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We present a study of selected physical phenomena in statistical, analytical and fluid mechanics.

In Chapter 1, calculations and derivations of Planck’s law and Rydberg’s formula are given, fol-

lowing the historical development of Black-Body radiation theory and early quantum mechanics.

We apply our theoretical knowledge of radiation and flame spectroscopy to understand how fire

behaves in micro gravity in absence of convective currents.

In the second chapter, we immediately introduce the concept of surface energy and define surface

tension accordingly. A derivation of the Young-Laplace equation is presented, and is applied to

solve problems in fluid mechanics. More precisely, we address capillary action, the formation

of menisci, and the shape of puddles. Finally, we close the chapter showing the applicability of

surface tension in the study of minimal surfaces.

The third and fourth chapters both study the motion of Frisbees. Various studies were con-

ducted mostly examining either the aerodynamics or the mechanics behind flying disks. We

attempt to treat both topics collectively. We first introduce the use of summation convention

and tensor notation. Next, we provide a conceptual explanation of the stress tensor, and apply

this knowledge to derive the Navier-Stokes equation and provide a justification for the Bernoulli

Principle. We derive the equation of translational motion for the Frisbee by taking drag and lift

forces into consideration. A python simulation is then constructed to solve these equations of

motion. In the final chapter, we initially examine the kinematics of rigid bodies, and digress to

quantitatively describe the effect of fictitious forces such as the Coriolis force in the formation

of cyclones. Starting from Newtonian Mechanics we derive the Inertia tensor and the principle

of conservation of angular momentum. Finally, the equations of motion for uniform and torque

free precession are presented and implemented to derive the equation of rotational motion for a

Frisbee.

This project was carried out as part of the International Baccalaureate Middle Years Program

Personal Project, during the Summer of 2019.
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Chapter 1

Fire and its physical properties

Contents
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1.3 A catastrophe for Light: UV Catastrophe . . . . . . . . . . . . . . . . 6

1.4 The resolution: a derivation of Planck’s Law and Energy Quantisation 12

1.4.1 Standard Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Bose-Einstein Statistics and a new derivation . . . . . . . . . . . . . . . 13

1.5 Wien’s Approximation, Raleigh-Jeans Law and the Stephan Boltz-
mann Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Flame Spectroscopy: deriving Rydberg’s formula . . . . . . . . . . . 18

1.7 Spectral Lines of Hydrogenic Atoms . . . . . . . . . . . . . . . . . . . 21

1.8 Flames in microgravity, and other phenomena of fire . . . . . . . . . 23

1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Introduction

Since its "discovery" about 2 million years ago by the Homo Erectus,1 fire has been a fascinating

phenomenon. Despite its presence in our daily lives for millennia, fire and its properties have

been studied in depth by scientists for only a few centuries.2 Indeed, many of its most notable

and alluring characteristics, such as its "glow", have only been explained in the last century or

so with the rise of quantum mechanics. Hence, it is easy for one to wonder why fire has a certain

shape, colour and glow. Indeed, without the notions of quantisation and energy levels, the two

main processes behind the glow of fire, black body radiation and gas atomic excitation, wouldn’t

be explainable. Hence, we shall dedicate this first chapter to the study of these two phenomena

in order to answer some of the aforementioned questions.
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1.2 Overview on Black-Body radiation

We shall now begin with our study, by first defining "fire", and Black-Body radiation. According

to Cambridge Dictionary,3 a flame is

"a stream of hot, burning gas from something on fire".

— Cambridge Dictionary

This reaction therefore emits thermal electromagnetic radiation. Indeed, any body with a

non-zero absolute temperature will emit some form of electromagnetic radiation.4 The intensity

of the electromagnetic radiation as a function of its frequency is referred to as the spectral

radiance. This emission of radiation is due to the acceleration of the electrons within the atoms

of the ignited body. The acceleration of these charges will produce an electromagnetic field,

converting thermal kinetic energy to thermal electromagnetic energy.4

A black body radiator is an optimal body for the study of such phenomena, since they are in

thermodynamic equilibrium. More precisely, a black body is any object capable of absorbing all

radiation incident upon it. Thus, since there is no net flow of energy due to its state of equilibrium,

it emits all the absorbed heat, and radiates the thermal energy in the form of electromagnetic

energy, in a form called thermal electromagnetic radiation. It is both a perfect emitter and

absorber.4 The relationship between the intensity of the electromagnetic radiation and the

frequency of the radiation are given in Planck’s law of radiation, which gives the distribution

of the energy of thermal radiation (in the case of a black body, black body radiation) over the

electromagnetic frequency spectrum at a given temperature.5 It is worthy to note that black

bodies have an optimum frequency for which the intensity of emitted radiation is optimized, and

this frequency is dependent only on the temperature of the body.6

This is the exact process through which a metal rod, when heated to a sufficiently high

temperature, will start glowing. In reality, the thermal energy from the combustion reaction is

transferred to the rod by increasing the kinetic energy of the atoms within the rod. The accelera-

tion of such particles creates an electromagnetic field, electromagnetic radiation is emitted. The

"glow" that a blacksmith may see is in truth the radiation with frequency lying in the visible

spectrum of light. If we were to look at the rod through a UV camera, we’d see different radiation

with different intensity. To determine the intensity of radiation in a certain range of frequencies,

we repeat that Planck’s law is essential. Hence it shall be the focus of the following two sections

to derive this fundamental law from first principles.

1.3 A catastrophe for Light: UV Catastrophe

We will closely follow the derivation given in Tenn (2013).7 Consider a cubical box of side length

L, with perfectly conductive walls, and a small perforation applied to one face. Under ideal
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conditions, this would be a black body, as any radiation within it would bounce off the walls

until it is completely absorbed.

Let us now consider an electromagnetic wave travelling inside this cube. It is essential to

that until thermal equilibrium is actually reached, the radiation waves must persist. Hence, the

electromagnetic wave must have nodes at two opposite faces of the cube. Otherwise, any incident

radiation may lose energy due to its non-zero tangential component.9

Figure 1.1: To the left, a box containing standing waves, with nodes at its ends. This allows
the waves to bounce off and not lose energy until thermal equilibrium is reached. To the right,
a box containing waves, with non-zero amplitudes at its walls. Hence, incident radiation upon
the walls causes energy loss.

This means that the half-wavelength of the electromagnetic wave must be a divisor of L:

nxλx
2

=
nyλy

2
=
nzλz

2
= L (1.1)

It follows that the allowed values for the wave vector components are:

kx =
πnx
L
, ky =

πny
L
, kz =

πnz
L
. (1.2)

Looking at the cube in three dimensions, it is easy to see that the wavelengths can be

expressed as their directional cosines:

λx =
λ

cosα
, λy =

λ

cosβ
, λz =

λ

cos γ
, (1.3)

so that:

nx =
2L cosα

λ
, ny =

2L cosβ

λ
, nz =

2L cos γ

λ
. (1.4)
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Figure 1.2: View of the Box radiator, and decomposition of wavelength into components

Squaring both sides of (1.4), adding the squared components give:

n2
x + n2

y + n2
z =

4L2

λ2
= R2 (1.5)

where we used the fact that the sum of the squared directional cosines of an orthogonal basis

system is one.

cos2 α+ cos2 β + cos2 γ = 1 (1.6)

The same result could be derived by exploiting the classical wave equation.8

The Wave Equation

∇2A =
1

c2

∂2A
∂t2

(1.7)

The solution to this PDE can be solved, and setting boundary conditions for a stationary wave

so that it has zero amplitudes at the wall,9 we have that:

A(x, y, z) = A0 sin
nxπx

L
sin

nyπy

L
sin

nzπz

L
(1.8)

substituting into the equation gives (1.5):

n2
x + n2

y + n2
z =

4L2

λ2
= R2

as required.

We have that the sum of the squared ratios of 2L and the wavelength must be constant. In

other words, plotting this in a graph using nx−ny −nz as basis vectors/coordinates (see Figure

1.3), we’d get a sphere centered at the origin of radius R = 2L
λ However, note that nx, nyandnz
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Figure 1.3: Coordinate Plane with nx, ny, nz as axes.

can only be positive, since wavelengths are proportional to the L with positive proportionality

looking at (1.1).

The allowed frequencies are:

υ =
c

λ
=

c

2L

√
n2
x + n2

y + n2
z =

cR

2L
(1.9)

so that, differentiating

dυ =
c

2L
dR (1.10)

, where c is the speed of light (c ≈ 3.0×106) Let us now denote the number of modes at a certain

frequency υ with N(υ), so that N(υ)dυ is the number of modes with a frequency between υ

and υ + dυ. This value is equal to the volume of the shell of the octant with the ni values

corresponding to the frequency range. By having a variation in the frequency we have, in our

3-D diagram, a change in R (such that R(υ) ∈ [R,R+ dR]) using (1.10). Finally, recall that any

electromagnetic wave has two distinct modes of vibration, two polarisations. Thus, for each point

in our 3-D system we have two independent modes, leading to a factor of two in our expression

accounting for this effect. Taking these reflections into consideration:

N(υ)dυ︸ ︷︷ ︸
no. modes

=

volume of shell︷ ︸︸ ︷
4πR2dR

8
2 = πR2dR =

8πυ2L3

c3
dυ (1.11)

This will be fundamental, the number of modes with a range of frequencies between υ and υ+dυ

is equal to:

N(υ)dυ =
8πυ2L3

c3
dυ (1.12)
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Hence, we can multiply this result to the average energy per mode 〈H〉 to calculate the total

energy in a frequency range: Htotdυ, the spectral energy. Dividing the spectral energy by the

volume of the box gives the spectral energy density, the expression we’re looking for:

Energy density︷ ︸︸ ︷ˆ ∞
0

uυ(T )dυ =
Htot

L3
(1.13)

In other words, the spectral energy density in the frequency range is equal to the energy in the

frequency range (spectral energy) over the volume of the box:

uυdυ =

Spectral energy︷ ︸︸ ︷
〈H〉Nυdυ

L3
(1.14)

Moreover, notice that integrating over infinity for υ yield the total number of modes in the

box, which is clearly infinite since we have standing waves phased with the length of the cube.

This is indeed true, since integrating
´∞

0 N(υ)dυ −→∞

Let us now assume that the waves have persisted enough so that the system has reached ther-

mal equilibrium. Therefore, they each have a temperature T, with energy H. Using Boltzmann’s

Probability Distribution in classical statistical mechanics:

P (H) = Ce−
H
kT (1.15)

the average energy of a mode with temperature T in thermodynamic equilibrium is:

〈H〉 =

´∞
0 HP (H)dH´∞

0 P (H)dH
=

´∞
0 He−

H
kT dH´∞

0 e−
H
kT dH

= − d

dβ
ln
( ˆ ∞

0
e−βHdH

)
= kT

where β = 1
kT . We also used the fact that the average energy of a mode is gives by:

〈H〉 = −dZ
dβ
, Z =

∞∑
n=0

eβHn (1.16)

for energy levels Hn=0,1... We have therefore reached the equipartition theorem.10

Theorem 1 (Equipartition Theorem). The energy of a system is shared equally amongst all

energetically accessible degrees of freedom of such system. Hence system will generally try to

maximise its entropy by distributing its energy amongst all modes. For example, the vibrational

energy of a single molecule oscillator heated to a temperature T will be:

〈Hvib〉 = kT (1.17)

Using this result, we have that the energy of all modes of the cavity in the frequency range
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υ and υ + dυ is given by the product of the number of modes and the energy per mode:

N(υ)dυ · 〈H〉 =
8πυ2L3

c3
dυ · kT (1.18)

The spectral energy density function uυ(T ) is the total energy per unit frequency interval over

the volume of the cube (per unit volume would be more correct). Using (1.14):

uυ(T )dυ =
8πυ2kT

c3
dυ (1.19)

uυ(T ) =
8πυ2kT

c3
(1.20)

Hence, we have that the spectral energy density function is actually a function defining the

spectral energy (electromagnetic radiation energy) per unit volume in terms of the frequency

of raadiation. The fact that this is a function in terms of frequency and not only temperature

makes it "spectral" as we are dealing with a spectrum. The same argument would apply using

wavelengths of angular frequencies instead of normal frequency.

By equating the spectral energy density per unit frequency with the total energy per unit

frequency per unit volume we got the desired result. Note that the spectral energy density is

defined as the flow of spectral radiance (which is actually the spectral power over surface area)

over the speed of light:

uυ(T ) =
1

c

¨

S

BυdS (1.21)

Since black body radiation is isotropic (it is invariant with respect to direction), uυ(T ) may be

taken out of the integral and multiplied by unit area 4π:

8πυ2kT

c3
=

4πBυ
c

(1.22)

which finally gives

Rayleigh-Jeans Law

Bυ =
2υ2kT

c2
(1.23)

.

