starting at α and ending at β.

Proof. We defineH(z) = f(z)g(z) and h(z) = H ′(z) = f ′(z)g(z)+f(z)g′(z). By assumption hmust
be continuous onR and has primitiveH(z) since the latter is analytic onR. Using the fundamental
theorem of Calculus we find that ∫

Γ
h(z)dz = [H(z)]ba (54.2.14)

or equivalently ∫
Γ
f(z)g′(z) dz = [f(z)g(z)]βα −

∫
Γ
f ′(z)g(z) dz (54.2.15)

as desired. ■

Example. Let us evaluate
∫

Γ Log(z) dz where Γ is a contour from 1 to i in R = c \ {x ∈
R : x ≤ 0}. We can write this integral as∫

Γ
(z)′Log(z) dz = [zLog(z)]i1 −

∫
Γ
dz = −π

2
− i+ 1 (54.2.16)

where we used integration by parts since g(z) = z and f(z) = Log(z) are analytic onR. ◀

54.3 Estimating contour integrals
Sometimes (very often actually) it may not be possible to compute a contour integral. In such cases
an approximation, such as an upper/lower bound can be found. To do so it is useful to define the
length of a contour first.

Definition (Contour length)
Let Γ be a contour, then its length if the sum of the lengths of the constistuent paths Γi :
γi(t), t ∈ [a, b], given by

L(Γi) =
∫ bi

ai

|γ′
i(t)| dt (54.3.1)

In real analysis, if a function is bounded above by some finite valueM , then we should expect its
integral over an interval of length L to be at mostM ·L. In complex analysis we can prove a similar
result

Theorem (Estimation theorem)
Let f be continuous on a contour Γ and such that |f(z)| ≤M, ∀z ∈ Γ. Then∣∣∣∣ ∫

Γ
f(z) dz

∣∣∣∣ ≤M · L(Γ) (54.3.2)

Proof. We begin by proving the following Lemma
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Lemma. Let f : [a, b]→ C be a continuous function, then∣∣∣∣ ∫ b

a

f(t) dt
∣∣∣∣ ≤ ∫ b

a

|f(t)| dt (54.3.3)

Indeed if
∫ b

a
f(t) dt = 0 then this result holds trivially. Suppose the integral does not vanish, so

that it may be written in polar form as
∫ b

a
f(t) dt = reiθ. Then we find that∣∣∣∣ ∫ b

a

f(t) dt
∣∣∣∣ = r (54.3.4)

but note that

r =
∫ b

a

e−iθf(t) dt
∫ b

a

Re(e−iθf(t)) dt ≤
∫ b

a

|e−iθf(t)| dt =
∫ b

a

|f(t)| dt (54.3.5)

where we used the monotonicity inequality of real integrals. Consequently∣∣∣∣ ∫ b

a

f(t) dt
∣∣∣∣ ≤ ∫ b

a

|f(t)| dt (54.3.6)

as desired. Now that we have proven this Lemma the estimation theorem follows immediately.
Suppose Γ is a smooth path, then∣∣∣∣ ∫

Γ
f(z) dz

∣∣∣∣ =
∣∣∣∣ ∫ b

a

f(γ(t))γ′(t) dt
∣∣∣∣ ≤ ∫ b

a

|f(γ(t))||γ′(t)| dt (54.3.7)

We can then use the Monotonicity inequality of real integrals and the fact that |f(z)| < M for z ∈ Γ
implies |f(γ(t)) for t ∈ [a, b]∣∣∣∣ ∫

Γ
f(z) dz

∣∣∣∣ ≤ ∫ b

a

|f(γ(t))| dt ·
∫ b

a

|γ′(t)| dt ≤M · L(Γ) (54.3.8)

Now suppose Γ is a contour made up of smooth paths {Γi}with lengths L(Γi). Then∫
Γ
f(z) dz =

∑
i

∫
Γi

f(z) dz ≤
∑

i

ML(Γi) = ML (54.3.9)

as desired. ■

Example.
(i) Let us find an upper bound for

∣∣ ∫
Γ

3z−4
2z−5 dz

∣∣ where Γ is the circle {z ∈ C : |z| = 3}.
Note that f(z) = 3z−4

2z−5 is continuous on C \ {5/2} and thus on Γ. We see that

|3z − 4| ≤ |3z|+ |4| = 3|z|+ 4 = 13 (54.3.10)

and
|2z − 5| ≥ |2z| − |5| = 2|z| − 5 = 1 (54.3.11)
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so that
|f(z)| ≤ 13 =⇒

∣∣∣∣ ∫
Γ

3z − 4
2z − 5

dz

∣∣∣∣ ≤ 13 · 6π = 78π (54.3.12)

(ii) Let us find an upper bound for
∣∣ ∫

Γ
e2iz

z2−9 dz
∣∣ where Γ is the upper-half of the circle

{z ∈ C : |z| = 4} from 4 to −4. Note that f(z) = e2iz

z2−9 is continuous on C \ {±3} and
thus on Γ. We see that

|e2iz| = |e2ix · e−2y| = |e−2y| ≤ 1 (54.3.13)

and
|z2 − 9| ≥ |z2| − |9| = 7 (54.3.14)

so that
|f(z)| = 1

7
=⇒

∣∣∣∣ ∫
Γ

e2iz

z2 − 9
dz

∣∣∣∣ ≤ 4
7
π (54.3.15)

(iii) Lets find an upper bound for
∣∣ ∫

Γ
sin z
1+z2

∣∣where Γ is the circle {z : |z| = 3}. We have that

| sin z| = 1
2
|eiz − e−iz| ≤ 1

2
(|ey|+ |e−y|) = e3 (54.3.16)

|z2 + 1| ≥ |z2| − |1| = 8 (54.3.17)

and therefore
|f(z)| ≤ 1

8
=⇒

∣∣∣∣ ∫
Γ

sin z
1 + z2

∣∣∣∣ = e3

8
(54.3.18)

◀

54.4 Cauchy’s theorem
In this section we will prove a very important result in complex analysis, Cauchy’s theorem. It
will simplify a lot of closed-contour integrals for us, but before we must introduce some terminol-
ogy.

Definition (Path classification)
Let Γ : γ(t), t ∈ [a, b] be a path. If γ is injective on [a, b] then Γ is simple, if γ(a) = γ(b) then
Γ is closed.

The following simply result is surprisingly difficult to prove, so we state it without proof.

Theorem (Jordan Curve Theorem)
Let Γ be a simple-closed curve, then C \ Γ is the disjoint union of a bounded region in(Γ),
known as the inside of Γ, and an unbounded region out(Γ), known as the outside of Γ.

There is a simple way to determine if a point lies inside a curve or not. Simply take any line from
infinitywhich passes through the given point, and count the number of intersectionswith the curve
before the curve crosses the given point. If this number is even then the point is outside the curve,
while if the number is odd then the point is inside the curve.
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The definition of paths is instrumental in defining the concept of simply-connected regions, infor-
mally they are regions with no “holes”.

Definition (Simply-connected) A region R is simply-connected if, given any simple-
closed curve Γ ⊂ R, the inside of Γ is also a subset ofR.

We are now ready to state Cauchy’s Theorem.

Theorem (Cauchy’s theorem)
Let f be analytic on a simply connected region R. Then for any closed contour Γ ∈ R we
have that ∫

Γ
f(z) dz = 0 (54.4.1)

Proof. The proof of Cauchy’s theorem is quite difficult but very important, so we will give it an
entire section. ■

Proposition (Contour independence)
Let f be analytic on a simply-connected region R. Suppose Γ1,Γ2 are contours in R with
the same initial and final points, then∫

Γ1

f(z) dz =
∫

Γ2

f(z) dz (54.4.2)

Proof. TakeΓ1 to be a contour fromα to β, and let Γ̃2 be the reverse contour ofΓ2. ClearlyΓ = Γ1∪̃Γ̃2
is a closed contour, so using Cauchy’s theorem∫

Γ
f(z) dz =

∫
Γ1

f(z) dz +
∫

Γ̃2

f(z) dz = 0 (54.4.3)

and therefore ∫
Γ1

f(z) dz =
∫

Γ2

f(z) dz (54.4.4)

as desired. We begin by proving Cauchy’s theorem for rectangular contours. Let f be analytic on
a simply connected region R and let Γ be a rectangular contour in R with perimeter l. We dissect
Γ into four smaller rectangular contours, Γ1,Γ2,Γ3,Γ4, as shown below ■

Theorem (Contour shrinking)
Let f be analytic on R \ {α} where R is a simply connected region containing the point α.
Suppose Γ ⊆ R is a simple closed contour, then∫

Γ
f(z) dz =

∫
C

f(z) dz (54.4.5)

where C ∈ R is any circle centered at α.
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Proof. Let L1, L2 be two line segments connecting C and Γ, partitioning the former into C1, C2 and
latter into P1, P2 as shown

Figure 54.1. Contours Γ1 and Γ2.

This allows us to define two new contours, Γ1 = L1∪̃P1 + ∪̃L̃2∪̃C̃1 and Γ2 = L2∪̃P2 + ∪̃L̃1∪̃C̃2,
each contained within the simply connected regionsR1 andR2 respectively. Note that α /∈ R1,R2
so f is analytic on both these regions, so we can use Cauchy’s theorem:∫

L1

f(z) dz +
∫

P1

f(z) dz +
∫

∼L2

f(z) dz +
∫

∼C1

f(z) dz = 0 (54.4.6)∫
L2

f(z) dz +
∫

P2

f(z) dz +
∫

∼L1

f(z) dz +
∫

∼C2

f(z) dz = 0 (54.4.7)

Adding these two we find that∫
P1

f(z) dz +
∫

P2

f(z) dz =
∫

C1

f(z) dz +
∫

C2

f(z) dz (54.4.8)

or in other words ∫
Γ
f(z) dz =

∫
C

f(z) dz (54.4.9)

as desired. ■

54.5 Cauchy’s integral formula
We not present another important result given by Cauchy which is useful in both evaluating inte-
grals and the values of special functions.

Theorem (Cauchy’s integral formula)
Let Γ be a simple-closed contour on a simply-connected region R, over which the function
f is analytic. Then

f(α) = 1
2πi

∫
Γ

f(z)
z − α

dz, ∀α ∈ in(Γ) (54.5.1)

Proof. Firstly, note that since in(Γ) is open, we can find a circle C centered at α lying entirely inside
Γ, and thus by the contour shrinking theorem we can set∫

Γ

f(z)
z − α

dz =
∫

C

f(z)
z − α

dz (54.5.2)
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for any such circle C. Now we make use of the fact that∫
C

1
z − α

dz =
∫ 2π

0

ireit

(α+ reit)− α
dt = 2πi (54.5.3)

so that

I =
∫

C

f(z)
z − α

dz − 2πif(α) =
∫

C

f(z)− f(α)
z − α

dz (54.5.4)

Our goal is now to prove that I = 0. Using the fact that f is differentiable at α, given any ϵ > 0 one
can find δ > 0 such that

|z − α| < δ =⇒ |f(z)− f(α)| < ϵ (54.5.5)

Letting r < δ for a given ϵ, then we see that∣∣∣∣f(z)− f(α)
z − α

∣∣∣∣ < ϵ

r
(54.5.6)

Using the Estimation theorem for contour integrals we then find that

|I| ≤ 2πr · ϵ
r

= 2πϵ (54.5.7)

Since this holds for any arbitrary ϵ > 0 it follows that I = 0, as desired. ■

Example.
(i) Consider

I =
∫

Γ

e3z

z2 − 4
dz, Γ = {z : |z − 1| = 2} (54.5.8)

Seeing as the inside of Γ does not include z = −2, we choose f(z) = e3z

z+2 which is
analytic on any region excluding z = −2. Then we see that

I =
∫

Γ

f(z)
z − 2

dz = f(2) = 2πie
6

4
= e6πi

2
(54.5.9)

where we used the Cauchy integral formula with a region R containing Γ but not
z = −2 (e.g. R = {z : Re(z) > −2}.