This is the famous Rayleigh-Jeans equation which threw the entire 20th century scientific com-

munity into turmoil upon its publishing in 1905. Indeed, note that as we take υ −→∞, our result

for spectral radiance approaches infinity when taking its integral over all frequencies (taking this

integral gives the overall radiance due to ALL frequencies):

ˆ ∞
0

Bυ(T )dυ =∞ (1.24)
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This is known as the ultraviolet catastrophe. In short, the Rayleigh Jeans equation works well

according to experimental data for lower frequencies, but diverges from data for higher frequencies

(such as Ultraviolet radiation), as can be seen in Figure 1.4. On the other hand, we have Wien’s

Approximation (which will be derived later) which coincides with experimental data for higher

frequencies, but greatly diverges for lower frequencies.11

Figure 1.4: Plot comparing the curve given by the Rayleigh Jeans law and the actual curve for
blackbody radiation. We let h = c = k = 1

1.4 The resolution: a derivation of Planck’s Law and Energy

Quantisation

1.4.1 Standard Derivation

The only flaw in the argument adopted during the derivation of the Rayleigh-Jeans law is we

assumed that each mode had a continuous spectrum of energy. To resolve the UV catastrophe,

Max Planck’s postulated like others (such as Albert Einstein, who in 1905 postulated quantisation

of the energy of photons to explain the photoelectric effect12) that the energy of these modes

was "quantised", satisfying:

E = n

photon energy︷︸︸︷
hυ , n ∈ N (1.25)

where h is Planck’s constant. Therefore, Planck postulated that all energies were integer multiples

of the energy of a single photon hυ. The new probability distribution is not continuous anymore,

it is discrete. Hence we shall not use integration to evaluate the average energy of one mode,

but we shall use infinite sums. We have:

H = Ce
−nhυ
kT (1.26)
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so that

〈H〉 =

∑∞
n=0 nhυ · P (H)∑∞

n=0 P (H)
= − d

dβ
ln
( ∞∑
n=0

(e−βhυ)n
)

= − d

dβ
ln (1− e−βhυ) =

hυ

e
nhυ
kT − 1

(1.27)

Thus, replacing kT with hυ

e
nhυ
kT −1

we get:

uυ(T ) =
8πυ2

c3

( hυ

e
nhυ
kT − 1

)
(1.28)

and finally we reach the famous result:

Planck’s Law of Radiation (1905)

Bυ(T ) =
2υ2

c2

( hυ

e
nhυ
kT − 1

)
(1.29)

Note that Planck’s law can be rewritten as:

Bυ(T ) =

Rayleigh-Jeans︷ ︸︸ ︷
2υ2kT

c2

( hυ
kT

e
nhυ
kT − 1

)
︸ ︷︷ ︸quantum correction factor

(1.30)

where we have written on the left the Rayleigh Jeans equation, and next to it the quantum

correction factor derived by Planck. Note that for low frequencies, the quantum corrector factor

is negligible, whereas for higher frequencies it is considerably large. This hints to the fact

that the Rayleigh-Jeans equation could indeed be derived from Planck’s law using Taylor Series

approximations for βhυ << 1.

1.4.2 Bose-Einstein Statistics and a new derivation

We could have also derived this result using Bose-Einstein distribution, following the video by

Dermot O’Reilly.13

Bose-Einstein Distribution

N(H) = g(H)

Bose-Einstein factor︷ ︸︸ ︷( 1

eβH − 1

)
, β =

1

kT
(1.31)

Let us now discuss the physical interpretation of this equation, with the help of Figure 1.5.

The Bose-Einstein distribution tells us that the expected number of particles (in our case modes)

in energy state H is given in (1.36), where β = 1
kT is the "coldness factor", and where k is the

Boltzmann constant. Firstly, note that the term g(H) is known as the "degeneracy" of the

energy level. This degeneracy is defined to be the number of energy states per unit volume
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corresponding to the same energy level. Hence, it is equal to:

g(H) =
dNH

dH
(1.32)

since we are trying to find the number of energy states (NH) corresponding to one energy level H.

It may be viewed as a density of energy states per energy level (in our case energy levelH). To the

Figure 1.5: Explanation of Bose Einstein Distribution, showing the analogous of our model for
particles.

right of g(H) we have a "Bose-Einstein factor". This is the probability of finding a particle with

energy level H. This distribution now makes sense. We are multiplying the number of energy

states per unit volume with energy level H, and multiplying it by the probability of a particle

having that energy level, to get the number of particles in the energy level H, N(H).

Please note the difference between energy state and energy level. One particle is in one energy

state, but different energy states may correspond to the same energy level. Hence we might have

various particles with the same energy level, which is why we’re calculating the density of energy

states corresponding to the energy level H and not state. Consider the derivation of equation

(1.11). Integrating over the whole octant of the sphere, we get the number of allowed energy

states:

NH = 2
(1

8

)(4

3
πR3

)
=
πR3

3
(1.33)

Using de Broglie relations:

E = hυ =
hcR

2L
(1.34)

and plugging into (1.25) we get:
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NH =
8πL3

3h3c3
E3 (1.35)

We can now calculate the density of energy states/degeneracy of energy states by taking the

derivative of NH with respect to H as explained earlier:

g(H) =
dNH

dH
=

8πL3

h3c3
H2 (1.36)

We now have all the information needed for the Bose-Einstein distribution. Substituting into

(1.31):

N(H) =
8πL3

h3c3
H2
( 1

e
H
kT − 1

)
(1.37)

This gives the expected number of modes with energy H. The expected number of modes with

energy between H and H + dH is then:

N(H)d(H) =
8πL3

h3c3
H3
( 1

e
H
kT − 1

)
dH (1.38)

The total energy is then the integral from 0 to ∞ of

no. modes in range︷ ︸︸ ︷
N(H)dH H. This is because we’re

making the energy of the modes in the energy range dH vary from null to infinity. Note that this

assumption for the energy of a mode doesn’t allow for negative absolute temperatures. Indeed,

for there to be a negative temperature, modes must have an upper bound to their energy level,14

a condition that isn’t satisfied in this derivation. We then get that the total energy of all modes

in the box is given by:

Htot =

ˆ ∞
0

8πL3

h3c3
H3
( 1

e
H
kT − 1

)
dH (1.39)

Let us use the fact that the total energy of the system per unit volume is equal to the energy

density of the modes. The energy density is then equal to the spectral energy density integrated

over all frequencies. Therefore, we get:

ˆ ∞
0

uυ(T )dυ =
Htot

L3
=

ˆ ∞
0

8πH3

h3c3

( 1

e
H
kT − 1

)
dH (1.40)

and finally, using the fact that dH = hdυ we get that:

uυ(T )dυ =
8πH3

h3c3

( 1

e
nhυ
kT − 1

)
hdυ (1.41)

which gives:

uυ(T ) =
8πhυ3

c3

( 1

e
H
kT − 1

)
as found earlier. Thus, we have derived Planck’s law using two methods. First, we tried to

analytically derive the spectral energy density uυ(T ), and then use its relationship with spectral
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radiance to derive a final expression. The second method resorted to the Bose-Einstien distribu-

tion, and then used the relationship between total energy and spectral energy density to work

back to the required expression.

Integrating over infinity to cover all frequencies emitted by a pefect black body at temperature

T, we get:

B(T ) =

ˆ ∞
0

Bυ(T )dυ = σT 4 (1.42)

where σ = 2π5k4

15c2h3
is a constant which will be derived in the next section. If we had integrated

the Rayleigh Jeans equation, we would have gotten a divergent result:

B(T ) =

ˆ ∞
0

Bυ(T )dυ −→∞ (1.43)

1.5 Wien’s Approximation, Raleigh-Jeans Law and the Stephan

Boltzmann Law

Now that we have derived Planck’s law, one may wonder whether or not it is possible to derive

more "primitive" forms of this formula, namely the By adopting simple Taylor Expansions about

0 (for the Rayleigh-Jeans law), or assuming υ >>, we can easily go back to the two previous

identities, following once again Dermot O’Reilly lecture13 and notes from the NRAO..9

Let us start with the Rayleigh-Jeans Law. Starting from Planck’s law

Bυ(T ) =
2υ2

c2

( hυ

e
nhυ
kT − 1

)
(1.44)

let us now assume that βhυ << 1, as in the case for low frequency radiation. Then, we can use

Taylor expansions for the Bose Einstein factor to simplify out the expression:

Bυ(T ) ≈ 2υ2

c2

(
hυ

1 + βhυ +���
��: 01

2(βhυ)2 − 1

)
=

2υ2kT

c2
(1.45)

which is the Rayleigh Jeans Law we had derived earlier. Through this derivation, however, it is

easy to see why this approximation works well for low frequencies and long wavelengths.

Let us now consider once again Planck’s law:

Bυ(T ) =
2υ2hυ

c2

(
1

e
nhυ
kT − 1

)
=

2υ2hυ

c2

(
e−βhυ

1− e−βhυ

)
(1.46)

Let us now assume that βhυ >> 0, as in the case for high frequency radiation. We find:

Bυ(T ) =
2υ2hυ

c2

(
e−βhυ

1−����:
0

e−βhυ

)
=

2υ2hυe−βhυ

c2
(1.47)
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We have now reached the Wien Approximation:

Wien’s Approximation

Bυ(T ) =
2υ2hυ

c2
e−βhυ (1.48)

Note that Wien’s approximation works perfectly for higher frequencies and lower wavelengths,

but starts to break down at lower frequencies. Hence it is "complementary" to the Rayleigh-Jeans

equation. There was another important result derived by Willhelm Wien, Wien’s Displacement

Law .6 Note that the radiation curve for each temperature has a wavelength/frequency which

yields the highest radiance. The displacement law gives a formula for this wavelength λmax.

Recall once more Wien’s approximation:

Bυ(T ) =
2υ2hυ

c2
e−βhυ (1.49)

At the "peak" of the curve, we have that ∂Bυ
∂λ

∣∣
λmax

= 0, thus:

∂Bυ
∂λ

= 2hc3
(−5

λ6
e−βhυ +

2hc3

λ5
e−βhυ

βhc

λ2

)
=
(
− 5

λ6
+
βhc

λ7

)
2hc3e−βhυ (1.50)

Setting this equal to zero yields:

βhc

λ7
=

5

λ6
=⇒ λ =

βhc

5
(1.51)

Finally, we get:

λmax =
hc

5kT
(1.52)

Note that if we had used Planck’s law, we would have gotten a different result for the factor in

the denominator, although this deviation is almost negligible. Indeed, using Planck’s law, Wien’s

displacement law becomes

λmax =
hc

xkT
(1.53)

where x ≈ 4.965. Moreover, if we had used Rayleigh-Jeans law, we clearly would not have gotten

a value for λmax, demonstrating another fallacy in the result.

Now, imagine drawing infinite radiation curves for every temperature on the Kelvin scale, and

then connecting the peaks, the λmax points. Then, what function would we expect to achieve?

Looking at Wien’s displacement law it is easy to see that this function would be a hyperbola

with asymptotes as the y-x axes. Taking once again its derivative we get dλ
dT = − hc

5kT 2 . As the

temperature increases, the peak of the radiation curve moves to the left (as expected from the

shape of the hyperbola obtained from (1.53)).

Finally, we shall now derive an expression for the power (per unit area) radiated from thermal

radiation, the Stephan-Boltzmann law. Indeed, note that the radiated power per unit area is equal
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to the integral of Planck’s law for spectral radiance, over all wavelengths/frequencies:

P

A
=

ˆ ∞
0

Iυ(T )dυ =
2πk4T 4

h3c2

π4

15
(1.54)

where we have used the result that
´∞

0
x3

ex−1 = π4

14 .

Rewriting, we get the famous result for radiant emittance, or intensity of radiation:

Stephan Boltzmann Law

P

A
= σT 4, σ =

2π5k4

15c2h3
(1.55)

The Stephan Boltzmann law gives us the "radiant emittance" of a body at a temperature T. The

reasoning behind the fourth power is clear using dimensional analysis. The energy of a particle

is simply kT (following classical mechanics), time can be expressed as h
E = h

kT , so that power is
(kT )2

h . Length can be expressed as "speed times time", hence c h
kT , so that area is length squared,

(c h
kT )2. Dividing power by area we get the desired result (with the negligence of the constant

σ).

We have now concluded our study of black-body radiation. To summarize, any body with

non-zero absolute temperature will emit thermal radiation. Some special bodies, "black bodies",

will absorb all incident electromagnetic radiation, and emit it in the form of black body radiation.

This gives an explanation for the glow of metals when heated by a blacksmith, or the glow of fire

as well (as we shall see at the end of the chapter). There were mainly two laws trying to describe

this type of radiation, the Rayleigh Jeans law and Wien’s approximation. Both however failed

considerably at one end of the spectrum. This problem would be solved with the introduction

of energy quantisation by Max Planck, who derived a new Law of radiation in 1905. This was a

mathematical model which fit perfectly with all the experimental data that had been collected.5

1.6 Flame Spectroscopy: deriving Rydberg’s formula

We will now continue our study by investigation emission spectroscopy, and its relation with

flames. Emission spectroscopy, as the name suggests, is the study of the electromagnetic ra-

diation emitted when an atom is transitioning from a high energy level to a low energy level.

By analysing the spectrum of wavelengths from the emitted radiation, one can determine the

elemental composition of a substance. This is because each element has a specific individual

emission spectrum, analogous to human fingerprints, which can be used to identify an unknown

compound.15

There are many ways to perform emission spectroscopy, flame tests being among the oldest

(first used by Robert Bunsen in 185916). During flame spectroscopy, the substance is placed on a

wire (usually nichrome wire), and then placed on a non-luminous flame. It is important to note
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this distinction regarding luminous and non-luminous flames. The former is visible by the naked

eye, and most of the radiation emitted has wavelength in the visible spectrum. Non-luminous

flames, instead, are not visible by the naked eye. Hence, the reason a non-luminous flame is used

is simply to avoid the flame’s colour due to the excitation of the compound being confused with

the flame’s natural colour.16

Figure 1.6: Apparatus for Flame Spectroscopy

Let us now consider what is actually happening during a flame spectroscopy. When the

substance is put on the flame, we are adding thermal energy to the system. Hence, the electrons

in the substance go through a process of excitation, moving from their ground state to excited

levels. The electron however is in a very unstable state, and thus jumpes back to its ground state,

this is "de-excitation". Due to the principle conservation of energy, this energy level transition

must release energy in the form of electromagnetic radiation. It follows that the energy of the

radiation emitted by the electron during its de-excitation must be equal to the difference in the

electron’s energy between the two energy levels.

According to this "jump" from one energy level to another, the emitted radiation will have

different wavelengths, giving the flame its distinct colour when analyzing substance. When we

then concentrate the light emitted by the flame into a prism (in its classical set up, a flame test

would do so using a telescope), we have "emission spectrum lines". Each line represents the

wavelength of the emitted radiation. Since there there are various possible transitions for the

electron, we will have various spectral lines.15

Let us now try to derive a relation between the wavelength of this radiation, and the transition

in the energy levels, closely following a derivation given by the NRAO (National Radio Astronomy

observatory).9

Consider an electron of charge −e and mass m, revolving at a velocity vN at a radius rN from

the nucleus with mass M and charge +e. Then, let us hypothesize that the angular momentum
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of the electron is quantized, given by the relation:

LN =
Nh

2π
(1.56)

Equating the forces acting radially on the electron:

m
v2
N

rN
=

e2

4πε0r2
N

(1.57)

These two latter equations yield the speed and radius of the electron:

vN =
e2

2ε0nh
, rN =

ε0n
2h2

πme2
(1.58)

The energy of an electron in the nth energy level is then:

EN = − me4

8ε20n
2h2

(1.59)

Then, for an electron moving from the nth energy level to the qth energy level:

∆E =
me4

8ε0h2

( 1

q2
− 1

n2

)
= hυ (1.60)

where we equated the change in energy to the energy of the emitted photon. Using the fact that

c = υλ, we get the Rydberg-Balmer formula:

Rydberg-Balmer Formula

1

λ
=

me4

8cε20h
3

(
1

q2
− 1

n2

)
(1.61)

where me4

8cε20h
3 is the Rydberg constant (R ≈ 1.097× 107 m−1). Note that this equation works

perfectly well with Hydrogen atoms and hydrogen-like atoms with only one electron. Instead,

when we add multiple electrons, the Rydberg-Balmer formula soon starts to break down, due to

omission of quantum interactions.

We can also derive an expression for the spontaneous emission rate of electrons. Let n = q+δq,

so that when δq << q (hence for small transitions), the Rydberg equation can be approximated

to:

υ = R
( 1

q2
− 1

(q + δq)2

)
≈ R

(q2 + 2qδq + (δq)2 − q2

q2(q2 + 2qδq + (δq)2)

)
≈ 2Rδq

q3
(1.62)

Then, the radiated power by an electron is given by Larmor’s formula:

P =
q2a2

6πε0c3
(1.63)
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In our case, we have an oscillating dipole, hence it has dipole moment erN sin(wt), so that the

time averaged power is:

〈P 〉 =
e2

acceleration︷ ︸︸ ︷
(w2rN )2

6πε0c2
〈cos2(wt)〉 =

e2

12πε0c3

(ε0q2h2

πme2

)2
(2πυ)4 (1.64)

Then, we have that the spontaneous emission rate from q to q−1, which we shall denote as Tq,q−1

is equal to the power emitted by one electron over by the energy emitted during the transition

(the energy of one photon). Hence:

Tq,q−1 =

e2

12πε0c3

(
ε0q2h2

πme2

)2
(2πυ)4

hυ
=

4e2
(
ε0q2h2

πme2

)2
π4υ3

3hπε0c2
(1.65)

This finally reduces down to:

At,t−1 =
πm3e10

48c5n5ε40h
6

(1.66)

1.7 Spectral Lines of Hydrogenic Atoms

Now that we have derived the Rydberg Balmer formula, it is quite simple to explain what exactly

is going on in the emission spectrum of hydrogen. Indeed, observing typical spectral lines, each

coloured line represents a jump from one energy level to another. One might wonder how a

hydrogen atom with one electron may produce various spectral lines. In truth, the number of

electrons in an atom doesn’t effect the number of spectral lines, the number of allowed energy

levels does.

As can be seen from the Figure 1.7, we can let the electron jump from an arbitrary energy level

n to its ground state. It turns out that for a hydrogen atom, as we increase the principal quantum

number (higher energy level), we get that to return back to its ground state the electron emits a

convergent wavelength of radiation. It is important to note that this is the shortest wavelength

in the series. The wavelengths of transitions back to the ground state is known as the Lyman

series, and this convergent wavelength when n −→ ∞ (which we shall denote as Ly∞ ≈ 91.13

nm). Indeed, using the Rydberg-Balmer formula, it is easy to see that:

1

λ
= lim

n→∞

me4

8cε20h
3

(
1

n2
− 1

)
=⇒ λ =

8cε20h
3

me4
(1.67)

giving the desired result. The same process can be used to evaluate the wavelength emitted when

an electron transitions back to its second energy level, giving the Balmer Series. As we increase

the principal quantum number, we get a convergent wavelength equal to 364.51 nm (denoted

H∞). Notice that this is in the visible spectrum. This means that some spectral lines in the

Balmer series must be visible to the naked eye, and that is indeed true. There are four lines in

this series that are in the visible spectrum, as can be seen in figure .
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It is also important to note that each spectral line in the hydrogen emission spectrum has a

particular name, depending on what series it belongs to. Any transition from an excited state to

the ground state belongs to the Lyman series. The transition from 2 −→ 1 will have wavelength

121.57 nm, and is called the Lyα line (Lyman alpha line). The transition from 3 −→ 1 is the

Lyβ line and so on. This means that all transitions in the Lyman series will lie in the ultraviolet

band, since the wavelength must lie in the interval [Ly∞,Lyα], which ranges from the shortest

wavelength in the series Ly∞, to the longest Lyα.

Figure 1.7: Phase transitions in Lyman series, and the corresponding spectral lines.

The same applies to the Balmer series. Any transition to the second energy level will fall into

the Balmer series. The transition from 3 −→ 2 is the Bα, it is the red line seen in the visible

spectral lines for Hydrogen. Notice that for the Balmer series, the wavelengths lie in the range

[H∞,Hα], which spans across both the visible band and the UV band. The spectral lines in

the visible spectrum are the transitions n −→ 2 where n = 3, 4, 5, 6. This whole process can be

applied to all series, which are in fact infinite. (We also have another method of naming spectral

lines, mostly adopted by astronomers. Let α denote the transition n + 1 −→ n, β denote the

transition n + 2 −→ n and so forth. Then, the spectral line is named H(greek letter)n. For a

transition 34 −→ 31, we have H31γ)9

One might wonder why we have, out of virtually infinite lines in the Balmer series, only four

in the visible spectrum. This is because as the energy level from which the electron transitions

increases (as the principal number increases), the energy difference grows smaller. Consider once

again the Rydberg formula. We can re-write (1.59) as:

EN = −RE
n2

(1.68)

where RE is known as the Rydberg Energy (RE ≈ 13.6eV ). This is the energy of an electron

in a hydrogenic atom in its ground state (this is easy to see by setting n = 1). Then, as we
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increase the principal quantum number n, we have a smaller and smaller difference in the energy.

In other words, the energy levels grow closer and closer together. This must also mean that the

wavelengths from transitions must grow closer and closer as n increases, explaining why we have

a convergent result when approaching infinity. Thus, we have that the wavelength grow closer

and closer in the same series, so that the initial spectral lines (for the Balmer series, Hα, Hβ, Hγ

etc...) must be farther apart than other spectral lines. Due to this uneven distribution, there

are less lines in the visible spectrum than in the UV spectrum.

To summarize, when adding energy to an atom, the electrons jump to a higher energy level,

and then jump back down to their original state. Throughout this process of atomic de-excitation,

the electron must release energy in form o electromagnetic radiation. By equating the difference

in energy between two levels to the energy of a photon, we are able to derive the wavelength of

such radiation, the Rydberg-Balmer formula. This works quite well for hydrogenic atoms (which

have only one electron). The group of all these wavelengths forms an emission spectrum, made

up of individual spectral lines corresponding to a single transition. These spectral lines can then

be grouped into series, depending on which level the electron fall back to (Lyman series if it

falls back to its ground state, Balmer series if it falls to 2nd energy level and so forth). The

wavelengths in a series "X" must lie in the range

[X∞,Xα] (1.69)

where X∞ is the shortest wavelength obtained in the series by setting n = ∞, and Xα is the

longest wavelength obtained by setting n = i+1 (where i is the energy level to which all electrons

fall back to in the series).

1.8 Flames in microgravity, and other phenomena of fire

Let us now investigate the last phenomenon regarding fire. Consider a standard flame on Earth.

When we ignite the candle, some wax surrounding the wick is melted, and this now liquid wax

rises up the wick through capillary motion, approximately following Jurin’s law which gives the

height of a liquid in a column. If we model the fibers in the wick to be approximate columns,

then the height to which the wax absorbed by the wick rises is:

h =
2γ cos θ

ρgr
(1.70)

When the fuel (wax in our case) reaches the flame, it vaporizes and turns into gas. Notice that

in microgravity as g ≈ 0, we have that the liquid would fill the capillary tube. Throughout this

process, the heat of the flame breaks down the molecular bonds in the fuel, breaking it down into

hydrogen and carbon atoms, and then react with the oxygen surrounding the flame. In a sense,

the hydrogen and carbon atoms snap away, by adding heat to these molecules, the individual

atoms can overcome the intramolecular forces and "break". We should stop here to investigate
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more deeply how this combustion process is occuring. Indeed, one often finds heat included in the

equation for combustion, which is completely correct. When oxygen atoms hit the carbon atoms

and the hydrogen atoms that have snapped away, one doesn’t expect an actual combustion to

happen. This is because the oxygen must hit the hydrogen atoms with sufficient energy. This is

clear if we consider the principle of conservation of energy. By hitting the hydrogen atoms with

energy, it can then be converted into thermal energy during the chemical reaction. By hitting the

hydrogen atoms with enough energy, they are able to react together, and form water molecules.

This heat increases the kinetic energy of the system, and hence more and more oxygen atoms can

hit these hydrogen atoms, snap together, and form water molecules. The same reasoning applies

for carbon atoms and oxygen atoms. Therefore, it follows that this is an exothermic reaction,

and thus in addition to carbon dioxide and water (in a gaseous state), heat is also radiated

outwards. If there is a poor oxygen/fuel supply, then we have an incomplete combustion. Not

all of the fuel or oxygen is combusted, and hence there are some other products to the reaction,

mainly carbon particles called soot which haven’t reacted completely, and hence escape. This

process repeats cyclically, as the heat from the combustion reaction melts more wax, which in

turn is drawn up by the wick and so forth. Consider the air surrounding the flame. As it gets

warmed up, it moves up, displacing the colder air down.17 Let us consider an "air packet". By

the Ideal Gas Law, the pressure of a gas at a temperature T and density ρ:

PV = nRT =⇒ P = ρRT (1.71)

Let us now consider the net force acting on an object of mass m, density ρm immersed in a liquid

of density ρl:

F = −mg + ρlV g (1.72)

Thus, we find that, by equating this expression to Newton’s Second Law, we get for the acceler-

ation of the object (taking upward direction as positive):

a = g
( ρl
ρm
− 1
)

(1.73)

Then, a > 0 whenever ρl > ρm. Hot air particles have more kinetic energy, and the gas expands

if we don’t have considerable restraints on volume. Consequently, since hot air is less dense than

the colder air, it will rise. This problem can also be approached from a statistical mechanics

point of view. Particles in hot air have a higher temperature, and therefore a higher kinetic

energy. These particles then have more energy to convert into potential gravitational energy and

rise compared to cold air. Hence, they have a higher probability to "occupy" more potential

energy. The air at the base of the flame gets heated, and hence by the process described earlier,

must rise up, and the colder oxygen must fall back to the base of the flame (feeding it), creating

a convection current. These currents cause the "tear drop" shape of a flame on Earth. Moreover,

the soot (carbon particles) are dragged by the currents upwards, and burn at the tip of the

flame, giving it a yellowish tone. Indeed, it is mostly thanks to black-body radiation and atomic

24



excitation/de-excitation that flames have distinct colours. The soot particles get heated up by

the flame, and start to glow! In both cases, we know that temperature plays a role in determining

this colour, as well as the fuel used.

Figure 1.8: Photograph of a Flame and explanation of how combustion works

It is therefore interesting to ask ourselves what would happen if we lit a candle in outer space,

where gravity doesn’t act on the flame. Indeed, this has been the inquiry question of various

experiments conducted by NASA on the International Space Station, the FLEX experiments.

These experiments have shown that fire in spaces behaves very differently compared to Earth.

In a research18 conducted by A. Alsairafi, J.S. T’ien, S.T. Lee, D.L. Dietrich and H.D. Ross, a

model for a laminar symmetric flame with wick of diameter 1mm, length 5mm, it was shown that

the flame would get elongated as gravitational acceleration increased from 0g to 3g, and then

decreased from 3g and 60g, and then blows off (observe Figure 1.6, taken from their paper18).

This was done by employing the Navier Stokes equations.

Since there is no gravity acting on the flame, these convection currents don’t form. The hot

gases and the cold gases don’t move, but pile up around the flame. Hence, the flame, radiating

heat spherically, will have a spherical shape, there is no set of axis pointing "up" for currents. The

flame takes its natural spherical shape. The reason the flame blows off or weakens at enhanced

gravity is because capillary action isn’t strong enough to draw off the liquid wax to the top of
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the wick (which is easy to see observing Jurin’s law, where h ∝ 1
g ). It is also interesting to notice

that the flame is not yellow/orange, but it is blue, with rare sudden "bursts". This is because the

combustion is complete, and indeed the short yellow bursts are actually soot particles which are

then combusted completely. You might remember that the flame in a typical stove is indeed blue,

with some small yellowish bursts at the tip. This is the same process, but under the influence of

gravity. The combustion is complete, all the fuel is combusted, and hence we have an exothermic

reaction releasing high quantities of heat. One might be wondering why complete combustions

have bluish flames. Hotter flames excite their electrons to higher energy levels. Hence, when

they transition back to their original states, a lot of energy in form of electromagnetic radiation

is released. Hence, the radiation must have a high frequency, which lies in the bluish range of

the spectrum, giving the flame this colour. Note that this emission also happens when soot is

combusted, but it is contrasted by the Black body radiation, and hence is often neglected.