(ii) Consider

I =
∫

Γ

cos 2z
z(z2 + 4)

dz, Γ = 1 + i→ −1 + i→ −1− i→ 1− i (54.5.10)

The inside of Γ does not include ±2i so we should choose f(z) = cos 2z
z2+4 . This function

is analytic on any region excluding ±2i, so for example a disc centered at 0 of radius√
2 < r < 2. Then we see that

I =
∫

Γ

f(z)
z

dz = 2πi · 1
4

= πi

2
(54.5.11)

(iii) Consider
I =

∫
Γ

cos 3z
z2 − z

dz, Γ = {z : |z − 1| = 2} (54.5.12)
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It is not immediately obvious what f(z) to choose, since both denominator zeros z = 0
and z = 1 are included inside Γ. We solve this problem by using the partial fraction
expansion of 1

z(z−1) :

1
z(z − 1)

= A

z
+ B

z − 1
=⇒ A+B = 0,−A = 1 =⇒ A = −1, B = 1 (54.5.13)

Therefore
I =

∫
Γ

(
cos 3z
z − 1

− cos 3z
z

)
dz = 2πi(cos 3− 1) (54.5.14)

◀

An immediate corollary of the Cauchy integral formula is Gauss’ Mean Value Theorem

f(α) = 1
2π

∫ 2π

0
f(α+ reit) dt (54.5.15)

where r is the radius of the circle C contained in a simply-connected region R on which f is ana-
lytic.

Cauchy’s integral formula is really useful in the proof of the following remarkable result.

Theorem (Louiville’s theorem)
Every bounded entire function is constant (i.e. an entire non-constant function is always
unbounded)

Proof. Let f be a bounded, entire function, and let α ∈ C. Define C to be a circle centered at the
origin with radius r > |α| so that α ∈ in(C). Since f is analytic on C, a simply-connected region,
we can apply Cauchy’s theorem to find that

f(α) = 1
2πi

∫
C

f(z)
z − α

dz (54.5.16)

and thus

f(α)− f(0) = α

2πi

∫
C

f(z)
z(z − α)

dz (54.5.17)

By assumption, f is bounded so there existsK > 0 such that |f(z)| ≤ K, ∀z ∈ C. Similarly, we also
have that |z| ≤ r, ∀z ∈ in(C) so that |z(z−α)| > r(r− |α|). Therefore we can find an upper bound
for |f(α)− f(0)|:

|f(α)− f(0)| ≤ |α|
2π

K

r(r − |α|)
· 2πr = |α|

r − |α|
K (54.5.18)

This result holds for any r > |α|, so given any ϵ > 0 we can always find r > |α| such that

|f(α)− f(0)| < ϵ (54.5.19)

by setting r > |α|(1 +K/ϵ). It then follows that f(α) = f(0), so f is a constant function. ■
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For example, let’s consider f(z) = ei|z|, which is clearly a non-constant function, and also bounded
since |f(z)| = 1, ∀z ∈ C. Consequently, we see that f cannot be entire, it is not differentiable
somewhere in the complex plane (e.g. the origin).

54.6 Cauchy’s derivative formula
One can derive a theorem similar to Cauchy’s integral formula which calculates f ′(α).

Theorem (Cauchy’s first derivative formula)
Let f be analytic on a simply connected regionR containing a simple-closed contour Γ, then

f ′(α) = 1
2πi

∫
Γ

f(z)
(z − α)2 dz, ∀α ∈ R (54.6.1)

Proof. Using the contour shrinking theorem we can write

I = 1
2πi

∫
Γ

f(z)
(z − α)2 dz = 1

2πi

∫
C

f(z)
(z − α)2 dz (54.6.2)

where C is a circle centered at α with radius r, which for our purposes is contained inside Γ.

On the other hand, note that

f ′(α) = lim
h→0

f(α+ h)− f(α)
h

= lim
h→0

1
2πih

(∫
C

f(z)
z − α− h

dz −
∫

C

f(z)
z − α− h

)
dz (54.6.3)

= 1
2πi

lim
h→0

∫
C

f(z)
(z − α)(z − α− h)

dz (54.6.4)

implying that
f ′(α)− I = lim

h→0

1
2πi

∫
C

h

(z − α)2(z − α− h)
f(z) dz (54.6.5)

Now we will find an upper bound to the modulus of the integrand and show that it can be made
arbitrarily small. We have that

|z − α| = r, |z − α− h| ≥ r − |h| (54.6.6)

and since f is analytic on R and thus inside C, it will be bounded. Thus there exists K > 0 such
that |f(z)| < K, ∀z ∈ in(C). The upper bound for the integrand can now be written as∣∣∣∣ 1

2πi

∫
C

h

(z − α)2(z − α− h)
f(z) dz

∣∣∣∣ ≤ |h|K
r(r − |h|)

<
K

r2 |h| (54.6.7)
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so that
0 < |f ′(α)− I| < lim

h→0

K

r2 |h| = 0 =⇒ f ′(α) = I (54.6.8)

as desired. ■

Example. In the following, let Γ = {z ∈ C : |z| = 3}.
(i) Using the Cauchy derivative formula we see that∫

Γ

e2z

(z + 1)2 dz = 2πi d
dz

(e2z)
∣∣∣∣
z=−1

= 4πi
e2 (54.6.9)

(ii) Consider the following
I =

∫
Γ

4 cos z
z(z + 2)2 dz (54.6.10)

At a first glance it looks like setting f(z) = 4 cos z
z should work, but unfortunately this

function is not analytic at z = 0 which is inside Γ. We instead use themethod of partial
fraction expansions and write

1
z(z + 2)2 = A

z
+ B

z + 2
+ Cz

(z + 2)2 (54.6.11)

whereA,B,C need to be determined. They are easily found to beA = 1
4 , B = − 1

4 , C =
1
2 so that

I =
∫

Γ

cos z
z

dz −
∫

Γ

cos z
z + 2

+
∫

Γ

2 cos z
(z + 2)2 (54.6.12)

The first two integral are an application of Cauchy’s integral formula with f(z) = cos z
which is analytic onR = C:∫

Γ

cos z
z

dz = 2πi,
∫

Γ

cos z
z + 2

= 2πi cos(2) (54.6.13)

The third integral instead requires us to use Cauchy’s first derivative formula∫
Γ

2 cos z
(z + 2)2 = −4πi sin(−2) (54.6.14)

so that ∫
Γ

4 cos z
z(z + 2)2 dz = 2πi(1− z cos(2)− 2 sin(2)) (54.6.15)

◀

Using induction it is not hard to generalise the Cauchy derivative formulas to nth order

Theorem (Cauchy derivative formula)
Let f be analytic on a simply-connected regionR containing a simple-closed path Γ. Then

f (n)(α) = n!
2πi

∫
Γ

f(z)
(z − α)n

dz, ∀α ∈ in(Γ) (54.6.16)
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Example. Let Γ = {z : |z| = 2}.
(i) Consider ∫

Γ

cosh 2z
(z + i)3 dz (54.6.17)

Note that cosh 2z is analytic on C, so applying Cauchy’s third derivative formula with
α = i ∈ in(Γ) we find that∫

Γ

cosh 2z
(z + i)3 dz = 2πi

2
· 4 cosh(−2i) = 4πi cos(2) (54.6.18)

(ii) Consider

I =
∫

Γ

e2z

z3(z + 1)
dz (54.6.19)

It seems like there is no immediately obvious choice for f(z), since both roots of the
denominator, z = 0,−1 lie inside Γ. So we use the method of partial fractions:

1
z3(z + 1)

= 1
z3 −

1
z2 + 1

z
− 1
z + 1

(54.6.20)

Therefore

I =
∫

Γ

e2z

z3 dz −
∫

Γ

e2z

z2 dz +
∫

Γ

e2z

z
dz −

∫
Γ

e2z

z + 1
dz (54.6.21)

The first integral is 4πi, the second integral is 4πi, the third integral is 2πi and the third
integral is 2πi

e2 . Finally we get that∫
Γ

e2z

z3(z + 1)
dz = 2πi

(
1− 1

e2

)
(54.6.22)

◀

Theorem (Analyticity of derivatives)
Let f be analytic onR, then f (n) for n = 1, 2.... is also analytic onR.

Proof. Let α ∈ R and letD be an open disc centered at α lying inR (which exists sinceR is open).
Let Γ be a circle centered at α lying entirely in D, then f (n)(α) exists and is given by Cauchy’s
formula applied to αwith contour Γ in the regionD (notR, which may not be simply-conencted).
This also implies analyticity. ■

54.7 Proof of Cauchy’s theorem
Let us begin by proving Cauchy’s theorem for rectangular contours.

Proposition (Cauchy’s theorem for rectangular contours)
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Let f be analytic on a simply connected region R and let Γ be a rectangular contour in R.
Then ∫

Γ
f(z) dz = 0 (54.7.1)

Proof. Let f be analytic on a simply connected regionR and let Γ be a rectangular contour inRwith
perimeter l. We dissect Γ into four smaller rectangular contours, Γ1,Γ2,Γ3,Γ4, as shown below.

It is easy to see that

I =
∫

Γ
f(z) dz =

∫
Γ1

f(z) dz +
∫

Γ2

f(z) dz +
∫

Γ3

f(z) dz +
∫

Γ4

f(z) dz (54.7.2)

implying that

|I| ≤ 4
∣∣∣∣ ∫

∆1

f(z) dz
∣∣∣∣ (54.7.3)

where ∆1 is one of {Γ1,Γ2,Γ3,Γ4} which gives the largest contour integral. We know repeat this
procedure for ∆1, dissecting it into four smaller pieces and finding the upper bound:

|I| ≤ 42
∣∣∣∣ ∫

∆2

f(z) dz
∣∣∣∣ (54.7.4)

We reiterate this process ad infinitum thus creating a sequence {∆i}i=1,... of contours with perime-
ter L(∆n) = l

2n and with the property that

|I| ≤ 4n

∣∣∣∣ ∫
∆n

f(z) dz
∣∣∣∣ (54.7.5)

Let Rn by the rectangle formed by the inside of Γn and its boundary. These rectangles are nested
and their diagonal satisfies

0 ≤ sn ≤
l

2n
=⇒ lim

n→∞
sn = 0 (54.7.6)

so by the nested rectangles theorem there is a complex number α that lies in all the rectangles, and
thus in all the contours. Let’s taylor expand f around α:

f(z) = f(α) + (z − α)f ′(α) + e(z) (54.7.7)
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where e(z) is analytic onR due to the analyticity of f , and define

r(z) =

{
e(z)
z−α , z 6= α

0, z = α
→ 0 as z → α (54.7.8)

Note that limz→α = r(α) so r(z) is a continuous function onR. We can then integrate f as follows∫
∆n

f(z) dz =
∫

∆n

(f(α) + (z − α)f ′(α)) dz +
∫

∆n

(z − α)r(z) dz (54.7.9)

The first integral vanishes by the Closed Contour Theorem, leaving∫
∆n

f(z) dz =
∫

∆n

(z − α)r(z) dz (54.7.10)

Let ϵ > 0, by the continuity of r there exists δ > 0 such that

|z − α| < δ =⇒ |r(z)| < ϵ (54.7.11)

Therefore let us choose N such that for all n > N , the contour ∆n lies entirely within the disc
{z ∈ C : |z − α| < δ}, which can be done by the nested triangles theorem. We then have that

|(z − α)r(z)| < lϵ

2n
(54.7.12)

so that
|I| ≤ 4n · lϵ

2n
· l

2n
= l2ϵ (54.7.13)

Since this inequality holds for any ϵ > 0 we must have that I = 0 as desired. ■

We can apply Cauchy’s theorem for rectangular theorems to prove the more general case of closed
grid paths.