Figure 1.9: Fuel reaction rate contours for a symmetrical laminar flame, at varying gravitational
fields. Taken from A. Alsairafi, J.S. T’ien, S.T. Lee, D.L. Dietrich and H.D. Ross. "Modelling
Candle Flame Behaviour in Variable Gravity", presented at the "Seventh International Workshop
on Microgravity Combustion and Chemically Reacting Systems", 2003. p. 263

1.9 Conclusion

We can now answer some of the questions posed at the beginning of the chapter after having

discussed the main phenomena that govern how fire works. We have already answered what gives

fire its shape in its previous question. Convection currents are formed when air surrounding the

flame is heated, giving it a tear drop shape, and "stretching" it upwards. we shall now attempt

to answer what gives a flame its colour. This happens mostly, as mentioned previously, through

two processes, Black-body radiation (for lower temperature regions) and Atomic excitation (for

higher temperature regions).

Consider a flame subdivided into regions according to its temperature.19 The base of the

flame, the non-luminous zone has a temperature of around 600◦C, it is the coolest part. The
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radiation doesn’t have a long enough wavelength to be detected by the naked eye, and hence is

non-luminous. This zone is surrounded by the blue zone, which (as explained earlier) has a very

good supply of oxygen, and has an approximate temperature of 800 ◦ C. The heat from this zone

breaks down the hydrocarbons in the wax. The hydrogen atoms snaps away first, and combines

with oxygen atoms to form water vapour. Carbon instead may then form carbon dioxide, or, if

uncombusted, form soot particles. The creation of these soot particles, however, occurs mostly

in the dark orange region, with temperature of around 1000 ◦C. Evidently, black body radiation

occurs mostly as the soot particles move from the dark region to the luminous zone, heating up

and consequently glowing until they reach the tip of the flame. This gives it its orange-yellowish

colour. We then have the luminous zone, which is yellowish/white at the center. This is where

impartial combustion occurs, explaining its colour. The atoms aren’t excited enough, and hence

the frequency of the resulting electromagnetic radiation is low. Temperatures range around 1200
◦C in this zone. Finally, we reach the hottest zone of the flame, the veil. This layer surrounds

the luminous zone, and reaches temperatures of approximately 1400 ◦ C . Complete combustion

occurs here, and hence the wavelength of the electromagnetic radiation is high enough that it

may not be visible, which is why it is "non-luminous".
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Surface Tension

Contents
2.1 Defining Surface Tension . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Deriving the Young-Laplace Equation . . . . . . . . . . . . . . . . . . 31

2.2.1 Floating Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Capillary Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Jurin’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.2 The Concave Meniscus (θ < π
2 ) . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.3 Capillary Length λ and the shape of puddles . . . . . . . . . . . . . . . 40

2.4 Minimal Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Defining Surface Tension

It would be impossible for a person not to encounter the enthralling phenomenon that is surface

tension. From taking a shower to washing hands with soap, and even the movement of foam

when making tea, surface tension plays a central role, governing the dynamics and statics of

interactions between fluids. It is defined as:

The tension of the surface film of a liquid caused by the attraction of the particles in

the surface layer by the bulk of the liquid, which tends to minimize surface area.20

— Lexico Dictionary

To understand how surface tension occurs, imagine looking at a water droplet under an

immensely strong electron microscope, capable of clearly displaying individual water molecules.

Firstly, consider the water molecules at the center of the droplet. These will feel cohesive forces

from neighbouring water molecules. Hence, they will be "pulled" in all directions and will

experience no net force. Let us now consider water molecules at the edge of the droplet, adjacent

to the so-called "interface" surface (an imaginary surface delimiting two phases, such as water
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and air). Clearly, these molecules will experience both a cohesive force from neighbouring water

molecules, but also adhesive forces from the nearby air molecules. Due to the imbalance between

cohesive and adhesive forces, a net inward force will act on the outer layer of the droplet, giving

it a spherical shape (see Figure 2.1)

Figure 2.1: Diagram showing dynamics behind surface tension in a droplet

One might wonder why a droplet doesn’t take a rectangular shape, or a pyramidal shape.

The answer lies in surface optimization and the tendency of nature to minimize potential energy.

Indeed, surface tension γ has units J
m2 , energy per unit area. It is the energy needed to increase

the droplet’s surface area. If insufficient force acts on the droplet trying to increase its surface,

then it will try to minimize it, "pushing" or "resisting" against any such force.

To better illustrate this idea, consider an arbitrary volume of water. We are asked to create

a surface from that volume of water requiring the least effort. To do so, it is essential to note

that the molecules forming this surface will oppose resistance to any increase in surface area due

to cohesive forces, especially near the interface. In other words, the greater the surface area of

this surface, the more work will be done to construct it. To use the least energy, the droplet will

therefore have largest possible Volume-Surface ratio, trying to fit in the volume of water in the

smallest possible surface area (the problem of defining a shape with the largest volume-surface

ratio is known as the Isoperimetric Inequality). It can be proven21 that the sphere has the largest

V −S ratio. Any liquid will naturally rearrange itself into a sphere, as it requires the least energy

(more formally, it has the least surface energy).

By taking a spherical shape, the least work is required to increase surface area, the droplet

essentially minimizes its surface energy (the energy needed to create the surface). This is quite

similar to a ball rolling up a hill. When we increase the surface area of a droplet, this requires

energy input, just like trying to roll a ball up a slope. If we release the ball on this slope, it

will try to minimize its potential energy, and fall back down. Analogously, the droplet will try

minimizing its surface energy, resisting against any attempt at increasing surface area.
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Figure 2.2: Analogy between surface energy and potential energy minimization.

We can therefore define surface tension as the energy needed to increase the surface area of a

liquid by unit area. It may also be considered as the force acting against deforming the surface

per unit length. The higher the surface tension of a surface is, the less it is prone to increasing

its surface area.

As hinted earlier, surface tension governs several phenomena we observe daily. As soon as

we wake up, we usually go to the bathroom, and wash our face/hands. The reason we use soap

is not only because of its antibacterial qualities, but also because it reduces surface tension of

water. Thus, when coming into contact with our hands, water will be more easily deformed,

entering into the crevices and wrinkles on our palms, and removing dirt. Another common way

to observe surface tension is when making tea or coffee. Indeed, the reader has probably noticed

the formation of foam and bubbles on the surface of the liquid. Usually, this foam collects either

at the center of the surface, or at its circumference, for reasons we will allude to later on. The

goal of this chapter will be to develop the physical laws describing surface tension, and related

phenomena.
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2.2 Deriving the Young-Laplace Equation

We shall now derive the Young-Laplace equation, without which most of the results in the rest

of the chapter wouldn’t be known. We will closely following the derivation given in Siqvel and

Skjæveland, (2015).23 Surface tension can be defined as the force per unit length exerted on any

fluid against increasing its surface area. Consider a curved surface, as shown below, representing

the boundary between a liquid region and a gaseous region (known as the interface). Recall that

when crossing this surface, there will be a change in pressure, called the Laplace Pressure (see

Fig 1.3). As we can see, the internal pressure must counteract the outer atmospheric pressure, as

well as the surface tension acting tangentially on its surface. This means that the pressure inside

the droplet will obviously be larger than the outer pressure. Furthermore, this discontinuity in

pressure when crossing the interface may also be seen as an explanation of why droplets try

minimizing surface area. The internal pressure will keep increasing until it counteracts both the

outward pressure and surface tension, which can be done by reducing the surface area of the

droplet.

Figure 2.3: Pressure inside and outside of a spherical droplet or convex meniscus

For an infinitesimal patch of this surface, the net force FP caused by the pressure difference

∆P will be:

dFP = ∆PdS = ∆PdL1dL2 (2.1)

We can then use the fact that dL1 = 2R1dθ1 and dL2 = 2R2dθ2:

dFP = ∆PdS = ∆P (2R1dθ1)(2R2dθ2) (2.2)

Consider the surface tension force acting on the patch. Since we defined surface tension γ to be
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the force per unit length acting on the patch, then the total surface tensile force acting on it will

be γ × infinitesimal length:

dF (1)
γ = γdL2, dF

(2)
γ = γdL1 (2.3)

We can now take the total components acting vertically against FP . Since there will be two

forces of magnitude dF (1)
γ and two forces of magnitude dF (2)

γ , we get that this component is:

2dF (1)
γ sin θ2 + 2dF (2)

γ sin θ1 (2.4)

Recall that surface tension acts tangentially to the surface. Hence, dF (1)
γ acts on the principal

line 2, and dF (2)
γ acts on the principal line 1.

Figure 2.4: Infinitesimal patch over which surface tension acts along the edges

We then use the small angle approximation sinx ≈ x for simplification, and substituting our

expressions for dL1, 2:

dFγ = γ(2(2R1dθ1)dθ2 + 2(2R2dθ2)dθ1). (2.5)

For a static droplet, we must have that: dFP = dFλ. Hence:

Nm−2︷︸︸︷
∆P = γ︸︷︷︸

Fm−1

R1 +R2

R1R2︸ ︷︷ ︸
m−1

(2.6)

and finally we reach the Young-Laplace equation:

Young-Laplace Equation

∆P = γ
( 1

R1
+

1

R2

)
(2.7)

Let’s stop a moment to analyze what this equation represents. The term on the right, ∆P , is

the change in pressure when moving through the interface. On the right hand side, we have an

expression with units N ·m−2. This tells us that the more curved a surface is (the smaller R1,2

are), the greater the Laplace pressure. This is expected, as we have a greater component due to
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surface tension against which internal pressure must act against. This widens the gap between

pressure inside and outside.

Furthermore, as R1,2 −→∞ (we get a flat surface, a plane), we have that the Laplace pressure

decreases very quickly ∆P −→ 0. This makes sense, and agrees with the well known result that

the pressure difference acting on a flat surface must be zero for equilibrium to be satisfied, a

property that isn’t necessarily true for curved surfaces as demonstrated.

We extend our formula further, using some notions of differential geometry.24 Note that the

mean curvature of a surface at a point, H can be defined as the arithmetic mean of the minimum

and maximum curvature (principal curvatures):

H =
1

2
(κ1 + κ2) (2.8)

where κ1, κ2, the principal curvatures of the surface. This then clearly yields for our patch:

H =
1

2

( 1

R1
+

1

R2

)
(2.9)

where, as discussed earlier, R1 and R2 are the radii of principal curvatures at point P.

∆P = γ(2H) (2.10)

Using Frenet-Serret equations, we know that the mean curvature is:

H = −1

2
∇ · n̂ = −1

2
|∇ ·

( ∇f
|∇f |

)
| (2.11)

which allows us to write more generally:

∆P = −γ(∇ · n̂) (2.12)

This is a non linear partial differential equation, which relates the pressure difference through

an interface and the shape of the interface surface. For positive curvature (e.g. concave meniscus),

the Laplace pressure will be negative, whereas for negative curvature (e.g. convex meniscus), the

Laplace pressure will be positive. Oddly, for a convex meniscus, the pressure outside is actually

greater than the pressure just under the meniscus. As we will see later, the Young-Laplace

equation is extremely powerful when solving problems for curved liquid surfaces. Three such

problems are the floating body, the shape of the meniscus and the profile of a water droplet.

These can all be solved by utilizing the Young-Laplace PDE.

2.2.1 Floating Bodies

We shall now adress the first problem introduced earlier, the statics of floating bodies, using the

approach in D. J. Vella, (2007)25
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Consider an object (such as a metal pin, which is denser than water) of sufficiently small

mass m "suspended" on a liquid. This object is not submerged, assuming the surface tension

forces Fγ between the molecules of the liquid are strong enough not to let the interface surface

rip. However, the object displaces water to its sides, and will therefore feel a buoyant force FB.

Figure 2.5: Body placed on a fluid depresses its surface, but doesn’t necessarily sink due to
surface tension and buoyancy.

Hence, for equilibrium we must have that FB +Fγ‖ = mg, where Fγ‖ is the component of Fγ
acting vertically. Moreover, since pressure is defined as the force applied per unit surface area,

F = −
˜
S PdA. Using the Laplace-Young equation:

k · Fγ = Fγ‖ = −γ
ˆ

¯Sxy

∇ · n̂ dA (2.13)

where S is the surface of contact between the floating body and the liquid, the interface surface.

Furthermore, Sxy is the projection of S on the x − y plane, and S̄xy is R2 \ Sxy. We could also

derive this result using the definition of surface tension as the force per length applied on the

interface surface. Indeed, defining C as the contact line between the object and water expressed

as an arc parametrized vector function r = r(l), we get that:

Fγ = γ

ˆ
C

ṙ× n̂ dl (2.14)

We took the cross product ṙ× n̂ because the surface tension force is orthogonal to both the

vector tangent to r and the normal to the liquid surface n. Integrating over C then gives the

length and direction over which surface tension acts. We can now evaluate the component of the

tensile force acting vertically:

Fγ‖ = γ

ˆ
C

k · (ṙ× n̂) dl (2.15)

This is equivalent to projecting the contact line on the x − y plane, forming Cxy, and then

evaluating the component of the surface tension force acting vertically along n̂. This new path

will have arc length l′ and normal vector n’ (this can be seen as transforming the integral using
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l −→ l′ and ṙ× n −→ n’) so that we get:

Fγ‖ = γ

ˆ
Cxy

n̂ · n̂′ dl′ = γ

ˆ
Cxy

n̂ · dl′ (2.16)

We can now use the two dimensional Divergence Theorem26 to simplify this integral.

Theorem 2 (2D Divergence Theorem). Let S be a region enclosed by a smooth curve ∂S, with

normal vector n̂). Then, the following holds for any vector field F such that ∇ · F 6= 0:
¨
S
∇ · F dA =

ˆ
∂S

F · dn̂ (2.17)

Since Cxy is simply the boundary of Sxy, we can define S̄xy as R2 \ Sxy, with boundary C̄xy
We then have that: ˆ

Cxy

n̂ · dl′ = −
ˆ
Cxy

−n̂ · dl′ = −
ˆ
S̄xy

∇ · n̂ dA (2.18)

so that we finally reach:

Fγ‖ = −γ
¨
S̄xy

∇ · n̂ dA (2.19)

as required. By taking into account buoyant forces, we can then write by balancing forces:

−
¨
S̄xy

∇ · n̂ dA+
FB
γ

=
mg

γ
(2.20)

Consider now the two fluids separated by an interface. Denoting the liquid density ρ, the variation

in vertical pressure between the two phases (liquid and gas) will be ∆P = ρgh, where h is the

depression in the liquid. We can then write:
¨
S̄xy

ρgh dA = mg − FB (2.21)

where we have used the Young-Laplace equation. Let us now evaluate FB, the buoyant force

acting on this object. We get using the Archimedean principle:

FB = ρghSx,y (2.22)

Taking the ratio between the two yields:

FB
Fγ

=
Sxy
S̄xy

(2.23)

This demonstrates that as the size of the object decreases, Sxy will also decrease, and hence

this ratio will decrease. For smaller objects, such as needle pins, contrary to common belief,

buoyancy is not the main reason they float, it is surface tension. Thus, we can conclude that

objects with greater density than water can still float as long as they are small enough.
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2.3 Capillary Action

Capillary action is another mechanism caused by surface tension, and leads to various interesting

phenomena, such as the formation of menisci and the shape puddles and droplets.

When a liquid is placed in a narrow tube or cylinder of sufficiently small radius, this liquid

may "rise" upwards. The adhesive forces overcome the cohesive forces, then the liquid molecules

will be pulled by the walls of the container, rising.

2.3.1 Jurin’s Law

Before we adress the meniscus problem introduced earlier, it is important to allude to the phe-

nomenon of capillary action to truly understand the mechanism behind which menisci actually

form, using two standard arguments to derive Jurin’s Law2728

Let us consider a cylinder filled with water, of radius R. Assuming that the meniscus has a

spherical shape (we’ll see later on how to more accurately define the profile of a meniscus) with

contact angle θ with the cylinder’s walls. It can be shown that the radius of curvature of the

interface is R sec θ, so that the Laplace pressure is:

∆P = − 2γ

R sec θ
(2.24)

Furthermore, the Laplace pressure can also be defined as:

∆P = Patm − Pmen = − 2γ

R sec θ
(2.25)

Let us now consider two communicating vases as shown below.

Figure 2.6: Capillary rise for a concave meniscus
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Since pressure at equal heights in communicating vases must be equal, it follows that the

pressure at an arbitrary height s under the water level is:

Ps = Patm − ρgs (2.26)

for the "outer" vase. For the inner vase, the tube, we have that:

Ps = Pmen − ρgs0 (2.27)

where s0 is defined as shown in Figure, Pmen is the pressure at the meniscus. Equating these

two expressions finally gives:

Patm − Pmen = ρg(s− s0) = −ρgH (2.28)

Using the Young-Laplace equation, we arrive at:

ρlgH =
2γ

R sec θ
(2.29)

Rearranging we get Jurin’s famous law for capillary rise

Jurin’s Law

H =
2γ cos θ

Rρg
(2.30)

We could have also derived this result by equating forces as shown in J. Pellicer et al.

(1995).27 The weight due to the column of water must be equal to the surface tension forces

acting along the meniscus perimeter, causing the liquid to rise:

Fγ = 2πRγ cos θ = Fg = πρR2gH (2.31)

Again, we should check boundary conditions to see if our answer makes physically sense.

Jurin’s law tells us that H ∝ 1
Rρ . The denser the liquid, the higher it will rise (there are some

exceptions such as mercury). Moreover, the narrower the tube, the greater the rise. Both sound

physically intuitive and are correct.

2.3.2 The Concave Meniscus (θ < π
2
)

Notice that the size of the meniscus plays a huge role in the derivation of Jurin’s law. As seen

earlier, the balance between cohesive and adhesive forces determines the shape of a meniscus

(more specifically the contact angle formed with a wall, which defines the shape of a meniscus).

Consider once again a liquid placed in a tube. If liquid molecules are more attracted to

the walls than to other liquid molecules (when adhesive forces overcome cohesive forces), one
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intuitively expects the meniscus to be concave. The molecules at the edges will be "dragged"

upwards by adhesive forces, similar to a water column in a capillary tube would rise. Nearby

molecules will move alongside as a result of cohesive forces. This may be easier to imagine if we

interpret the cohesive forces as "chains": if the molecules at the edges move upwards, nearby

molecules will move too. As we get farther from the tubes, these effects become more and more

negligible, until they are null at the center of the container.

Instead, if the cohesive forces overcome the adhesive forces, then the meniscus will have a

convex profile (similar to a droplet or puddle), since liquid molecules will try to "clump" all

together, amassing near the center of the meniscus. Another major consequence is that we will

have the "opposite" of capillary action, capillary fall. Instead of rising, the liquid molecules

will try to "stick together", and actually fall (often observed in mercury). It follows that the

equations governing puddles, droplets and menisci will be the same, as the conditions leading to

their formation are identical.

Observe the right side of a meniscus in a cylinder containing a liquid columns. We will set

z = 0 as the height at which the meniscus "converges" towards, and denote the contact angle

with the wall of the cylinder as θ, as shown below.

Figure 2.7: Profile of a concave meniscus

Using (2.28), and following Berg, 2009, we can write that:

γ∇ · n̂ = −ρgz (2.32)

which can be used to define the shape of the meniscus. Indeed, if we define the surface of the

meniscus as f(x, z) = z − h(x), then:

ˆ̂n =
∇f
|∇f |

=
ẑ− hx(x)x̂√

1 + hx(x)2
(2.33)

and we finally reach:

∇ · n̂ =
−hxx(x)

(1 + hx(x)2)
3
2

≈ −hxx(x) (2.34)
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for hx(x) < 1. Substituting into (2.32) we get the second order partial differential equation:

− γ ∂
2h

∂x2
= ρgh, hx(0) = − cot θ, (2.35)

whose solution is:

h(x) = λ cot θe−
x
λ (2.36)

where λ =
√

γ
ρg is the so called "Capillary length". This is another fundamental variable in the

study of capillarity.1 This expression gives the profile of a meniscus at a distance x from the wall

of the container. As the capillary length increases, we expect that meniscus to be more curved

(see next section), which agrees with our expression. A similar argument holds for the contact

angle θ.

Some profiles for concave menisci at different contact angles are given.

Figure 2.8: Menisci for contact angles 40◦, 50◦, 70◦, setting λ = 1

1We could have derived a similar result for a convex meniscus (θ > π
2
), by applying the initial condition

hx(0) = tan θ, giving as a solution:

h(x) = −λ tan θe−
x
λ (2.37)
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2.3.3 Capillary Length λ and the shape of puddles

Consider a water droplet or puddle on a solid surface. We then know that the Laplace pressure

at two points A, B inside this droplet, of radius of curvature RA, RB respectively is then:

∆PA =
2γ

RA
, ∆PB =

2γ

RB
(2.38)

We then have that the pressure difference between these two points is:

∆PA −∆PB = 2γ
( 1

RA
− 1

RB

)
(2.39)

This is equal to the vertical hydrostatic pressure difference ρgh, where h is the height difference

between the A and B. Equating the two yields:( 1

RA
− 1

RB

)
=

h

2 γ
ρg

(2.40)

Using dimensional analysis, we can conclude that the term γ
ρg must have units of [L]2, so that

we may define the capillary length as:

λ =

√
γ

ρg
(2.41)

The physical interpretation for this value is the distance over which a liquid-gas interface is

curved. Thus, it follows that capillary length plays a vital role in determining the shape of a

droplet or puddle. This is evident when analyzing cases where h ≷ λ.31

Case 1: h > λ

For droplets where h > λ, we then have using (2.40) that

1

RA
− 1

RB
>> 0 (2.42)

It follows that the radius of curvature at point B will be greater than at point A. This means that

the curvature decreases as we move upwards, and hence we expect the top part of the droplet to

be flat, and become more curved as we move downwards.

Case 2: h < λ

Using our physical intuition, for h < λ we expect the droplet to have a spherical shape. Indeed,

using the same procedure, we get that:

1

RA
− 1

RB
≈ 0 (2.43)

This means that the radius of curvature between any two arbitrary points A, B inside the droplet

is the same. Hence, we must have a spherical droplet.
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Figure 2.9: Comparison between puddles with h > λ and h < λ.

One might now wonder how to calculate the maximum height of a droplet on an ideal smooth

hydrophobic surface. We have that the net energy density or net force per unit length acting

on the contour of the three phases(solid, liquid, gas), the interface, must be null. If we denote

the surface tension of the solid-liquid, liquid-gas and gas-solid interface as γSLγLGγGS , and the

contact angle as θ, then balancing force per unit length between these three phases:30

γSL + γLG cos θ = γGS (2.44)

which can be rearranged into the Young equation (not to be mistaken with the Young-Laplace

equation):

Young Equation

cos θ =
γGS − γSL

γLG
(2.45)

As the surface tension between the liquid and gas phases increases, the angle of contact must

decrease. This agrees with Young’s equation. Since surface tension is essentially how much a

surface pushes against increasing its surface area, if surface tension is greater, we expect its

surface area to get smaller and smaller, causing a decrease in contact angle.

Going back to the derivation in subsection 2.3.2, we can write:

− ρgx =
γgxx(x)

(1 + gx(x)2)
3
2

(2.46)

Substituting q = gx(x), we can solve this ODE:

−1

2
ρgh2 =

γq√
1 + q2

+ C (2.47)

= γ cos θ + C (2.48)

We can now set initial conditions h(θ = 0) = 0, so that C = −γ. Finally, we have the result:32

h =

√
2γ

ρg
(1− cos θ) (2.49)
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which can be rewritten using Young’s equation:

h =

√
2

ρg
(γ − γGS + γSL) (2.50)

The same result can be rewritten as

h = 2λ sin
(θ

2

)
(2.51)

Observing figure 2.9, notice that we can define a spread factor S as the difference between

the surface energies trying to "spread" the droplet (pointing outwards), and the surface energies

pointing inwards:

S = γ + γSL − γGS (2.52)

so that we finally reach:

h =

√
2S

ρg
(2.53)

This makes sense from a physical standpoint. Indeed, one would expect that for a puddle of

droplet to have a greater maximum height, it would be "pushing inwards" more than it would

be "pushing outwards". In other words, the greater the spreading parameter S is, the more

spherical we’d expect the droplet to be. This agrees with (2.53). To conclude, we provide a table

to summarize our results on menisci.

Concave Meniscus Convex Meniscus

h(x) ≈ λ cot θe−
x
λ h(x) ≈ −λ tan θe−

x
λ

hmax =
√

2γ
ρg (1− sin θ) hmax =

√
2γ
ρg (1− cos θ)

hmax ≈ λ cot θ hmax ≈ λ tan θ

Table 2.1: Table Summarizing Shape of Menisci

2

2We could have also derived the formula for a concave meniscus. Consider:

−1

2
ρgh2 =

γq√
1 + q2

+ C = γ
tan θ√

1 + tan2 θ
+ C = γ sin θ

Using the initial condition that h(q =∞) = 0:

h =

√
2γ

ρg
(1− sin θ)

42



2.4 Minimal Surfaces

Consider a soap film produced when immersing a frame into a water-soap solution. Since we

have no change in pressure when moving through the interface layer, it follows from Laplace’s

equation that the mean curvature of this soap film must be zero. Such types of surfaces that

minimize surface area by having zero mean curvature at all points are called minimal surfaces.33

Indeed, A. Presley (2012) gives the definition of a minimal surface as:

A minimal surface is a surface whose mean curvature is zero everywhere.

They are given by the solutions to the minimal surface equation:34

Minimal Surface Equation

∇ ·
( ∇f

(1 + |∇f |2)
1
2

)
= 0 (2.54)

Quite obviously, a simple plane would satisfy this equation. Another solution is the Helicoid,

the second non-trivial solution to be discovered after the Catenoid (see Fig. 2.10).

Note that, except for the plane, all other solutions of the minimal surface equation will

have non-zero curvature at some points. However, they average out at every point to be zero.

Moreover, all these surfaces have a "soap film frame", the frame that contains the set of all

points the surface must contain, while still minimizing its surface area. For the Catenoid and the

Helicoid, these frames are quite easy to imagine. The former is generated when immersing two

elliptical rings parallel to each other in soap, whereas the latter is formed when using a helix.