Proposition (Cauchy’s theorem for closed grid paths)
Let f be analytic on a simply connected regionR and let Γ be a closed grid path inR. Then∫

Γ
f(z) dz = 0 (54.7.14)

Proof. Consider a simple-closed grid path as shown below.
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We can again dissect it into smaller rectangular contours such that the shared edges cancel out, and
thus using Cauchy’s theorem for rectangular contours we see that

∫
Γ
f(z) dz =

6∑
i=1

∫
Ri

f(z) dz = 0 (54.7.15)

Now consider a closed grid path. In general it can be decomposed into a finite number of simple-
closed grid paths and a finite number of line segments which must be traversed twice. Contour
integrals along both such paths must vanish, proving the desired result. ■

Note that Cauchy’s theorem for closed grid paths implies that the contour integral along a grid
path from α to β is actually independent of the chosen grid path. As long as it starts at α and ends
in β any grid path will yield the same contour integral.

We now prove another important result which will allow us to generalise Cauchy’s theorem to any
closed contour.

Theorem (Primitive theorem)
Let f be analytic on a simply connected regionR, then it has a primitive onR.

Proof. We begin by proving the following lemma: Lemma. Let f be continuous onR and such that∫
Γ
f(z) dz = 0 (54.7.16)

for all closed grid paths Γ ⊂ R. Then f has a primitive onR.

Proof. Let ∫ β

α

f(z) dz (54.7.17)

be the contour integral of f along any grid path Γ from α to β. This integral must be independent
of the chosen contour by Cauchy’s theorem for closed grid paths.

Let α ∈ R, then
F (z) =

∫ z

α

f(w) dw (54.7.18)

is the primitive of f . Indeed, note that

F ′(z) = lim
h→0

1
h

(∫ z+h

α

f(w) dw −
∫ z

α

f(w) dz
)

= lim
h→0

1
h

∫ z+h

z

f(w) dw (54.7.19)

where we used a grid path that goes through both z and z + h. Consequently we have that

F ′(z)− f(z) = lim
h→0

1
h

(∫ z+h

α

f(w) dw −
∫ z

α

f(w) dz
)

= lim
h→0

1
h

∫ z+h

z

(f(w)− f(z)) dw (54.7.20)

Now let ϵ > 0, then for all z ∈ R the continuity of f implies that there exists δ > 0 such that

|w − z| < δ =⇒ |f(w)− f(z)| < ϵ (z ∈ R) (54.7.21)
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Note that if we shrink δ then the inequality must still hold, so let us choose δ to be small enough so
that {w ∈ C : |w − z| < δ} ⊂ R. Let h be a non-zero complex number such that |h| < δ, and let Γ
be the two-segment contour from z to z + h.

Then L(Γ) ≤ 2|h|, and since w ∈ Γ

|w − z| < δ =⇒ |f(w)− f(z)| < ϵ =⇒
∣∣∣∣ 1h
∫ z+h

z

(f(w)− f(z)) dw| ≤ 2ϵ (54.7.22)

In other words, we have that

|h| < δ =⇒
∣∣∣∣ 1h
∫ z+h

z

(f(w)− f(z)) dw| ≤ 2ϵ (54.7.23)

proving that the limit on the RHS of (54.7.20) vanishes, and therefore that F ′(z) = f(z). ■

LetR be simply connected, then for any closed grid path Γ ∈ R, Cauchy’s theorem for closed grid
path yields ∫

Γ
f(z) dz = 0 =⇒ f has a primitive (54.7.24)

proving the desired theorem. ■

Finally, let us prove Cauchy’s theorem.

Theorem (Cauchy’s theorem)
Let f be analytic on a simply connected region R. Then for any closed contour Γ ∈ R we
have that ∫

Γ
f(z) dz = 0 (54.7.25)

Proof. Since f is analytic on a simply-connected region R., it has a primitive F . Using the Closed
Contour theorem, we have that ∫

Γ
f(z) dz = 0 (54.7.26)

for any closed contour Γ inR. ■

We prove a final result that is linked to Cauchy’s theorem.

Theorem (Morera’s theorem)
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Let f be continuous on a regionR such that∫
Γ
f(z) dz = 0 (54.7.27)

for all rectangular contours Γ ∈ R. Then f is analytic onR.

Proof. The Lemma in the proof of the Primitive theorem implies that f has a primitive F that is
analytic onR. Moreover, the analyticity of derivatives implies that f = F ′ must also be analytic on
R. ■
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55CA5 Taylor and Laurent series

55.1 Series

Theorem (Convergence of series =⇒ null sequence)
If
∑∞

n=1 zn converges then (zn) is a null sequence.

Proof. Let sn =
∑n

k=1 zk form the partial sum sequence of
∑∞

N=1 zn. Since the sum converges we
must have that sn → s, therefore

zn = sn − sn−1 → s− s = 0 (55.1.1)

so zn is null. ■

Proposition (Geometric series)
Consider

∑∞
n=0 az

n for a, z ∈ C. If |z| < 1 then the series converges to a
1−z while if |z| ≥ 1

and a 6= 0 then the series diverges.

Proof. Suppose that z 6= 1. Then

sn = a+ az + az2 + ...+ azn = a
1− zn+1

1− z
(55.1.2)

and since (zn) is a basic null sequence for |z| ≤ 1 we find that

lim
n→∞

sn = a

1− z
, |z| < 1 (55.1.3)

If instead |z| ≥ 1 then |zn| diverges so (zn) cannot converge to 0. Moreover if a 6= 0 then (azn) does
not converge to 0 so the series must diverge, ■

Proposition (Harmonic series)
The p-series

∞∑
n=1

1
np

= 1 + 1
2p

+ 1
3p

+ ... (55.1.4)

converges if p > 1 and diverges if p ≤ 1.
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Proof. If p ≤ 0 then each term in the series is larger than or equal to one, so the partial sum sequence
cannot be null. It follows that the series then diverges.

Now suppose that 0 < p ≤ 1. We construct a set of n rectangles of width 1 starting at x = 1, and
height 1

xp where x is the left endpoint of the rectangle. This is a very crude Riemann integral, so
we should expect the sum of the areas of each rectangle to be bounded below by the actual area
under the curve y = 1

xp :
n∑

m=1

1
mp

= sn ≥
∫ n+1

1

dx

x
= log(n+ 1) (55.1.5)

Since (log(n+ 1)) is a non-null sequence (divergent) it follows that sn is non-null. Hence the p-
series diverges for p ≤ 1.

By a similar argument, for p > 1 we can construct n rectangles of width 1 starting at x = 0, and
height 1

xp where x is now the right endpoint of the rectangle. This time we expect the partial sum
to underestimate the actual area under the curve y = 1

xp so we can write

sn − 1 ≤
∫ n

1

dx

xp
= n1−p − 1

1− p
= 1
p− 1

(
1− 1

np−1

)
<

1
p− 1

(55.1.6)

Since sn is bounded above, it follows from the monotone convergence theorem that (sn) converges,
and thus the p-series must also converge, for p > 1. ■

From the combination rules for sequences we can derive the following combination rules for se-
ries

Proposition (Combination rules)
Suppose that

∑∞
n=1 zn and

∑∞
n=1 wn are both convergent series. Then

∞∑
n=1

(zn + wn) =
∞∑

n=1
zn +

∞∑
n=1

wn,

∞∑
n=1

λzn = λ

∞∑
n=1

zn, ∀λ ∈ C (55.1.7)

It follows immediately that if both the real and imaginary parts of
∑∞

n=1 zn converge, then so
will

∞∑
n=1

zn

. The converse result of this can also be proven.

Proposition (Real and imaginary part)
The series

∑∞
n=1 zn is convergent iff. both its real and imaginary parts converge, and

∞∑
n=1

zn =
∞∑

n=1
Re(zn) +

∞∑
n=1

Im(zn) (55.1.8)

Proof. Follows from the analogous result for series. ■
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Example. Let’s calculate the following sum

∞∑
n=0

1
2n

cos(nx), x ∈ R (55.1.9)

Note that cos(nx)
2n = Re

((
eix

2
)n). Therefore

∞∑
n=0

1
2n

cos(nx) = Re
( ∞∑

n=0

einx

2n

)
(55.1.10)

= Re
(

2
2− eix

)
(55.1.11)

= Re
(

2(2− e−ix)
5− 4 sin x

)
= 4− 2 cosx

5− 4 sin x
(55.1.12)

◀

Theorem (Comparison test)
If
∑∞

n=1 an is a convergent real series of non-negative terms, and |zn| ≤ an then
∑∞

n=1 zn

converges.

Example. Consider the following series

∞∑
n=1

cosn
n
√
n

(55.1.13)

Note that | cosn| ≤ 1 implying that∣∣∣∣fraccosnn
√
n

∣∣∣∣ ≤ 1
n3/2 (55.1.14)

and since
∑∞

n=1
1

n3/2 converges, it follows from the Comparison test that
∑∞

n=1 zn must also
converge. ◀

Definition (Absolute convergence)
The complex series

∑∞
n=1 zn is absolutely convergent if the real series

∑∞
n=1 |zn| is conver-

gent.

Theorem (Absolute convergence theorem) Let
∑∞

n=1 zn be an absolutely convergent
complex series. Then

∑∞
n=1 zn is also convergent.

Example.
(i) Consider the following series

∞∑
n=1

(−1)n+1

n
(55.1.15)
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Since
∣∣ (−1)n+1

n

∣∣ = 1
n , and the harmonic series diverges, the series cannot be absolutely

convergent.
(ii) Consider the following series

∞∑
n=0

(−1)n+1(1 + i)n

2n
(55.1.16)

We find that ∣∣∣∣ (−1)n+1(1 + i)n

2n

∣∣∣∣ =
(

1√
2

)n

(55.1.17)

and since
(

1√
2

)n

is a null sequence it follows that the series converges absolutely.

◀

Theorem (Ratio test)
Let

∑∞
n=1 zn be a complex series such that |zn+1/zn| → l as n→∞.

(i) if 0 ≤ l < 1 then
∑∞

n=1 zn converges absolutely, and thus converges.
(ii) if l > 1 then

∑∞
n=1 zn diverges.

Example.
(i) Consider the following series

∞∑
n=1

n2

3n + i
(55.1.18)

Let zn = n2

3n+i , we find that∣∣∣∣zn+1

zn

∣∣∣∣ =
∣∣∣∣ (n+ 1)2

3n+1 + i

3n + i

n2

∣∣∣∣ =
∣∣∣∣ 3n + i

3 · 3n + i

∣∣∣∣(1 + 1
n

)2

→ 1
3

(55.1.19)

so from the ratio test we see that the series converges absolutely.
(ii) Consider the following series

∞∑
n=1

zn

n!
, z ∈ C (55.1.20)

Let zn = zn

n! , then we find that∣∣∣∣zn+1

zn

∣∣∣∣ =
∣∣∣∣ zn+1

(n+ 1)!
n!
zn

∣∣∣∣ = |z|
n+ 1

→ 0 (55.1.21)

so we find that the series converges absolutely.

◀
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55.2 Complex power series

Theorem (Radius of convergence)
Given any power series

∑∞
n=0 an(z − α)n then it either

(i) converges for all z ∈ C

(ii) converges only if z = α

(iii) converges for all |z − α| < R and diverges otherwise, for some radius of convergence
R.

Proof. If z = α then the power series converges, so suppose that z 6= α.