These surfaces were plotted on python, and the code is given below for availability to the reader

(in case the reproduction of these results is necessary):

2.5 Conclusion

A definition for surface tension was given, and this definition was used to conceptually understand

some phenomena related to surface tension, such as the formation of droplets, the clumping of

bubbles on the surface of certain liquids such as water, and the reason we use soap when washing

our hands. A mathematical model was developed to fit these insights, firstly by deriving the

Young-Laplace Law. We then saw how this equation can be used to model interactions between

fluids, especially between liquids and gases, by examining floating bodies, menisci and capillary

action. Lastly, we saw how a challenging problem in the field of pure mathematics, minimal

surfaces, can be simplified using soap films and surface tension.

One could have also used trigonometric identities and have shown that:

h =

√
2

ρg
(1− cosψ =

√
2

ρg
(1− cos(90− π) =

√
2

ρg
(1− sin θ)
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Chapter 3

Frisbees and Disks

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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3.3 The Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Deriving the Cauchy Momentum equation for Incompressible Flow 52

3.5 The Bernoulli Principle and how Lift is generated . . . . . . . . . . 55

3.6 Equation of Motion for a Frisbee in Flight . . . . . . . . . . . . . . . 57

3.7 Simulating Frisbee Flight . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Introduction

The modern Frisbee was initially invented in 1958 by Walter Frederick Morrison, who named his

invention The Flyin-Saucer after various Unidentified Flying Objects were sighted. All rights

were then sold to Wham-O, who renamed the disk Frisbee, supposedly after hearing Yale students

refer to the disk by frisbie. Sales escalated tremendously after Wham-O redesigned the toy,

making it more accurate.

To address the problem of determining the motion of a Frisbee (or more generally a disk),

we must point out two fundamental ideas: the Bernoulli Principle, and the Conservation of

Angular Momentum. We shall mostly treat the first concept in this chapter, and treat rigid body

dynamics in the next chapter. Hence, only at the end of the next two chapters will we have the

answer to the burning question: how does a Frisbee fly?

Light and flexible, the Frisbee is still a source of entertainment, and despite its simplistic de-

sign, the physics behind their trajectories has been rarely investigated. Indeed, little research has

been conducted examining the Frisbee’s motion computationally, experimentally or theoretically.

Firstly, Schuurmans (1990)44 explained conceptually the turnover effect, describing how gy-

roscopic stability allows Frisbees not to turn over and fall during their flight. methods which
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shall be introduced more rigorously here were applied, such as the Bernoulli principle. The paper

addresses the irregularity in the distribution of lift force throughout a normal disk, causing it to

flip over, and then attempts to explain how imparting enough rotational momentum to the disk

avoids any notable change in the disk’s orientation. The paper clearly points out the importance

of gyroscopic procession in subsequent sections.

Hubbard Hummel (2000)45 also investigated the dynamics of Frisbee flight, and formalized

the ideas in Schuurmans (1990), providing equations of motion for the discus. Methods to de-

termine aerodynamic coefficients were also introduced, and simulations were run for disk flights

with different initial conditions. Iterative approximations were then used to predict aerody-

namic coefficients for other flights. Similar efforts were made by Morrison (2005)46 which also

provided a numerical model for the motion of a Frisbee in flight using Euler’s method. Motoyama

(2002)48 provided refreshing alternatives to the antiquate explanation on the generation of lift

by Bernoulli’s principle. Furthermore, unlike previously mentioned research, turbulence effects

were also taken into account.

3.2 A mathematical prelude on Summation Convention

Before delving into the tedious and heavy derivation that will follow, it may be useful to introduce

summation convention to simplify calculations later on, following Chapter 26 from Mathematical

Methods for Physics and Engineering .49 There is only one "rule" in this notation: if a subscript

appears precisely twice in a term of an expression (called dummy subscript), it is summed over the

values this subscript can take. e.g. for j = 1, 2, 3,we can write aijbjk = ai1b1k + ai2b2k + ai3b3k.

Therefore, one can also write that:

∂ifi =
∂f1

∂x1
+
∂f2

∂x2
+
∂f3

∂x3
= ∇ · f (3.1)

ei∂iψ =
∂ψ

∂x1
e1 +

∂ψ

∂x2
e2 +

∂ψ

∂x3
e3 = ∇ψ (3.2)

which shows the just how powerful this convention is in shortening expressions. If we let f = fiei,

then the Del operator must be defined as:

∇ = ei∂i (3.3)

Moreover, note that a subscript may never appear more than twice in a term. We must

therefore take great care when changing subscripts. For example, consider aikbjkδkj , where δkj
is defined as the Kronecker-Delta:

δkj =

1 if k = j

0 otherwise.
(3.4)
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Then, we mustn’t write aijbjj but should instead use aikbjk. Clearly, the Kronecker-Delta symbol

plays an important role in writing scalar products between vectors. Consider two vectors a = aiei
and b = bjej . We can write their scalar product as:

a · b =aieibjej (3.5)

=aibjeiej (3.6)

=aibjδij (3.7)

since ei ·ei = 0 and ei ·ej = 1 (for i 6= j). We can also define the analogous of the Kronecker

delta for cross products, the Levi-Civita symbol:

εijk =


+1 if (i, j, k) is an even permutation of 1,2,3

−1 if (i, j, k) is an odd permutation of 1,2,3

0 otherwise.

(3.8)

Recall that an even permutation is an arrangement that requires an even number of individual

permutations of (1, 2, 3) (e.g. (1, 2, 3) −→ (2, 1, 3) −→ (2, 3, 1)), whereas an odd permutation

requires an odd number of transitions (e.g. (1, 2, 3) −→ (2, 1, 3)). We have that:

ε123 = ε231 = ε312 = +1, ε321 = ε132 = ε213 = −1, others = 0 (3.9)

One might wonder how the Levi-Civita symbol may be useful in simplifying cross product

calculations. In a Right Handed Cartesian Basis: e1×e2 = e3, whereas e2×e1 = −e3. The same

holds for e2×e3 and e3×e1. We may then generalize these results and say that ei×ej = εijkek.

Once again let us consider two vectors a = aiei and b = bjej . Their cross product is:

a× b = (aiei)× (bjej) (3.10)

= aibj(ei × ej) (3.11)

= εijkaibjek (3.12)

The analogy between the Levi-Cevita and the Kronecker-Delta symbols is now clear: ei ·ej = δij ,

whereas ei × ej = εijkek. One can use the cyclic properties of the Levi-Cevita symbol and write

εijk = εkij = εjki. We then find:

a× b = εkijaibjek (3.13)

= εijkajbkei (3.14)
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a× b = εjkiaibjek (3.15)

= εijkakbiej (3.16)

where we relabelled the indices. 1 We can now express all of vector calculus more succinctly

using this new summation convention we have developed. Consider the curl of a vector field F:

∇× F = εijk∂jFkei (3.17)

We can also derive identities for the scalar and cross triple product:

a · (b× c) = εijkaibjckei · ei (3.18)

= εijkaibjck (3.19)

a× (b× c) = ajej × (εklmblcmek) (3.20)

= (ej × ek)aj(εklmblcm) (3.21)

= εijkεklmajblcmei (3.22)

Recall athe so-called bac-cab identity: a × (b × c) = b(a · c) − c(a · b). Using summation

convention:

b(a · c)− c(a · b) = blel(aj · cm)− δimcm(aj · bl)em (3.23)

= δilbi(aj · cm)ei − cm(aj · bl)ei (3.24)

=
[
δilbl(δjmajcm)− δimcm(δjlajbl)

]
ei (3.25)

=
[
(δilδjm − δimδjl)ajblcm

]
ei (3.26)

Comparing (3.25) and (3.22), we get an essential result in Linear Algebra:

εijkεklm = (δilδjm − δimδjl) (3.27)

Going back to (3.18), we know that the scalar product between three vectors is:

a · (b× c) = det


a1 a2 a3

b1 b2 b3

c1 c2 c3

 = εijkaibjck (3.28)

We have therefore derived a definition for the determinant of a matrix. More generally, for a
1In (3.15) i −→ k, j −→ i, k −→ j and in (3.13) i −→ j, j −→ k, k −→ i
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matrix A:

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 (3.29)

the determinant is specified as:

detA = εijka1ia2ja3k (3.30)

3.3 The Stress Tensor

Let us now try to apply our knowledge of subscript notation to the study of the stress tensor,

following Lecture series at Texas AM University.35 Imagine a fluid running between two plates

separated by a distance h. The bottom one is fixed, whereas the top one is free to move.

Moreover, assume that the fluid doesn’t slip on either plate, giving us the boundary condition:

vplate = v(y) for y = 0, h (3.31)

One can experimentally verify that the shear stress (stress acting parallel to the surface it is

acting upon) acting on the fluid is equal to the force exerted on the top plate as the fluid moves

with velocity v at y = h.

Figure 3.1: Fluid running between a fixed and moving plate

As a result of empirical observations, Newton’s law of Viscosity states that:

F

A
= µ

v

H
(3.32)

The term v
H could be seen as the average velocity gradient, it is the average rate at which velocity

changes moving up the liquid. Assuming that the liquid is Newtonian (the viscosity doesn’t vary

with velocity), then we can write more generally that:
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dFx
dAy

= µ
∂vx
∂y

(3.33)

Physically, this means that the shear stress acting in the direction x̂ on an infinitesimal area

of a fluid perpendicular to the vector ŷ is directly proportional to the rate of change of velocity

in the x̂ direction with respect to position.

Figure 3.2: Diagram dividing fluid into infinitesimally thin layers, explaining how viscosity acts
as a shear stress on a fluid

Consider dividing the fluid into various layers of infinitesimal height δH, and consider layers

n − i, n, n + 1. Since each layer is infinitesimally thin, they will each have a distinct velocity.

Viscosity will always try to reduce any difference in velocity, trying to "straighten" the velocity

gradient into a vertical line. We then expect the (n− 1)th layer to apply some retarding viscous

force on the nth layer, trying to reduce the velocity difference. Consequently, by Newton’s Third

Law, the nth layer must apply a viscous force "pulling" the lower layer to increase its velocity

and reduce the velocity difference. Similar mechanics apply for the the nth − (n + 1)th layer

couple. Thus, layer n will feel shearing stress from the top and bottom layers. The shearing

stress experienced by a liquid is simply a result of internal drag in the fluid trying to minimize

the velocity gradient. Intuitively, we expect that as the difference in velocity increases from one

"layer" to another (which is interpreted as ∂vx
∂y ), there should be more shear stress acting on the

fluid. Not only, as the viscosity of the fluid increases, so should the shear stress. These every

day observations coincide with our equation.

Consider an infinitesimal volume element of a Newtonian fluid as shown below, and suppose

we wanted to find an expression for the stress forces (shearing forces and normal forces combined)

acting on this volume element47 (ignoring pressure which shall be dealt with later on). Let us
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Figure 3.3: Shear and Normal stress acting on an infinitesimal volume element

define τij as the stress acting on a plane perpendicular to ei in the direction ej e.g. τ12 is the

stress acting on the yz plane in the e2 direction. Note that when i 6= j, we have shearing stress,

parallel to the plane it is acting on. Instead, when i = j we have a normal force, perpendicular

to the plane it is acting on. This distinction is the main reason we can’t just add stress acting in

the x direction, y direction and z direction. τxy is a shearing stress, whereas τyy is normal stress,

and although they act in the same direction, they must not be added due to this difference in

the manner they act on a surface (parallel or perpendicular). It follows that each plane on a

Cartesian coordinate system will have three stresses acting on it, two shearing stresses and one

normal stress, with a total of 9 stress components for all three planes. We must therefore try

to find a mathematical object capable of representing 9 components, and the answer as we shall

see later, is a tensor. Let us first specify the stress forces acting on the yz-plane:

τxy =
dFx
dAx

+
dFy
dAy

= µ
(∂vx
∂y

+
∂vy
∂x

)
(3.34)

τxz =
dFx
dAz

+
dFz
dAx

= µ
(∂vx
∂z

+
∂vz
∂x

)
(3.35)

τxx =
dFx
dAx

+
dFx
dAx

= 2µ
∂vx
∂x

(3.36)

Using subscript notation, we can write that in general:

τij = µ
(∂vj
∂i

+
∂vi
∂j

)
=


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (3.37)

which is known as the viscous stress tensor/deviatoric stress tensor. Note that i, j can each

have 3 values. Hence, this short equation actually represents 9 separate equations, this is the

mathematical object we were looking for! Quantities of these kind are referred to as Tensors. A

tensor may be defined as:

An algebraic object invariant under Cartesian transformations that contains dn com-
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ponents, where d is the dimension of space and n is the tensor rank (number of

subscripts needed to specify this tensor).38

It should be obvious that all physical laws are invariant to changes in coordinate system

(Cartesian transformations), and can therefore be expressed in the form of tensors. For example,

vectors can be specified with one index, v = viei, this is a first rank tensor. Similarly, a scalar has

no subscripts, it is a fixed quantity with one component and is therefore a zero rank tensor. It

follows that the viscous stress tensor is a second rank tensor, with 32 components, 3 components

for the direction they act in, and 6 components for the plane they act on

3.4 Deriving the Cauchy Momentum equation for Incompressible

Flow

We shall now begin our derivation of the Navier Stokes equation, following arguments from

Batchelor (1967)36 and Coleman (2010).37 Consider Newton’s Second Law for an arbitrary

surface:

F = ma (3.38)

Let the velocity of this fluid be defined as v(t, x, y, z) = u1e1 + u2e2 + u3e3. We can define the

body force B as the force exerted on this surface per unit volume:

B = ρ
d

dt
v(t, x, y, z) (3.39)

= ρ
(∂v
∂t

+
∂v
∂x1

∂x1

∂t
+

∂v
∂x2

∂x2

∂t
+

∂v
∂x3

∂x3

∂t

)
(3.40)

= ρ
(∂v
∂t

+ ∂iv
∂xi
∂t

)
︸ ︷︷ ︸

Dv
Dt

(sum convention) (3.41)

Denoting Dv
Dt = ∂t + v

(
∇ · v

)
as the material derivative, we find:

ρ
Dv
Dt

= B (3.42)

which is the Cauchy Momentum expression in its most general (and probably most useless)

form. We can now define the body force by examining which forces act on an infinitesimal volume

element. Following our previous analysis, we expect both external forces f as well as forces due to

internal stress (deviatoric stress tensor and pressure) to act on the fluid. We denote the general
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stress tensor as:

σ =


σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33

 (3.43)

= −


p 0 0

0 p 0

0 0 p

+


σ11 + p τ12 τ13

τ21 σ22 + p τ23

τ31 τ32 σ33 + p

 (3.44)

= −pI + T (3.45)

where T is the viscous stress tensor we saw earlier. Note that the diagonal entries (i = j) of the

general stress tensor must have both a component due to normal stress and a component due to

pressure. Hence, comparing terms in diagonal entries of the viscous stress tensor T with (3.37):

τii = σii + p =⇒ σij = −pδij + τij (3.46)

We rewrite our definition for the viscous stress tensor in summation convention:

τij = µ
(
∂jui + ∂iuj

)
(3.47)

from which it follows that:

σij = µ
(
∂jui + ∂iuj

)
− pδij (3.48)

Let us take the divergence of the stress tensor, which will give us the body force contribution

from fluid stress (pressure and viscous stress). One might wonder why the divergence of the

general stress tensor will give us the stress force per unit volume acting on this fluid. Taking

a more physical approach, the divergence will tell us how much the tensor acting on this fluid

may be a "sink" or a "source" of stress. In other words, the divergence will tell us whether the

tensor is a source or sink of momentum which is equivalent to the stress force by the principle

of conservation of momentum. Mathematically, consider the variation in viscous stress forces

throughout our infinitesimal volume element The viscous stress must increase by ∂jτij Then:

Fi =
(
∂jτij∆V

)
(3.49)

= (∇ · T )i∆V =⇒ (∇ · T )i =
Fi

∆V
= b +∇p (3.50)

where T is the viscous stress tensor in matrix form. 2 We then get the ith component of the
2Please do note that there is a difference between a tensor of second rank and a matrix. The former is invariant

to Cartesian transformations, whereas the latter, being just a grid of numbers, does not fulfill this requirement
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divergence of the stress tensor is:

(∇ · σ)i = (∇ · T )i −∇p (3.51)

= b +∇p−∇p (3.52)

= b (3.53)

As we can see, taking the divergence of the general stress tensor will give us the body force

exerted on the fluid. Below are the calculations for this divergence:

Summation Notation

(∇ · σ)i = ∂jσij (3.54)

= µ∂j
(
∂iuj + ∂jui

)
− ∂ipδij (3.55)

= µ
(
∂i∂juj + ∂j∂jui

)
− ∂ipδij (3.56)

= µ
(
∇2ui + ∂i∂juj

)
− ∂ipδij (3.57)

= µ∇2ui + µ���
��:0

∂i(∇ · v) −∇p (3.58)

= µ∇2ui −∇p (3.59)

Normal Notation

(∇ · σ)i =
∂σi1
∂x1

+
∂σi2
∂x2

+
∂σi3
∂x3

(3.60)

= µ

[
∂

∂x1

(∂u1

∂xi
+
∂ui
∂x1

)
+

∂

∂x2

(∂u2

∂xi
+
∂ui
∂x2

)
+

∂

∂x3

(∂u3

∂xi
+
∂ui
∂x3

)]
−∇p (3.61)

= µ

[(∂2ui
∂x2

1

+
∂2ui
∂x2

2

+
∂2ui
∂x3

1

)
+
( ∂2u1

∂x1∂xi
+

∂2u2

∂x2∂xi
+

∂2u3

∂x3∂xi

)]
−∇p (3.62)

= µ

[
∇2ui +

∂

∂xi

(∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)]
−∇p (3.63)

= µ
[
∇2ui +

�
��

�
��*

0
∂

∂xi

(
∇ · v

)]
−∇p (3.64)

= µ∇2ui −∇p (3.65)

We have given derivations using both normal and summation convention for the reader to

be able to clearly compare what certain terms in the former derivation may correspond to. It

follows that:
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∇ · σ = µ∇2v−∇p (3.66)

B = f + µ∇2v−∇p (3.67)

Plugging this into (3.42) yields the famous Cauchy Momentum equation:

Cauchy Momentum Equation

ρ
Dv
Dt

= f + µ∇2v−∇p (3.68)

As we can see, this is a reformulation of Newton’s second law for an incompressible fluid, taking

viscosity into account (negligible viscosity yields Euler’s equation for conservation of momentum).

3.5 The Bernoulli Principle and how Lift is generated

We shall now derive the Bernoulli principle from the Cauchy momentum equation4648 for an

incompressible fluid of negligible viscosity, such as air. Denoting the gravitational potential as

ψ, we can rewrite the Cauchy momentum equation as:

ρv · ∇v = f−∇p (3.69)

= ∇ψ −∇p (3.70)

Using the property:

ρv · ∇v = ρ

[
∇
(1

2
v2
)
− v×

(
∇× v

)]
3 (3.74)

we can then write:

∇
(ρ

2
v2 + p− ψ

)
= v×

(
∇× v

)
(3.75)

∴ v · ∇
(1

2
ρv2 + p− ψ

)
= v · v×

(
∇× v

)
(3.76)

v · ∇
(1

2
ρv2 + p− ψ

)
= 0 (3.77)

∴
1

2
ρv2 + p− ψ = C (3.78)

along streamlines for some constant C.
3This property can be easily proven using summation notation:

v×
(
∇× v

)
= εijlεlmkvj∂mvk (3.72)

= (δimδjk − δikδjm)vj∂mvk = δimδjk(vj∂mvk)− δikδjm(vj∂mvk) (3.73)

= vk∂ivk − vm∂mvk =
1

2
∇(v2)− v · ∇v (3.74)

where we used the property: v∇v
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Figure 3.4: Streamline for the Vector Field F(x, y) = sinx sin yx̂ + cosx cos yŷ

Streamlines are curves tangent to the vector field v. Hence, the angle between A and v must

be 0. It follows that the solution to v ·A = 0 along streamlines is A = 0 assuming the fluid is

non-stationary (|v| 6= 0). We have now reached a fundamental result in classical fluid dynamics,

the Bernoulli principle:

Bernoulli Principle

1

2
ρv2 + p− ψ = C along streamlines (3.79)

The Bernoulli Principle tells us that in high pressure regions, a fluid has low velocity and in

low pressure regions, a fluid has high velocity. This is the driving force behind the mainstream

explanation for lift. Indeed, schools often teach that an aircraft wing produces lift thanks to a

difference in velocity between the air over and the air under. Since the air has to move a greater

distance over the wing (due to its curvature), it must travel faster to meet up with the air under

the wing in time. Therefore, there is greater pressure under the wing, generating lift.

Although partially correct, this explanation does raise various questions. How does an air-

plane fly upside down? How do planes with flat wings fly? Furthermore, studies, such as a

short video by Holger Babinski at the University of Cambridge, have shown that the air over the

wing doesn’t travel faster in order to "meet up" with the air under the wing. Obviously, this

explanation alone can’t explain how lift is generated in full detail.

In truth, pressure difference isn’t solely responsible for lift as explained in Motoyama (2002).48

When air moves over a wing, it follows its curvature due to the Coandă effect (the tendency of

fluids to follow a surface, such as a jet of water following a cup’s outer surface when wet). When

the air leaves the wing, it is directed downwards, causing the air under the wing to be deflected

down as well. By Newton’s Third Law, there must be a reaction force pushing the wing upwards,

this is lift. To generate more lift, it suffices to increase the angle of attack, directing even more

air downwards.

Flaps work following this principle. They help direct more air downwards without necessarily

increasing the angle of attack. Note that when the angle of attack is increased exceedingly, then
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Figure 3.5: Lift generated at various angles of attack

the air streams will have a harder time following the wing’s surface, leading to the formation of

turbulent vortices. Therefore, little to no lift is generated and we reach stall

Figure 3.6: Increment in Lift when using Flaps, as opposed to increasing the angle of attack

Finally, it must also be noted that pressure difference does play a role in generating lift.

Indeed, the air above a wing is more "compressed" due to their geometry. By the principle of

conservation of mass, the air flowing through this "compressed" region must be equal to to the

air flowing under the wing. In other words, the air must move faster over the wing to conserve

flow rate. Invoking the Bernoulli principle, lift must be generated.

3.6 Equation of Motion for a Frisbee in Flight

After having conceptually explained the dynamics behind flight, we will now try to formalize our

discussion and derive the equations of motion for a Frisbee.

Let us denote the velocity and pressure below the Frisbee to be v1, p1 respectively, and the

velocity and pressure above the Frisbee to be v2, p2. Then, neglecting the change in height, the
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Figure 3.7: Air flow over and under a frisbee in flight

Bernoulli principle tells us that:

ρv2
1

2
+ p1 =

ρv2
2

2
+ p2 (3.80)

ρ(v2
2 − v2

1)

2
= p1 − p2 (3.81)

ρ

2
(v2

2 − v2
1) = ∆P (3.82)

CLρ

2
v2

2 =
FL
A

(3.83)

FL =
1

2
ρACLv

2
2 (3.84)

where CL is the coefficient of lift defined as linearly related to the angle of attack alpha:

CL = (CL0 + CLα)︸ ︷︷ ︸
depend on shape

α (3.85)

Similarly:

FD =
1

2
ρACDv

2
2 (3.86)

where:

CD = CD0 + CDα(α− α0)2 (3.87)

and we denoted the angle which generates the least lift with α0. We now get the system of

differential equations:

m
dvx
dt = −1

2ρACDv
2
x sec θ2

m
dvy
dt = 1

2ρACDv
2
x sec θ2 −mg

(3.88)
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3.7 Simulating Frisbee Flight

Due to the complexities that arised when analytically solving this system of differential equa-

tions, numerical methods were employed. Runge-Kutta methods were used to produce height vs

distance trajectories for a Frisbee thrown at varying angles of attack with initial velocity 15m/s.

The following parameters were adopted: m = 0.175kg, ρ = 1.23kg/m3, the Frisbee radius was

0.14cm, CD0 = 0.08, CDα = 2.72, α0 = −4◦, CL0 = 0.15, CLα = 1.4. The code used for this

simulation can be found in Appendix A. The simulation’s results are shown below:

(a) (b)

(c) (d)

Figure 3.8: Trajectories of Frisbees thrown at v0 = 15, with varying angles of attack

Two major features of these plots must be addressed. Firstly, an inflection point must always

occur between the instant the Frisbee is thrown and the instant it reaches its maximum height H.

As the angle of attack increases, this inflection point gets closer and closer to H. Furthermore,

the second half of the trajectory is "compressed" compared to the first half. As the angle of

attack increases, this asymmetry becomes more and more noticeable. This is clearly due to drag,

since our coefficient of drag is quadratically related to the angle of attack. In the initial half

of the flight, the drag forces aren’t as noticeable and are contrasted by lift forces, pushing the

frisbee upward. Once the disk reaches its maximum height, it starts accelerating downwards.

The drag forces are now substantial, greatly reducing the Frisbee’s horizontal acceleration. By

the time the Frisbee falls to the ground, it will have travelled only a small distance horizontally.

Consider 3.8a. For a small angle of attack, more horizontal velocity is imparted to the Frisbee

than vertical velocity. Thus, as expected, the Frisbee’s maximum height was the lowest, around
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2.36m, and travelled 21.44m horizontally. Hence, the lift force was very minimal, and the Frisbee

fell to the ground quickly. With greater angles of attack, the Frisbee had a greater maximum

height. One might intuitively expect that the greatest height would be achieved when throwing

the disk vertically upwards. However, this is not the case, since the optimum height (13.43 m)

was achieved when α = 65◦. One plausible explanation could be that when throwing a Frisbee

directly (or almost) upwards, then very little lift can be generated, reducing the maximum height

that can be achieved. After a critical angle, as explained earlier, the Coanda effect won’t take

place, and the upper air streams won’t follow the Frisbee’s surface. However, our simulations

don’t take the Coanda effect into account. Another plausible explanation could be that imparting

very little if not no horizontal velocity will not generate any lift, and hence the frisbee will act

like a projectile.

Consider 3.8b. As we can see, more vertical velocity is imparted on the Frisbee, which

travels a greater horizontal distance, 22.67m. It turns out that the Frisbee travels the farthest

(23.29m) when α = 8◦. For greater angles of attack, as shown in 3.8c and 3.8d, the Frisbee went

significantly higher, but had a shorter range due to the significance of drag forces. All these

results coincide with the conclusions made in Morrison (2005).46
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Chapter 4

Rotation and the Motion of Spin

Stabilised Disks
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4.1 Introduction

Having ended our study of the aerodynamical properties of a flying discus, we must now consider

the mechanical properties of this body. "How does a Frisbee not flip over?", "Why does a

Frisbee wobble?" and other questions cannot be answered purely using fluid mechanics. We

must therefore refer to the dynamics of rigid bodies, and study seemingly unrelated phenomena

such as gyroscopic precession.

In the previous chapter, we made a comparison between a wing and a Frisbee to describe

how lift is generated. However, it must be noted that unlike wings, where one can distribute lift
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over a region on the aerofoil, Frisbees have an irregular distribution of lift. Indeed, as explained

in M. Schuurmans, (1990),44 the flying disk usually has more lift exerted on the back half due to

the curved rim. If we consider the air flow under the Frisbee, it is easy to see how the rims will

produce turbulence on the back end, causing air to move more slowly on the back. This will in

turn cause greater lift. Clearly however, the Frisbee still doesn’t flip over despite the net torque

acting upon it, why? Not only, the Frisbee also displays some sort of "wobbly" motion, which

increases when spin is reduced, and is almost negligible for high rotational frequency.