Let
lim

n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = R (55.2.1)

where R exists and is finite. We now note that the ratio of consecutive terms in the power series is
given by ∣∣∣∣an+1(z − α)n+1

an(z − α)n

∣∣∣∣→ |z − α|R
(55.2.2)

so by the ratio test, the power series converges if |z − α| < R and diverges if |z − α| > R. ■

Example.
(i) Let’s find the radius of convergence of

∞∑
n=0

(αz)n (55.2.3)

Of course if α = 0 then the series converges for all z ∈ C. Suppose that α 6= 0, and let
zn = (αz)n. Then ∣∣∣∣zn+1

zn

∣∣∣∣ = |α||z| → |α||z| as n→∞ (55.2.4)

We see that if |α||z| < 1 =⇒ |z| < 1
|α| the series converges by the ratio test. If instead

|z| > 1
α then it diverges. Finally, if |z| = |α|, then the series converges for |α| < 1 and

diverges otherwise. The radius of converge of the given series is thus R = 1
|α| .

(ii) Let’s find the radius of convergence of

∞∑
n=0

(n+ 2−n)(z − 1)n (55.2.5)

We find that∣∣∣∣zn+1

zn

∣∣∣∣ =
∣∣∣∣n+ 1 + 2−n−1

(z − 1)n+1
(z − 1)n

n+ 2−n

∣∣∣∣ = |z − 1|
∣∣∣∣1 + 1/n+ 2−n−1/n

1 + 2−n/n
→ |z − 1| (55.2.6)

so it is clear that z converges for |z − 1| < 1.

◀
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Proposition (Differentiating and integrating power series)
A power series and its derivative both have the same radius of convergence. Furthermore if
the power series converges in some disc so that

f(z) =
∞∑

n=0
an(z − α)n, z ∈ DR(α) = {z : |z − α| < R} (55.2.7)

then f is analytic on DR(α) and its derivative is

f ′(z) =
∞∑

n=1
nan(z − α)n−1, z ∈ DR(α) = {z : |z − α| < R} (55.2.8)

Similarly, if (55.2.7) holds then

F (z) = b0 +
∞∑

n=0

an

n+ 1
(z − α)n+1, b0 ∈ C (55.2.9)

is a primitive of f on DR(α).

Example. Consider the following series

∞∑
n=0

zn = 1
1− z

, ∀z ∈ {z ∈ C : |z| ≤ 1} (55.2.10)

Differentiating term by term with respect to z we find that

∞∑
n=1

nzn−1 = 1
(1− z)2 , z ∈ {z ∈ C : |z| ≤ 1} (55.2.11)

Differentiating once more we find that

∞∑
n=2

n(n− 1)zn−2 =
∞∑

n=0
(n+ 1)(n+ 2)zn = 2

(1− z)3 , z ∈ {z ∈ C : |z| ≤ 1} (55.2.12)

Finally, integrating the original series term by term with respect to z yields

b0 +
∞∑

n=1

zn

n
= − log(1− z), z ∈ {z ∈ C : |z| ≤ 1} (55.2.13)

Setting z = 0 it is clear that b0 = 0. ◀

55.3 Taylor’s theorem

Theorem (Taylor’s theorem)
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Let f be analytic on the open disc Dr(α). Then

f(z) =
∞∑

n=0

f (n)(α)
n!

(z − α)n (55.3.1)

is a unique, convergent power series representation of f on Dr(α).

Note that sometimes it is easier to use Cauchy’s nth derivative formula to find the Taylor coeffi-
cients

f (n)(α)
n!

= 1
2πi

∫
C

f(z)
(z − α)n+1 dz, C ⊂ Dr(α) (55.3.2)

Example. Let’s find the taylor series about z = 0 for f(z) = cosh z. We find that

f (2n−1)(z) = sinh z =⇒ f (2n−1)(0) = 0 (55.3.3)
f (2n)(z) = cosh z =⇒ f (2n)(0) = 1 (55.3.4)

for n ∈ N and z ∈ C. Consequently

cosh z =
∞∑

n=0

z2n

(2n)!
(55.3.5)

By a similar argument

sinh z =
∞∑

n=0

z2n+1

(2n+ 1)!
(55.3.6)

Let’s find the Taylor series about z = 0 for f(z) = 1
(1+z)3 . This function is analytic on C \ {1}

so we can apply Taylor’s theorem to find a convergent power series representation on D1(0).
We find that

f ′(z) = − 3
(1 + z)4 =⇒ f ′(0) = −3 (55.3.7)

f ′′(z) = 12
(1 + z)5 =⇒ f ′′(0) = 12 (55.3.8)

... (55.3.9)

f (n)(z) = (n+ 2)!
2(1 + z)n

=⇒ f (n)(0) = (n+ 2)!
2

(55.3.10)

which can easily be proven by induction. Consequently

1
(1 + z)3 =

∞∑
n=0

(n+ 2)!
2

zn, |z| < 1 (55.3.11)

◀

An immediate application of Taylor’s theorem to f(z) = (1 + z)α yields the following famous
result.
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Proposition (Binomial series)
For α ∈ C the binomial series is equal to

(1 + z)α =
∞∑

n=0

(
α

n

)
zn, |z| < 1 (55.3.12)

Theorem (Combining power series)
Define the following power series

f(z) =
∞∑

n=0
an(z − α)n, |z − α| < R (55.3.13)

g(z) =
∞∑

n=0
bn(z − α)n, |z − α| < R′ (55.3.14)

(55.3.15)

Then
(i) Sum: if r = min{R,R′} then

(f + g)(z) =
∞∑

n=0
(an + bn)(z − α)n, z ∈ Dr(α) (55.3.16)

(ii) Multiple: for λ ∈ C

(λf)(z) =
∞∑

n=0
λan(z − α)n (55.3.17)

(iii) Product: if R = min{R,R′} then

(fg)(z) =
∞∑

n=0
cn(z − α)n, |z − α| < r (55.3.18)

where we defined
cn =

n∑
m=0

ambn−m (55.3.19)

(iv) Substitution: letw = λzk with λ 6= 0 and k ∈ N. Then the corresponding power series
f(w) has radius of convergence (R · |λ|)k.

Theorem (Composition rule)
Define

f(z) =
∞∑

n=0
an(z − α)n, |z − α| < R (55.3.20)

g(w) =
∞∑

n=0
bn(w − β)n, |w − β| < R′ (55.3.21)

(55.3.22)
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Suppose that β = f(α), then

g(f(z)) =
∞∑

n=0
cn(z − α)n, |z − α| < r (55.3.23)

for some r > 0 and cn is the coefficient of

cn =
n∑

k=0

bk

( n∑
l=1

al(z − α)l

)k

(55.3.24)

Example.
(i) Let’s find the Taylor series for h(z) = ez sin z to third order in z. Using the product

rule we find that

ez sin z =
(
z − z3

3!

)(
1 + z + z2

2!

)
(55.3.25)

= z + z2 + z3

2!
− z3

3!
+ o(z4) (55.3.26)

= z + z2 + z3

3
+ o(z4) (55.3.27)

(ii) Let’s find the Taylor series for h(z) = esin z about 0, up to fifth order in z. We know
that

f(z) = sin z =
∞∑

n=0

(−1)n

(2n+ 1)!
z2n+1 = z − z3

3!
+ z5

5!
, z ∈ C (55.3.28)

g(z) = ez =
∞∑

n=0

zn

n!
= 1 + z + z2

2!
+ z3

3!
+ z4

4!
+ z5

5!
, z ∈ C (55.3.29)

so using the composition rule

esin z = 1 +
(
z − z3

3!
+ z5

5!

)
+ 1

2!

(
z − z3

3!

)2

+ 1
3!

(
z − z3

3!

)3

(55.3.30)

+ 1
4!

(
z − z3

3!

)4

+ 1
5!

(
z − z3

3!

)5

+ o(z6)

= 1 + z − z3

3!
+ z5

5!
+ 1

2

(
z2 − z4

3

)
+ 1

3!

(
z3 − 3z5

3!

)
(55.3.31)

+ 1
4!
z4 + 1

5!
z5 + o(z6)

= 1 + z + 1
2
z2 − 1

8
z4 − z5

15
, |z| < r (55.3.32)

for some r > 0.
(iii) Let’s find the Taylor series for h(z) = log(1 + z) about z = 2 to fourth order in z.

Knowing that the Taylor series for the same function about z = 0 is

log(1 + z) = z − z2

2
+ z3

3
− z4

4
+ o(z5) (55.3.33)
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we need to find a suitable transformation of z that will give the Taylor series about
z = 2. Note that

log(1 + z) = log(3 + (z − 2)) = log(3(1 + (z − 2)/3)) (55.3.34)

and

log(1 + (z − 2)/3) = (z − 2)− (z − 2)2

32 · 2
+ (z − 2)3

33 · 3
− (z − 2)4

34 · 4
+ o(z5), |z − 2| < 3

(55.3.35)
Therefore

log(1 + z) = log(3) + z − 2
3
− (z − 2)2

32 · 2
+ (z − 2)3

33 · 3
− (z − 2)4

34 · 4
+ o(z5), |z − 2| < 3

(55.3.36)
(iv) Let’s find the Taylor series for h(z) = sin−1(z) up to seventh order. Note that h is

analytic on C− {x ∈ R : |x| ≥ 1} and

d

dz
(sin−1 z) = 1√

1− z2
, z ∈ C− {x ∈ R : |x| ≥ 1} (55.3.37)

So if we find the Taylor series for 1√
1−z2 then we can integrate term by term to find the

desired Taylor series. The binomial coefficients for α = − 1
2 are(

− 1
2
n

)
= (−1/2) · (−3/2) · ... · (−n+ 1/2)

n!
(55.3.38)

so that for |z| < 1

(1− z2)−1/2 = 1 + 1
2
z2 + 3

8
z4 + 5

16
z6 + o(z8) (55.3.39)

The integral rule then yields

sin−1 z = z + 1
6
z3 + 3

40
z5 + 5

112
z7 + o(z9), |z| < 1 (55.3.40)

◀

Proposition (Radius of convergence and boundedness)
Let f be an analytic and unbounded function on DR(α). Then D is the disc of convergence
of the Taylor series about α for f .

55.4 Uniqueness theorem
In this section we will apply the formalism of Taylor series to prove an important result on when
two functions are identical on a region.
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Definition (kth order zero)
Let f be analytic at α. Then we say that f has a zero of kth order at α if

f (n)(α) = 0 for n = 0, 1, ..., k − 1 (55.4.1)

Often, when a function is difficult to differentiate it may be hard to apply this definition to find the
order of a zero. However, intuitively it is easy to see that if the term (z − α)k containing the zero α
is of order k then that zero should be of the same order.

Theorem (Zeros of a function)
Let f be analytic at α. Then α is a zero of order k iff.

f(z) = (z − α)kg(z), |z − α| < r (55.4.2)

for some r > 0 and function g analytic and non-vanishing at α.

Proof. Since f is analytic at α and has a kth order zero at α, by Taylor’s theorem we can express it
as a Taylor series

f(z) =
∞∑

n=k

f (n)(α)
n!

(z − α)n = (z − α)kg(z), |z − α| < r (55.4.3)

for some r > 0. Note that g is analytic at α by the differentiation rule.

Conversely, now suppose that

f(z) = (z − α)kg(z), |z − α| < r (55.4.4)

where g is non-zero and analytic at α. Again we can expand it as a Taylor series of the form

g(z) =
∞∑

n=0
an(z − α)n, a0 6= 0, |z − α| < r (55.4.5)

It follows that
f(z) =

∞∑
n=k

f (n)(α)
n!

(z − α)n, |z − α| < r (55.4.6)

implying that f has a kth order zero at α. ■

Example.
(i) Let’s find the order of the zero z = 0 of f(z) = z2(cos z − 1). Note that f is analytic at

z = 0, and expanding cos z − 1 as a Taylor series:

cos z − 1 =
∞∑

n=0

(−1)n+1

(2n)!
z2n − 1 = z2

∞∑
n=0

(−1)n+1

(2(n+ 1))!
z2n (55.4.7)
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We thus find that
f(z) = z4

(
1
2
− z2

24
+ ...

)
(55.4.8)

so z = 0 is a fourth order zero.
(ii) Let’s locate the zeros of f(z) = z sin z and their orders. We expect {z ∈ C : z = kπ, k ∈

Z} to be the set of zeros. The Taylor series of sin z about 0 is

sin z =
∞∑

n=0

(−1)n+1

(2n+ 1)!
z2n+1 = z

∞∑
n=0

(−1)n+1

(2n+ 1)!
z2n (55.4.9)

Also, note that
sin(z − kπ) = (−1)k sin z (55.4.10)

so the Taylor series of z sin z about kπ is

z sin z = (−1)kz(z − kπ)
∞∑

n=0

(−1)n+1

(2n+ 1)!
(z − kπ)2n, z ∈ C (55.4.11)

It is clear that if k 6= 0 then z = kπ is a first order zero. On the other hand, for the zero
at z = 0 we find

z sin z = (−1)kz2
∞∑

n=0

(−1)n+1

(2n+ 1)!
z2n, z ∈ C (55.4.12)

so it is a second order zero.

◀

Theorem (Finiteness of zeros)
If f is analytic and not identically zero on a regionR then any zero of f inR is of finite order.

It remains to be understood exactly when a zero is not of finite order. The following definition will
help us.

Definition (Isolated zero)
A zero of a function is isolated if there is a disc centered at it that contains no other zeros.
A zero of finite order is isolated.

It follows that a zero cannot be isolated and thus of finite order if it is the limit point of a set of
zeros. But this implies that the function must be identically zero. Therefore

Proposition (Zero functions)
Let f be analytic onR containing a setS of zeros of f and their limit point. Then f is vanishes
onR.

An immediate consequence is the following uniqueness theorem.
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Theorem (Uniqueness theorems)
Let f, g be analytic on R and suppose that f(z) = g(z) for all z ∈ S ⊆ R. Assume also that
S has a limit point inR. Then f = g throughout all ofR.

Proof. Use the previous result with f − g. ■

Example. Suppose f is entire and

f(i/n) = − 1
n2 for n = 1, 2, ... (55.4.13)

Then let’s prove that f(z) = z2.
Let S = {i/n : n ∈ N} be a subset of C with limit point 0 (geometrically we have a set of
points on the imaginary axis approaching the origin). Since g(z) = z2 agrees with f(z) for
all z ∈ S it follows that f(z) = g(z) on C. ◀

55.5 Singularities

Definition (Isolated singularity)
An isolated singularity of a function f is a pointα such that f is analytic on {z : 0 < |z−α| <
r} for some r > 0, but not at α.

Example.
(i) Consider the function

f(z) = 3z − i
z3 sin

(
1

z + 1

)
(55.5.1)

This function is analytic everywhere except at z = 0,−1 which are singularities.
(ii) Consider the function

g(z) = 1
sin(1/z)

(55.5.2)

This function is analytic everywhere except when sin(1/z) = 0 or z = 0, implying that
z = 1

nπ for n ∈ Z or z = 0. The former is clearly a singularity as one can always find
a due to the finite distance between each of these points. It follows that z = 0 is not
a singularity since there is no punctured neighborhood of 0 around which 1

sin(1/z) is
analytic (since the sequence of± 1

mπ converges to 0, this follows from the epsilon-delta
definition).

◀

Definition (Function tending to ∞)
Let f be defined onA and suppose α is a limit point ofA. We say that f →∞ as z → α if for
any sequence (zn) in A \ {α} converging to α, f(zn) → ∞. Equivalently, if for eachM > 0
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there is a δ > 0 such that

|f(z)| > M, ∀z ∈ A, 0 < |z − α| < δ (55.5.3)

Using the reciprocal rule for sequences one can easily prove that

Proposition (Reciprocal rule for functions)
Let f have a domain Awith a limit point α. Then

f(z)→∞ as z →∞ ⇐⇒ lim
z→α

1
f(z)

= 0 (55.5.4)

Consider the function
f(z) = sin z

z
(55.5.5)

which can easily be verified to be analytic on C \ {0} with a singularity at z = 0. The taylor series
about 0 for sin z is

sin z =
∞∑

n=0
(−1)n z2n+1

(2n+ 1)!
, z ∈ C (55.5.6)

so it follows that
sin z
z

=
∞∑

n=0
(−1)n z2n

(2n+ 1)!
, z ∈ C \ {0} (55.5.7)

Note that while the LHS is ill-defined at z = 0, the RHS does not suffer from this pathology, so we
may as well define a new function corresponding to the power series found above

g(z) =
∞∑

n=0
(−1)n z2n

(2n+ 1)!
, z ∈ C (55.5.8)

with
lim
z→0

f(z) = g(0) = 1 (55.5.9)

By defining the power series as a new function on its convergence integral we removed the singu-
larity of f at 0.

Definition (Removable singularity)
Let f have a singularity at α. Then α is a removable singularity if there exists a function g,
known as the analytic extension of f , that is analytic on {z : |z − α| < r} and such that

f(z) = g(z), 0 < |z − α| < r (55.5.10)

or equivalently
lim
z→α

f(z) = g(α) 6= 0 (55.5.11)

This statement effectively says that f(z) behaves like g(α)
z−α as z → α.
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Example. Consider the function

f(z) = 3z cot z = 3z cos z
sin z

(55.5.12)

This function is not analyticwhen the denominator vanishes, that iswhen z = mπ form ∈ Z.
These are all singularities since the discs {z : 0 < |z −mπ| < π} do not overlap, and thus
form a sequence of punctured discs about each z = mπ over which f is analytic.
For z = 0, note that

lim
z→0

3z cos z
sin z

= 3 (55.5.13)

so we can analytically extend f by taking

g(z) = 3(1− z2/2 + x4/24...)
(1− z2/6 + z4/120− ...)

, 0 < |z| < π

2
(55.5.14)

The denominator is an entire function with h(0) = 1 so by continuity there is some r > 0 for
which h is non-zero on |z| < r. Consequently g(z) is analytic on |z| < r and satisfies

f(z) = g(z), |z| < r (55.5.15)

implying that z = 0 is a removable singularity.
For z = mπ 6= 0, we find that

lim
z→mπ

3z cos z
sin z

→∞ (55.5.16)

so these are non-removable singularities, since any attempt to analytically extend f will still
be ill-defined at z = mπ. ◀

Definition (Simple pole)
Let f be singular at α. We say that α is a simple pole if there is a function g analytic on
{z : |z − α| < r} such that g(α) 6= 0 and such that

f(z) = g(z)
z − α

, 0 < |z − α| < r (55.5.17)

It follows that
lim
z→α

(z − α)f(z) = g(α) (55.5.18)

Example. Consider the function
f(z) = z

sin z
(55.5.19)

It is easy to verify that this has a pole at z = kπ for k ∈ Z. We know that z = 0 is a removable
singularity. Using the fact that

sin(z − kπ) = sin z cos kπ − cos z sin kπ = (−1)k sin z (55.5.20)
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we can rewrite the function it a more accessible way as

f(z) = (−1)kz

sin(z − kπ)
, k ∈ Z (55.5.21)

Now note that
sin(z − kπ) = (z − kπ)

∞∑
n=0

(−1)n

(2n)!
(z − kπ)2n, z ∈ C (55.5.22)

so we can define the following function

g(z) = (−1)kz

h(z)
, h(z) =

∞∑
n=0

(−1)n

(2n)!
(z − kπ)2n (55.5.23)

Since h(kπ) = 0 it follows that h(z) 6= 0 and thus g(z) is analytic on |z − kπ| < π. Conse-
quently we find that

f(z) = g(z)
z − kπ

, 0 < |z − kπ| < π (55.5.24)

implying that kπ is a simple pole for k 6= 0. ◀

We can extend the definition of a simple pole as follows.

Definition (kth order pole)
Let f be singular at α. We say that α is a kth order pole if there is a function g analytic on
{z : |z − α| < r} such that g(α) 6= 0 and such that

f(z) = g(z)
(z − α)k

, 0 < |z − α| < r (55.5.25)

It follows that
lim
z→α

(z − α)kf(z) = g(α) (55.5.26)

By this definition, a zeroth order pole is a removable singularity.

Example. Consider the function

f(z) = z + 2
z4(z2 − 4)3 , (55.5.27)

We can write this as
f(z) = 1

z4(z − 2)3(z + 2)2 (55.5.28)

This function has singularities at z = 0,±2. Defining the following analytic function

g(z) = 1
(z − 2)3(z + 2)2 , 0 < |z| < 2 =⇒ g(0) 6= 0 (55.5.29)

we see that
f(z) = g(z)

z4 , 0 < |z| < 2 (55.5.30)
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Hence z = 0 is a fourth order pole. Similarly let’s now define

g(z) = 1
z4(z + 2)2 , 0 < |z − 2| < 2 =⇒ g(2) 6= 0 (55.5.31)

then
f(z) = g(z)

(z − 2)3 , 0 < |z − 2| < 2 (55.5.32)

so z = 2 is a third order pole. Finally, let’s define

g(z) = 1
z4(z − 2)3 , 0 < |z + 2| < 2 =⇒ g(−2) 6= 0 (55.5.33)

then
f(z) = g(z)

(z + 2)2 , 0 < |z + 2| < 2 (55.5.34)

so z = −2 is a second order pole. ◀

Finally, if the singularity is neither removable nor a pole then we define it as an essential singular-
ity.

Definition (Essential singularity)
Let f be singular at α, then α is an essential singularity if it is neither removable nor a
pole. Therefore if f(z) does not tend to a finite limit or to∞ as z approaches α then α is an
essential singularity.

Example. Consider the function f(z) = e1/z . It is evident that z = 0 is an essential
singularity, for example by considering zn = 1

nπi which is null, and thus as zn → then

e1/zn = enπi = (−1)n (55.5.35)

which does not tend to a finite limit or to∞. Consequently neither does f(z) thus proving
that z = 0 is an essential singularity. ◀

55.6 Laurent’s theorem

Definition (Extended power series)
Let z ∈ C, then an Extended power series about α is a power series of the form

∞∑
n=−∞

an(z − α)n = ...+ a−2

(z − α)2 + a−1

z − α
+ a0 + a1(z − α) + ... (55.6.1)

The extended power series for a given z, an, α ∈ C, n ∈ Z converges if both the analytic part

∞∑
n=0

an(z − α)n = a0 + a1(z − α) + ... (55.6.2)
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and singular part
∞∑

n=0
a−n(z − α)−n = a−1

z − α
+ a−2

(z − α)2 + ... (55.6.3)

For example, the function f(z) = sin z
z3 has analytic part

− 1
3!

+ z2

5|
− z4

7!
... (55.6.4)

and singular part 1
z2 . We know that the analytic part converges on its disc of convergence Ds(α).

On the other hand, the singular part can be viewed as a normal power series with (z − α)−1 as its
argument, meaning that it converges when

|z − α|−1 = |(z − α)−1| < s′ =⇒ |z − α| > r (55.6.5)

where r = 1
s′ for some s′. Consequently, the extended power series will converge on the following

annulus of convergence
A = {z : r < |z − α| < s} (55.6.6)

which can either be

(i) an open annulus

(ii) a punctured open disc

(iii) a punctured plane

(iv) the outside of a disc

(v) the empty set

Example. Consider the following extended power series

...+ 1
z3 + 1

z2 + 1
z

+ 1 + z + z2 + z3 + ... (55.6.7)

We see that the singular part
1
z

+ 1
z2 + 1

z3 + ... (55.6.8)

converges when |1/z| < 1 =⇒ |z| > 1. Similarly, the analytic part

1 + z + z2 + z3 + ... (55.6.9)

converges when |z| < 1. Therefore, the annulus of convergence of the extended power series
must be the empty set, A = ∅. ◀

We know that ordinary power series can be used to define analytic functions on their disc of con-
vergence. Moreover, Taylor’s theorem tells us that any analytic function on a discD can be written
as an ordinary power series. Since extended power series can be used to define analytic functions
on their annulus of convergence, one should expect that any analytic function on an annulusA can
be expressed as an extended power series. This is known as Laurent’s theorem.
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Theorem (Laurent’s theorem) Let f be analytic on the open annulus A = {z : r <

|z − α| < s} for 0 ≤ r < s ≤ ∞. Then f(z) defines a unique, extended power series, known
as a Laurent series:

f(z) =
∞∑

n=−∞
an(z − α)n, z ∈ A (55.6.10)

where
an = 1

2πi

∫
C

f(z)
(z − α)n+1 dz, n ∈ Z (55.6.11)

and where C ∈ A is a circle centered at α.

It follows immediately from the uniqueness of the Laurent power series that if f is analytic on
the disc Dr(α) then the Taylor series will be the same as the Laurent series about α for f on the
punctured disc Dr(α) \ {0}.

Theorem (Singularities using Laurent series)
Let f be an analytic function with a singularity at α with a Laurent series about this point
given by

f(z) =
∞∑

n=−∞
an(z − α)n (55.6.12)

We can classify α as
(i) a removable singularity iff an = 0, ∀n < 0.
(ii) a kth order pole iff a−k 6= 0 and an = 0, ∀n < −k
(iii) an essential singularity iff an 6= 0 for infinitely many, but not necessarily all n.

Example. Consider the function f(z) = z sin 1
z2 . This function is analytic on C \ {0}, so

its Laurent series will coincide with the Taylor series of this function, which is given by

z sin 1
z

= z

(
1
z
− 1

3!z3 + 1
5!z5 − ...

)
, z 6= 0 (55.6.13)

= 1− 1
3!z2 + 1

5!z4 − ..., z 6= 0 (55.6.14)

Consequently, since there are an infinite number of non-zero a−k coefficients for k > 0, z = 0
must be an essential singularity. ◀

Often, it is quite difficult to compute the Laurent series coefficients using the Cauchy integral for-
mula

an = 1
2πi

∫
C

f(z)
(z − α)n+1 dz, n ∈ Z (55.6.15)

For partial fractions, one can use a different method to compute the Laurent series, which we show
below.

Example. Consider the function

f(z) = 4
(z − 1)(z + 3)

(55.6.16)
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Let’s evaluate its Laurent series on A = {z : |z| < 1} and B = {z : 1 < |z| < 3}. Using the
method of partial fractions, we find that

f(z) = 4
(z − 1)(z + 3)

= 1
z − 1︸ ︷︷ ︸
h(z)

− 1
z + 3︸ ︷︷ ︸
g(z)

(55.6.17)

Now note that g(z) is analytic on G1 = {z : |z| < 3} and G2 = {z : |z| > 3}, while h(z) is
analytic on H1 = {z : |z| < 1} and H2 = {z : |z| > 1}.
If we want to find the Laurent series on A, then since A ⊆ G1 and A ⊆ H1, it suffices to
find the Laurent series for g on G1 and h on H1, and taking their difference. For g(z), since
|z| < 3 =⇒ |z/3| < 1 we find that

1
z + 3

= 1
3

1
1 + z/3

= 1
3

(
1− z

3
+ z2

9
− z3

27
+ o(z4)

)
(55.6.18)

= 1
3
− z

9
+ z2

27
− z3

81
+ o(z4), z ∈ G1 (55.6.19)

Similarly for h(z), since |z| < 1 we find that

1
z − 1

= −1− z − z2 − z3 + o(z4), z ∈ H1 (55.6.20)

Consequently

f(z) = (−1− z − z2 − z3)−
(

1
3
− z

9
+ z2

27
− z3

81

)
+ o(z4) (55.6.21)

= −4
3
− 8

9
z − 28

27
z2 − 80

81
z3 + o(z4), z ∈ A (55.6.22)

To find the Laurent series on B, note that B ∈ G1 and B ∈ H2 so it suffices to find that
Laurent series for g on G1 (which we have already calculated) and h on H2, and take their
difference. For h(z), since |z| > 1 =⇒ |1/z| < 1 it follows that

1
z − 1

= 1
z

1
1− 1/z

= 1
z

(
1 + 1

z
+ 1
z2 + 1

z3 + o(z−4)
)

(55.6.23)

= 1
z

+ 1
z2 + 1

z3 + 1
z4 + o(z−5) (55.6.24)

Thus the Laurent series for f on B is

f(z) = 1
z

+ 1
z2 + 1

z3 + 1
z4 + o(z−5)− 1

3
+ z

9
− z2

27
+ z3

81
+ o(z4) + o(z−5), z ∈ B (55.6.25)

◀

This method works well if the Laurent series is centered at z = 0. If this is not the case, the simplest
approach is to make a substitution so that the Laurent series about 0 may be used.

Example.
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(i) Let’s find the Laurent series for

f(z) = cos(z − 2)
(z − 2)2 (55.6.26)

about z = 2. Note that f(z) is analytic on C \ {2} so the function’s Taylor series can be
used to compute the Laurent series. Let w = z − 2 ⇐⇒ z = 2 + w. Then using the
Laurent series for f(w) about w = 0 we see that

f(z) = cosw
w2 = 1

w2

(
1− w2

2!
+ w4

4!
− w6

6!

)
+ o(w8) (55.6.27)

= 1
(z − 2)2 −

1
2!

+ (z − 2)2

4!
− (z − 2)4

6!
+ o((z − 2)8), z 6= 2 (55.6.28)

(ii) Let’s find the Laurent series for

f(z) = 4
(z − 1)(z + 3)

(55.6.29)

about z = −3 on the annulus A = {z : 0 < |z − 3| < 4}. Letting w = z + 3 then this is
equivalent to finding the Laurent series for

f(w) = 4
w(w − 4)

= 1
w − 4︸ ︷︷ ︸

g(z)

− 1
w︸︷︷︸

h(z)

(55.6.30)

Note that g(z) is defined on G1 = {w : |w| < 4} and G2 = {w : |w| > 4} while
h(z) is defined on H = {w : |w| > 0}. Since A = {w : 0 < |w| < 4} ⊆ G1 and
A = {w : 0 < |w| < 4} ⊆ H it suffices to evaluate the Laurent series about w = 0 for g
on G1 and h on H , and take their difference. For g, since |w/4| < 1 we find that

1
w − 4

= −1
4

1
1− w/4

= −1
4

(
1 + w

4
+ w2

42 + w3

43 + o(w4)
)

(55.6.31)

= −1
4
− w

42 −
w2

43 −
w3

44 + o(w4) (55.6.32)

Consequently

f(w) = − 1
w
− 1

4
− w

42 −
w2

43 −
w3

44 + o(w4), 0 < |w| < 4 (55.6.33)

or equivalently

f(z) = − 1
z + 3

− 1
4
− z + 3

16
− (z + 3)2

64
− (z + 3)3

256
+ o((z + 3)4) (55.6.34)

for 0 < |z − 3| < 4.

◀
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55.7 Behaviour near a singularity

Theorem (Equivalences for singularities)
Let f have a singularity at α, then
(i) α is removable
(ii) limz→α f(z) exists
(iii) f is bounded on {z : 0 < |z − α| < r} for r > 0
(iv) limz→α(z − α)f(z) = 0
are all equivalent.
Similarly for poles
(i) α is a kth order pole, k ∈ N

(ii) limz→α(z − α)kf(z) exists and is non-zero
(iii) 1

f has a removable singularity at αwhich when removed gives rise to a kth order zero
at α

are all equivalent. It follows that f has a pole at α iff f(z)→∞ as z → α.

Example.
(i) Consider the function f(z) = 3z

tan 3z which has a removable singularity at α = 0. In-
deed

lim
z→0

3z2

sin 3z
cos 3z = lim

z→0

3z2

3z − (3z)3/6 + ...
= 0 (55.7.1)

(ii) Consider the function f(z) = z
sin3 z , which has a third order pole at z = 0. We find that

lim
z→0

zkf(z) = lim
z→0

zk+1

sin3 z
= 1 iff k = 2 (55.7.2)

so f(z) has a second order pole at z = 0. Similarly f also has pole at z = kπ for k 6= 0,
and we find that

lim
z→kπ

(z − π)kf(z) = lim
z→kπ

(−1)3kz(z − π)k

sin3(z − kπ)
= (−1)kkπ iff k = 3 (55.7.3)

so the singularity at z = kπ for k 6= 0 is a third order pole.
(iii) Consider f(z) = g(z)/z where g is entire. If g(0) 6= 0 then z = 0 is just a first order

pole, since
lim
z→0

zf(z) = lim
z→0

g(z) = g(0) 6= 0 (55.7.4)

since g is entire and thus continuous at z = 0. If instead g(0) = 0 we have a removable
singularity since

lim
z→0

zf(z) = lim
z→0

g(z) = g(0) = 0 (55.7.5)

Finally, letting f(z) = 1/g(z) where g is entire and has a pole of order 2 at z = 0, then
it follows that there exists some l 6= 0 such that

lim
z→0

z2g(z) = l (55.7.6)
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Thus f(z) has a removable singularity at z = 0 since

lim
z→0

zf(z) = lim
z→0

z3

z2g(z)
= 0
l

= 0 (55.7.7)

◀

55.8 Evaluating integrals using Laurent series
Often times one can reverse Laurent’s theorem and use the Laurent series for a function to evaluate
a given contour integral. For example, if an is the Laurent coefficient of the (z − α)n term in the
Laurent series of f(z) aboutα on the punctured discD = {z : 0 < |z−α| < r}. It follows that∮

C

f(z)
(z − α)n+1 dz = 2πian (55.8.1)

where C is any circle in D centered at α. From this we find that∮
C
f(z) dz = 2πia−1 (55.8.2)

This formula is extremely general, it can reduce the contour integral of any function around a circle
into a Laurent series problem. The coefficient a−1 is so important that it is given a name.

Definition (Residue)
Let f be analytic on a punctured disc centered at α. Then the residue Res(f, α) of f at α is
the coefficient a−1 of 1

z−α in the Laurent series of f about α.

Example.
(i) Let’s evaluate ∮

C

w4 sinh 1
w
dw (55.8.3)

where C is any circle centered at the origin. It is clear that to find the residue we must
find the 1

w5 term in the Laurent series of sinh 1
w .

sinh 1
w

= 1
w

+ 1
2!

1
w2 + ...+ 1

5!
1
w5 + ... (55.8.4)

so it follows that the residue of w4 sinh 1
w at w = 0 is just 1. Consequently∮

C

w4 sinh 1
w
dw = 2πi

5!
= πi

60
(55.8.5)

(ii) Let’s evaluate ∫
C

sin 2z
z4 dz (55.8.6)

where C = {z : |z| = 5}. This time we need to find the third order term in the Laurent
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series of sin 2z about 0. This is clearly

sin 2z = ...− (2z)3

3!
+ ... (55.8.7)

implying that ∫
C

sin 2z
z4 dz = 2πi ·

(
− 4

3

)
= −8πi

3
(55.8.8)

◀

− 548 −



56CA6 Residues

56.1 Calculating residues
We saw in the last section that the residues of the Laurent series are quite important for evaluating
contour integrals. There are a number of ways it can be computed, one way is to just calculate the
Laurent series and obtain the coefficient of z−1.

Example. Let’s find the residue of

f(z) = zeiz

(z − π)2 = eiz

z − π
+ πeiz

(z − π)2 (56.1.1)

about z = π. Note that the Taylor series for eiz is

eiz = −ei(z−π) = −1− i(z − π) + (z − π)2

2
− i(z − π)3

6
− ... for z ∈ C (56.1.2)

so we get that

f(z) = − 1
z − π

(
1+i(z−π)− (z − π)2

2
+ ...

)
− π

(z − π)2

(
1+i(z−π)− (z − π)2

2
+ ...

)
, z 6= π

(56.1.3)
The residue Res(f, π) is given by the coefficient of (z − π)−1, so

Res(f, π) = −1− iπ (56.1.4)

◀

If the function is odd or even, then finding the residue at αwill also quickly yield he residue at−α
as the next proposition states.

Proposition (Residues of odd/even functions)
Let f be singular at α and −α. If f is odd then Res(f, α) = Res(f,−α) while if f is an even
function then Res(f,−α) = −Res(f, α).

Nevertheless, in many cases residues can be very challenging to find, for example finding the
residue at the point z = 2i of

f(z) = eiz

z(z − 2i)3(2z + 3)
(56.1.5)
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would be a lengthy calculation by the methods of the previous chapter.

Suppose f is analytic on {z : 0 < |z − α| < r} with a simple pole at α. Then it follows that the
Laurent series for f(z) must take the form

f(z) = a−1

z − α
+ a0 + a1(z − α) + ... for 0 < |z − α| < r (56.1.6)

with a−1 6= 0. Consequently

lim
z→α

(z − α)f(z) = a−1 = Res(f, α) (56.1.7)

n the case of simple poles the computation of residues is thus reduced to that of a limit. If instead
we have a removable singularity then a−1 = 0 implying that

Res(f, α) = 0 (56.1.8)

These results suggest that the following theorem holds.

Theorem (Residues from limits)
Let f have a singularity at α and assume limz→α(z − α)f(z) exists, then

Res(f, α) = lim
z→α

(z − α)f(z) (56.1.9)

There are two useful results from this theorem that apply to rational functions.

Proposition (Rational function residues)
Let f(z) = g(z)

h(z) where g and h are analytic at α, and where h(α) = 0, h′(α) 6= 0. Then

Res(f, α) = g(α)
h′(α)

(56.1.10)

If h(z) = z − α then
Res(f, α) = g(α) (56.1.11)

Example.
(i) Let’s find the residue of

f(z) = 1
z2(1− z)(1− 2z)(1− 3z)

(56.1.12)

about α = 1
3 . We find that

Res(f, 1/3) = lim
z→1/3

(z − 1/3)f(z) = −1
3

lim
z→1/3

1
z2(1− z)(1− 2z)

= −27
2

(56.1.13)

Imagine calculating this using Laurent series!
(ii) Let’s find the residue of

f(z) = z + 9
(z2 + 1)(z2 + 9)

(56.1.14)
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about α = 3i. We find that

Res(f, 3i) = lim
z→3i

z + 9
(z2 + 1)(z + 3i)

= 9 + 3i
−8 · 6i

= −1 + 3i
16

(56.1.15)

(iii) Let’s find the residue of

f(z) = z3

z4 + 1
(56.1.16)

about α = e(2n+1)iπ/4 for n ∈ Z. We find that

Res(f, α) = α3

4α3 = 1
4

(56.1.17)

(iv) Let’s find the residue of
f(z) = π csc(πz)

4z2 − 1
(56.1.18)

about α = ± 1
2 . Let g(z) = π and h(z) = (4z2 + 1) sin(πz) which are both analytic at α

and such that h(α) = 0. Then we see that

h′(z) = 8z sin(πz) + (4z2 + 1)π cos(πz) =⇒ h′(α) = 4 6= 0 (56.1.19)

It follows that
Res(f, α) = π

4
(56.1.20)

(v) Let’s find the residue of
f(z) = π cot(πz)

4z2 + 1
(56.1.21)

about α = ± 1
2 i. Let g(z) = π cos(πz) and h(z) = (4z2 − 1) sin(πz) which are both

analytic at α and such that h(α) = 0. Then we see that

h′(z) = 8z sin(πz) + (4z2 + 1)π cos(πz) =⇒ h′(α) = −4 sinh(π/2) 6= 0 (56.1.22)

It follows that
Res(f, α) = −π

4
coth π

2
(56.1.23)

◀

When dealing with higher order poles then the rules we have described no longer apply. Never-
theless one can still prove a formula analogous to that for simple poles which evaluates the residue
of a function.

Theorem (Residues for higher order poles)
Let f have a kth order pole at α. Then

Res(f, α) = 1
(k − 1)!

lim
z→α

[
dk−1

dzk−1

(
(z − α)kf(z)

)]
(56.1.24)
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Proof. Let f have a kth order pole at α. Then its Laurent series about α can be written as

f(z) = ...+ a−k

(z − α)k
+ ...

a−1

z − α
+ a0 + ..., z ∈ D (56.1.25)

in some punctured disc D. Therefore

(z − α)kf(z) = ...+ a−k + a−k+1(z − α) + ...(z − α)k−1a−1 + a0(z − α)k + ..., z ∈ D (56.1.26)

Taking the k − 1th derivative of this expression we find that

dk−1

dzk−1

(
(z − α)kf(z)

)
= (k − 1)![a−1 + a0(z − α) + ...] (56.1.27)

Note that this function is analytic on D, thus taking the limit as z → α we find that

1
(k − 1)!

lim
z→α

[
dk−1

dzk−1

(
(z − α)kf(z)

)]
= a−1 = Res(f, α) (56.1.28)

as desired. ■

Example. Let’s find the residue of

f(z) = zeiz

(z − π)2 (56.1.29)

about z = π. Since f has a second order pole at π, we find that

dk−1

dzk−1

(
(z − α)kf(z)

)
= d

dz
(zeiz) = (1 + iz)eiz (56.1.30)

and consequently
Res(f, π) = lim

z→π
[(1 + iz)eiz] = −(1 + πi) (56.1.31)

just as we found previously. ◀

56.2 The Residue Theorem
We saw in the last chapter that if a function is analytic on a punctured discD = {z : 0 < |z−α| < r}
then ∫

C

f(z) dz = 2πiRes(f, α) (56.2.1)

for any circle C ⊂ D centered at α. This result can be extended to contours containing multiple
integrals, the only modification being that one must now take the sum of the residues, multiplied
by 2πi.

Theorem (Cauchy’s residue theorem)
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LetR be simply connected and f analytic onR except for a finite number of singularities αi.
Let Γ ∈ R be a simple-closed contour that does not traverse any of these singularities, then∫

Γ
f(z) dz = 2πi

∑
i contained

Res(f, αi) (56.2.2)

where the sum goes over all residues contained within Γ.

Example.
(i) Consider the integral ∫

Γ

sin z
z2 + 1

dz (56.2.3)

where Γ = {z : |z| = 3}. Since f(z) = sin z
z2−1 contains singularities at z = ±i, both

contained within Γ, it follows from Cauchy’s residue theorem that∫
Γ

sin z
z2 + 1

dz = 2πi[Res(f, i) + Res(f,−i)] = 4πiRes(f, i) (56.2.4)

where we used the fact that f is an odd function, and hence that the two residues are
equal to each other. We see that

Res(f, i) = sin(i)
2i

= 1
2

sinh(1) (56.2.5)

and thus ∫
Γ

sin z
z2 + 1

dz = 2πi
(
e+ 1

e

)
(56.2.6)

(ii) Let’s evaluate
I =

∫
Γ

z + 2
4z2 + k2 dz (56.2.7)

where Γ = {z : |z − i| = 2}. The integrand is analytic onR = C except for two simple
poles at 4z2 = −k2 =⇒ z = ±ik/2. The residues are given by

Res(f, ik/2) = lim
z→ik/2

z + 2
4z + 2ik

= 2 + ik/2
4ik

= k − 4i
8k

(56.2.8)

and
Res(f,−ik/2) = lim

z→ik/2

z + 2
4z − 2ik

= 2− ik/2
−4ik

= k + 4i
8k

(56.2.9)

Note that if−2 < ±k < 6 then Γ will contain at least one of them. If k = 1 for example
then Γ contains both singularities so

I = 2πi
(

1− 4i
8

+ 1 + 4i
8

)
= πi

2
(56.2.10)

If instead k = 3 then only the z = −3i/2 singularity is included so that

I = 2πi3− 4i
24

= πi
3− 4i

12
(56.2.11)
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Finally if k = 7 then no singularities are included so that

I = 0 (56.2.12)

◀

The residue theorem is also very usefulwhen evaluating trigonometric integrals from 0 to 2π:

I =
∫ 2π

0
Φ(cos t, sin t) dt (56.2.13)

Firstly we make the substitution

cos t = 1
2

(z + z−1), sin t = 1
2

(z − z−1), dz = izdt (56.2.14)

which corresponds to the parametrisation Γ : γ(t) = eit for t ∈ [0, 2π]. This transforms I into
a contour integral

∮
C
f(z) dz around the unit circle C. Assuming that f is analytic with a finite

number of singularities in a simply-connected region containing then one can apply the Residue
theorem and evaluate the contour integral.

Example. Let’s consider the integral ∫ 2π

0
cosn t dt (56.2.15)

We find that making the required substitution the integral turns into a contour integral∫ 2π

0
cosn t dt =

∫
C

1
2n

(z − z−1)n dz

iz
= − i

2n

∫
C

(z2 − 1)n

zn+1 dz (56.2.16)

The integrand is analytic on C except for z = 0 where it has a n-th order pole. Using the
binomial expansion we see that

f(z) = (z2 + 1)n

zn+1 = 1
zn+1

n∑
m=0

(
n

m

)
z2m (56.2.17)

so the residue of f at z = 0 is

Res(f, 0) =
(
n

n/2

)
if n is even (56.2.18)

and zero if n is odd, in which case there is no 1
z term in the Laurent series. Consequently

we find that ∫ 2π

0
cosn t dt =

{
π

2n−1

(
n

n/2
)
, n even

0, n is odd
(56.2.19)

◀
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56.3 Improper integrals
The residue theoremcan also be applied to evaluate improper integrals. Consider for example

I =
∫ ∞

−∞

dt

t2 + 1
= lim

r→∞

∫ r

−r

dt

t2 + 1
(56.3.1)

(i) We identify a suitable contour integral. In our case we consider∫
Γ

dz

z2 + 1
(56.3.2)

where Γ = Γ1 +Γ2 is the semi-circular contour from−r to r (we take the limit as r →∞ in the
end). This contour encloses the simple pole z = i and is made of a semi-circular arc which

will extend to infinity as r → ∞ and a straight path from −∞ to ∞ which is precisely the
integral I we are trying to evaluate. Generally, it is advantageous to choose a contour which
allows for the Residue theorem to be applied and that is made up of one component which
matches the interval of integration in the improper integral, and other components which
vanish as r →∞.

(ii) Applying the residue theorem, we see that∫
Γ

dz

z2 + 1
= 2πi 1

2i
= π (56.3.3)

This result is independent of r and a real number (this is crucial since as r →∞wewill show
that this contour integral is equal to the improer integral which is real).

(iii) We split the contour integral as ∫
Γ

dz

z2 + 1
= I +

∫
Γ2

dz

z2 + 1
(56.3.4)

(iv) We apply the estimation theorem to find an upper bound for
∣∣∣ ∫Γ2

dz
z2+1

∣∣∣. Indeed on Γ2 we
have that |z| = r so

|f(z)| = 1
|z2 + 1|

<
1

|z2| − 1
= 1
r2 − 1

(56.3.5)

Therefore, since the length of Γ2 is πr, and since f is continuous on Γ2 the estimation theorem
yields ∣∣∣∣ ∫

Γ2

dz

z2 + 1

∣∣∣∣ ≤ πr

r2 − 1
, r > 1 (56.3.6)
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(v) We take the limit as r →∞. Then∣∣∣∣ lim
r→∞

∫
Γ2

dz

z2 + 1

∣∣∣∣ ≤ lim
r→∞

πr

r2 − 1
= 0 (56.3.7)

implying that ∫
Γ2

dz

z2 + 1
= 0 (56.3.8)

Consequently we conclude that I = π.

Example. Consider the improper integral∫ ∞

−∞

dt

t4 + 1
(56.3.9)

We consider the contour ∫
Γ

dz

z4 + 1
(56.3.10)

where Γ is the same semi-circular contour as in ??. The integrand has four simple poles at
α = ±

√
±i = ±e±iπ/4. The poles α1 = eiπ/4 and α2 = −e−iπ/4 are contained inside Γ for

r > 1. We therefore find that

Res(f, α1) = lim
z→α1

(
1

(z + α1)(z2 + i)

)
= e−iπ/4

4i
(56.3.11)

Res(f, α2) = lim
z→α2

(
1

(z + α2)(z2 − i)

)
= eiπ/4

4i
(56.3.12)

Since f is analytic on the region {z : Im(z) > 0} except for z = α1 and z = α2, the Residue
theorem yields ∫

Γ

dz

z4 + 1
= 2πie

iπ/4 + e−iπ/4

4i
= π√

2
(56.3.13)

As expected, this result is real and independent of the radius of the semi-circle. Now we
split the integral into

π√
2

=
∫

Γ

dz

z4 + 1
= I +

∫
Γ2

dz

z4 + 1
(56.3.14)

Now note that on Γ2 = {z : |z| = r}we find that

|z4 + 1| < |z|4 + 1 = r4 + 1 =⇒
∣∣∣∣ 1
z4 + 1

∣∣∣∣ = 1
r4 + 1

(56.3.15)

so that using the estimation theorem, which is applicable since f(z) is continuous on Γ2,
yields ∣∣∣∣ ∫

Γ2

dz

z4 + 1

∣∣∣∣ < πr

r4 + 1
→ 0 as r →∞ (56.3.16)

Finally, if we extend the contour to infinity we find that

I = π√
2

(56.3.17)

◀
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Suppose we tried to apply this strategy to evaluate∫ ∞

−∞

t

(t2 + 1)(t− 2)
dt (56.3.18)

This time we can’t use the semi-circular contour, since the integrand has a singularity at z = 2
which is crossed by the contour. To resolve this we can modify the contour in the vicinity of the
singularity so as to skip over it.

Proposition (Round-the-Pole)
Let f be analytic on a punctured disc {z : 0 < |z−α| < δ}with a simple pole at α. Let ϵ < δ,
and let Γ be the upper-semicircle centered at α with radius ϵ. Then

lim
ϵ→0

∫
Γ
f(z) dz = πiRes(f, α) (56.3.19)

Thus we see that by skipping over the pole gives us half the result from a normal application of the
residue theorem.

From this we see that if p, q are rational functions such that the degree of q is larger than that of p
by at least two, and that any poles of p/q on the real axis are simple, then∫ ∞

−∞

p(t)
q(t)

dt = πi(2S + T ) (56.3.20)

where S is the sum of the residues of p/q in the upper half plane, and T is the sum of the residues
of p/q at the poles on the real axis.

Example. We evaluate ∫ ∞

−∞

dt

(t2 + a2)(t2 + b2)
(56.3.21)

We have four residues at ±ia,±ib, of which only ia, ib lie in the upper half plane. We get
that

Res(f, ia) = lim
t→ia

1
(t+ ia)(t2 + b2)

= 1
2ia

1
b2 − a2 (56.3.22)

Res(f, ib) = lim
t→ib

1
(t+ ib)(t2 + a2)

= − 1
2ib

1
b2 − a2 (56.3.23)

implying that

S = 1
2i(b2 − a2)

(
1
a
− 1
b

)
= 1

2πab(a+ b)
(56.3.24)

It follows that ∫ ∞

−∞

dt

(t2 + a2)(t2 + b2)
= π

ab(a+ b)
(56.3.25)

◀

We can actually extend the result by noting that exponentials eikt vanish in the circular portion of
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the semi-circular contour for k > 0. Therefore∫ ∞

−∞

p(t)
q(t)

eikt dt = πi(2S + T ) (56.3.26)

where S and T ares the residues on the upper half complex plane and on the real line of f(z) =
p(z)
q(z)e

ikz .

Let’s evaluate ∫ ∞

−∞

eikt

t
dt (56.3.27)

We have that f(z) = eikz/z has only one simple pole at z = 0, with a residue of 1. Therefore,
using the Round-the-Pole proposition we obtain

int∞−∞
eikt

t
dt = iπ =⇒

∫ ∞

−∞

cos(kt)
t

dt = 0, int∞−∞
sin kt
t

dt = π (56.3.28)

◀

Theorem (Infinite sums of residues)
Let h be a even function analytic on C except at α1, α2, ..., αk none of which are integers.
Let SN be the square contour with vertices at (N + 1/2)(±1 ± i). Suppose also that f(z) =
π cot(πz)h(z) is such that

lim
N→∞

∫
SN

f(z) dz = 0 (56.3.29)

Then
∞∑

n=1
h(n) = −1

2

[
Res(f, 0) +

k∑
j=1

Res(f, αj)
]

(56.3.30)

Proof. The function g(z) = π cot(πz) has simple poles at z = 0,±1,±2, ... which all have residue 1.
Thus the singularities of f consist of all the integers and the singularities of h. Hence

∀z ∈ Z, lim
z→n

(z − n)f(z) = h(n) = h(−n) = lim
z→−n

(z + n)f(z) (56.3.31)

which by assumption is a well-defined quantity. Nowwe evaluate the contour integral of f around
SN ∫

SN

f(z) dz = 2πi
(
Res(f, 0) +

k∑
j=1

Res(f, αj) +
N∑

n=1
[Res(f, n) + Res(f,−n)]

)
(56.3.32)

= 2πi
(
Res(f, 0) +

k∑
j=1

Res(f, αj) + 2
N∑

n=1
h(n)

)
(56.3.33)

As we let N →∞, by assumption we have

lim
N→∞

∫
SN

f(z) dz = 0 (56.3.34)
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implying that
N∑

n=1
h(n) = −1

2

(
Res(f, 0) +

k∑
j=1

Res(f, αj)
)

(56.3.35)

■

It turns out that the condition in (56.3.34) is not too artificial in light of the following result.

Proposition (Cotangent inequality)
For N ∈ N we have | cotπz| ≤ 2, ∀z ∈ SN .

We also state below theLaurent series for cot zwhich often proves useful to determineRes(f, 0)

cot z = 1
z
− 1

3
z − 1

45
z3 − ..., 0 < |z| < r (56.3.36)

Example.
(i) Let’s solve the Basel problem which consists in finding

∞∑
n=1

1
n2 (56.3.37)

Let h(z) = 1
z2 , so that

f(z) = πz cot(πz)h(z) = π

z

(
1
z
− 1

3
z − 1

45
z3 − ...

)
0 < |z| < r (56.3.38)

and thus Res(f, 0) = −π
3 . Also, if z ∈ SN then |z| ≥ N + 1

2 and thus

L(SN ) ·
∣∣∣∣π cot(πz)

z

∣∣∣∣ ≤ 16π
2N + 1

, z ∈ SN =⇒ lim
N→∞

∫
SN

f(z) dz = 0 (56.3.39)

Consequently (56.3.34) holds and

∞∑
n=1

1
n2 = π

6
(56.3.40)

just as Euler had proven!
(ii) Similarly we find that

∞∑
n=1

1
n4 = π

45
(56.3.41)

◀

Theorem (Infinite sums of residues)
Let h be a even function analytic on C except at α1, α2, ..., αk none of which are integers.
Let SN be the square contour with vertices at (N + 1/2)(±1 ± i). Suppose also that f(z) =
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π cot(πz)h(z) is such that
lim

N→∞

∫
SN

f(z) dz = 0 (56.3.42)

Then
∞∑

n=1
h(n) = −1

2

[
Res(f, 0) +

k∑
j=1

Res(f, αj)
]

(56.3.43)

Proof. The function g(z) = π cot(πz) has simple poles at z = 0,±1,±2, .... The residue at z = n is
(−1)n. Thus the singularities of f consist of all the integers and the singularities of h. Hence

∀z ∈ Z, lim
z→n

(z − n)f(z) = (−1)nh(n) = (−1)nh(−n) = lim
z→−n

(z + n)f(z) (56.3.44)

which by assumption is a well-defined quantity. Nowwe evaluate the contour integral of f around
SN ∫

SN

f(z) dz = 2πi
(
Res(f, 0) +

k∑
j=1

Res(f, αj) +
N∑

n=1
[Res(f, n) + Res(f,−n)]

)
(56.3.45)

= 2πi
(
Res(f, 0) +

k∑
j=1

Res(f, αj) + 2
N∑

n=1
(−1)nh(n)

)
(56.3.46)

As we let N →∞, by assumption we have

lim
N→∞

∫
SN

f(z) dz = 0 (56.3.47)

implying that
N∑

n=1
(−1)nh(n) = −1

2

(
Res(f, 0) +

k∑
j=1

Res(f, αj)
)

(56.3.48)

■

Once again the constraint in (56.3.47) is not very restrictive because of the following inequal-
ity

Proposition (Cosecant inequality) For N ∈ Nwe have | cscπz| ≤ 1, ∀z ∈ SN .

The Laurent series for csc z about z = 0 is

csc z = 1
z

+ 1
6
z + 7

360
z3 + ... (56.3.49)

Example. Let’s evaluate
∞∑

n=1

(−1)n

4n2 − 1
(56.3.50)

Letting h(z) = 1
4z2−1 we can calculate Res(f, 1/2) = Res(f,−1/2) = π/4. Moreover since h
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is analytic at z = 0 we get Res(f, 0) = −1.
Now note that if z ∈ SB then |z| ≥ N + 1/2 so that

|4z2 + 1| ≥ 4
(
N + 1

2

)2

− 1 =⇒
∣∣∣∣π cscπz
4z2 − 1

∣∣∣∣ ≤ π

4
(
N + 1

2
)2 − 1

, z ∈ SN (56.3.51)

Therefore ∣∣∣∣ ∫
SN

f(z) dz
∣∣∣∣ ≤ π

4(N + 1/2)2 − 1
· 4(2N + 1)→ 0 as N →∞ (56.3.52)

so
∞∑

n=1

(−1)n

4n2 − 1
= −1

2

(
− 1 + π

4
+ π

4

)
= 1

2
− π

4
(56.3.53)

◀
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61CV1Functionals and stationary values
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Fourier Analysis
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62FA1 Fourier series

62.1 Dirichlet conditions
The Fourier series technique may be employed to express functions that are not analytic (can’t
be expanded into a taylor series) as power series nonetheless. However, a number of conditions,
known as Dirichlet conditions must still be met.

Definition (Dirichlet conditions)
The Dirichlet conditions are:
(i) the function has finite fundamental period
(ii) has at most a finite number of discontinuities
(iii) finite number of stationary points per fundamental period
(iv) the integral of |f(x)| converges over a fundamental period
where the fundamental period of a periodic functions is the smallest T > 0 such that f(t+
T ) = f(t).
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64Convolutions

Acknowledgments
This is the most common positions for acknowledgments. A macro is available to maintain the
same layout and spelling of the heading.

Note added. This is also a good position for notes added after the paper has been written.
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