Furthermore, a Frisbee can be noticed to veer to the left or to the right (depending on the

direction of rotation) despite not being thrown at a banked angle. Note that all these phenomena,

which are formally known as spin stabilisation and precession, also arise in gyroscopic motion.

Figure 4.1: Explaining why Frisbees veer to the right/left due to Gyroscopic Precession

It is therefore of great interest to study the mechanics of rotation and spin in order to answer

the aforementioned questions.
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4.2 Kinematics of Rotation

Before carefully examining the dynamics of rigid bodies, such as a spinning Frisbee, we must first

analyze the kinematics of rotating systems. The tools we shall develop will be of considerable

convenience when building a mathematical model for rotating disks.

To specify the orientation of a body, it suffices to consider two systems of axes, one fixed in

space relative to an external observer, and one fixed relative to the body. The angles that the

two systems of axes make with each other define the orientation of the object.

Let us denote the fixed system of axes by e′i and the rotating system of axes by ei. Hence,

the position vector to a point P can be written as r = xiei = x′ie
′
i. It follows that we may rewrite

ei = mie′i Hence, there must be an isometric transformation described by the orthogonal matrix

Figure 4.2: Kinematics of a Body in a Rotating Frame vs. Inertial Frame

Mij satisfying:

ei = Mije′j (4.1)

Differentiating (we follow some parts of S. Siklos Lecture notes on Classical Mechanics):42

ėi = Ṁije′j +��
�*0

Mij ė′j (4.2)

= ṀijM
−1
jk ek (4.3)

= ṀijMkjek. (4.4)
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Let us define ṀijMkj = εikmωm We can then write:

ėi = εikmωmek (4.5)

= εikm(ω · em)ek (4.6)

= −εimk(ω · em)ek (4.7)

= −(ω · ek)εikmem (4.8)

= −(ω · ek)ei × ek (4.9)

= ωkek × ei (4.10)

= ω × ei (4.11)

Alternatively, one could write:

R =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (4.12)

∴ Ṙ = θ̇


− sin θ cos θ 0

− cos θ − sin θ 0

0 0 0

 , RRT =


0 θ̇ 0

−θ̇ 0 0

0 0 0

 (4.13)

(4.14)

Comparing with εijωk, we get that ω = θ̇ as required. We may see the angular frequency ω

as the "spin" of a rotating rigid body. Geometrically, this coincides with our understanding of

rotation.

Figure 4.3: Angular Frequency of a rotating rigid body
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Using this result to express the velocity of a body relative to the fixed frame:

ṙ = ẋiei + xi(ω × ei) (4.15)

= ẋiei + ω × r (4.16)

This result is very intuitive. Indeed, the first term is the velocity of the body in the moving

frame, whereas the second term is the velocity due to the rotation of the moving frame. Their

addition will give the overall velocity of the body in an external fixed frame.

Differentiating ṙ, we get:

[]r̈ = ẍiei + ẋiω × ei + ω̇ × r + ω × (ẋiei + ω × r) (4.17)

= ẍiei + 2ẋiω × ei + ω̇ × r + ω × (ω × r) (4.18)

ma = Fin − 2mω × v−mω̇ × r−mω × r︸ ︷︷ ︸
Fictitious Forces

(4.19)

We see from (4.19) that the forces acting on a rigid body in an inertial frame include fictitious

forces. These are "fake forces" that account for a deviation in the observed behaviour between

an inertial frame and a non-inertial frame. 2mω × v is the Coriolis Force, mω̇ × r is the Euler

force, and mω × v is the centrifugal force (not to be confused with the centripetal force, which

unlike the centrifugal force, keeps an object in a circular trajectory).

Fictitious forces, as the name suggests, aren’t real forces. They are fictional forces that

account for deviations in observations taken in the inertial frame. Consider a car moving in a

straight line, and another car moving around a curve. Let them depart from the same point at

the same time at the same speed. From the perspective of the second car, the car moving in the

straight line will seem to be acted upon by an external force, curving its trajectory. This force is

the Coriolis effect. Indeed, if we consider a body moving in a circular trajectory, then the moment

it is "released" at point P , it will move into a straight line from an external observer tangent

to the circular trajectory at P . In frame P, the body will have a curved trajectory, instead of

straight. To account for this difference, we must add a fictitious force acting horizontally to make

sure Newton’s Second Law still holds in frame P. We strongly recommend visiting udiproad’s

video for good visualisation of these forces.

4.2.1 The Coriolis Effect

Perhaps the most abstract fictitious force is the Coriolis force, despite being leading to the

formation of countless natural phenomena: cyclones, jet streams, ocean and wind currents,

turbidity currents, and even the vortices formed when flushing the toilet.

Consider once again a fixed set of axes e′i and a set of axes ei with coincident origins rotating
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with angular frequency ω about one of e′i (e
′
2 in Figure), as shown below. Then, in a time interval

dt the axis e3 has moved by de3 = ωdt(e3 × ω̂). Hence, de3dt = ω(e3 × ω̂) =⇒ de3
dt = ω × e3

Figure 4.4: Coriolis Effect on a Rotating Disk

If we now consider a rotating disk. Then, an observer placed on the disk will move faster as

the get farther and farther away from the axis of rotation. Let us now replace the disk by the

Earth oriented such that the axis of rotation points out of the paper, as shown below. We place

two observers, one at a distance r1 and the other at a distance r2 with r2 < r1. Now, imagine

throwing an object from observer 1 to observer 2. Since observer 1 has a greater horizontal

velocity, once it arrives at a distance r1 from the axis of rotation, it will have "deviated" to the

right compared to observer 2. Similarly, if observer 2 throws an object to observer 1, then it will

be "deflected" to the left.

The same applies if we consider throwing an object from a tall building. From our previous

analysis, ignoring any affects from wind, we expect there to be some horizontal deflection, since

the ball is moving faster on top of the building than at the bottom. In fact, the velocity at the

top of the building (height h) is (R⊕+h)ω, where R⊕ is the radius of the Earth and ω its angular

frequency, whereas the velocity at the bottom is R⊕ω. When the object is thrown, a velocity

(R⊕ + h)ω must be imparted. Hence, relative to "ground zero", the object is moving at hω at t

= 0. The net force acting on this body is:42

F = mg− 2mω × v−mω̇ × r−mω × r (4.20)

Compared to the Coriolis effect, the Euler terms can be omitted. Furthermore, since we are

not interested in forces acting radially, we will also omit the centrifugal term (which, unlike the

centripetal term, doesn’t act tangentially). We therefore get:

F = mg− 2mω × v (4.21)
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Integrating once, and assuming ṙ0 = 0 since the object is released from rest, we get:

ṙ = gt− 2ω × (r− r0) (4.22)

Substituting 4.22 into 4.21, we get:

r̈ = g− 2ω × (gt−
���

���
��:0

2ω × (r− r0)) (4.23)

= −g− 2ω × gt (4.24)

Integrating twice:

r− r0 =
1

2
gt2 − 1

3
ω × gt3 (4.25)

Substituting t =
√

2h/g, and assuming we are on the equator (such that |ω × g| = ωg):

∆x =
2
√

2

3

(
h3/2ω
√
g

)
(4.26)

Therefore, if we were to drop an object from the Burj Khalifa (828 m) under ideal conditions,

the deviation would be around 52 cm. Looking back at our initial discussion on the problem, we

can now see that if the velocity of the ball relative to the ground is hω, then after time t, the

deflection will be hωt, which coincides with our formula.

Furthermore, this result makes physically sense. Indeed, we expect that for a faster spinning

planet, this deviation would be greater, since the discrepancy between the ground zero velocity

and the velocity on top of the building would be greater. Moreover, for greater gravitational

acceleration, the object has less time to deflect, which explains the inverse proportionality ∆x ∝
1√
g .

If we now look at masses of air moving in the atmosphere, we expect the Coriolis effect to

be crucial in our understanding of meteorology, as explained in D. Kleppner and R. Kolenkow

(2014).41 Hence, masses from the northern hemisphere will be deflected to the left, and the

southern hemisphere will be deflected to the right, forming a vortex. Note that the Coriolis

effect is clearly null at the equator, which is why cyclones don’t form there.

Let us look at an air packet rotating about a low pressure point, with a pressure difference

∆P , as shown below.

Analyzing the forces acting radially:

mv2

r
= S∆P − 2mωv sin θ (4.27)

v2

r
=

1

ρ
∆P − 2ωv sin θ (4.28)
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Figure 4.5: The formation of cyclones in the Northern Hemisphere

Taking ∆r −→ 0, and neglecting the v2

r
1 (according to Navier Stoke’s equation, for higher

pressure regions as we get farther away from the cyclone eye, the wind current velocity is low):

v =
1

2ωρ sin θ

dP

dr
(4.30)

As the pressure gradient increases, we expect the forces acting radially on the air parcel to

increase, increasing the cyclone’s tangential velocity. This agrees with (4.30) Moreover, as the

angular velocity of the Earth increases, then our formula tells us that the cyclone’s tangential

velocity will decrease

4.2.2 Euler Angles

Up until now, we have referred to "rotations" and rotating frames quite vaguely. We will now

try to rigorously define what is meant by a rotating frame of reference. Consider a set of axes ea.

Then, any fixed origin rotation of these axes can be parametrised using Euler Angles, as shown

in.40 This parametrisation consists in three separate rotations:

ea
R(φ)−−−→ e′a

R(θ)−−−→ e′′′a
R(ψ)−−−→ ẽa (4.31)

Firstly, we rotate the axes by φ about e3, so that ea = R(φ)abeb, where:

R(ψ) =


cosφ sinφ 0

− sinφ cosφ 0

0 0 1

 (4.32)

1For very strong wind currents, this term can’t be neglected. The differential equation then turns into:

v =

√
(rω sin θ)2 +

r

ρ

dP

dr
− rω sin θ (4.29)
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Secondly, we rotate the new axes by θ about e′1 so that e′′a = R(θ)abe′b, where:

R(θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (4.33)

Finally, we rotate the newest axes by ψ about e′′3 so that ẽa = R(ψ)abe′′b , where:

R(ψ) =


cosψ sinψ 0

− sinψ cosψ 0

0 0 1

 (4.34)

We can represent these transformations geometrically: We can now use these angles to re-define

Figure 4.6: Specifying a body’s orientation using Euler Angles

the angular frequency:

ω = φ̇e3 + θ̇e′1 + ψ̇ẽ3 (4.35)

e3 = sin θ sinψẽ1 + sin θ cosψẽ2 + cos θẽ3 (4.36)

e′1 = cosψẽ1 − sinψẽ2 (4.37)

ω = (φ̇ sin θ + θ̇ cosψ)ẽ1 + (φ̇ sin θ cosψ − θ̇ sinψ)ẽ2 + (ψ̇ + φ̇ cos θ)ẽ3 (4.38)

4.3 Dynamics of Rigid Bodies

4.3.1 What are Rigid Bodies?

We will now begin examining the dynamics of rigid bodies,39 systems of particles with zero

internal degrees of freedom constraining individual particles to be a constant distant apart. If
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we consider a system of N particles, then this is a rigid body as long as:

d

dt
(|ri − rj |) = 0,∀i, j = 0, 1, 2...N (4.39)

In general, a rigid body has six degrees of freedom, three for translational motion and three for

the orientation of the body with respect to a system of axes.

Throughout the section, we will consider one inertial frame and one rotating frame whose

origin coincides with the body’s center of mass. Let us denote the position vector of any point

particle in the body as r in the rotating frame, and r′ in the fixed frame. Previous analysis has

shown that:

v′ = v + ω × r (4.40)

This velocity can be decomposed into one term amounting for translation motion, the trans-

lational velocity, and one term amounting for rotational motion, the angular velocity.

4.3.2 The Inertia Tensor

How do we specify a rigid body’s energy? Consider the kinetic energy for a system of particles:

T =
∑ 1

2mv’2. Using (4.40):

T =
∑ 1

2
m(v + ω × r)2 (4.41)

=
∑ 1

2
mv2 +

1

2

∑
m(ω × r)2 +

∑
mv · (ω × r) (4.42)

=
∑ 1

2
mv2 +

∑ 1

2
m(ω × r)2 +

��
��*

0∑
mr · (ω × v) (4.43)

=
1

2
Mv2 +

1

2

∑
m(ω × r)× (ω × r) (4.44)

=
1

2
Mv2︸ ︷︷ ︸
Ttran

+
1

2

∑
m
[
ω2r2 − (ω · r)2

]
︸ ︷︷ ︸

Trot

(4.45)

Rewriting the last equation in tensor form:

Trot =
1

2
mi(ω

2
i r

2
i − ωiωkrkri) (4.46)

=
1

2
mi(ωiωkδikr

2
j − ωiωkrirk) (4.47)

=
1

2
ωiωkmi(r

2
i δij − rirk)︸ ︷︷ ︸

Inertia Tensor Iik

(4.48)

If we now define the Inertia Tensor to be Iik = mi(r
2
i δij − rirk), then we can rewrite:

Trot =
1

2
ωiωkIik =

1

2
ω · I · ω (4.49)
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Let us expand the inertia tensor:

I =


m(y2 + z2) −mxy −mxz
−myx m(x2 + z2) −myz
−mzx −mzy m(x2 + y2)

 (4.50)

The diagonal entries Iii are called the Moments of Inertia about their respective principal axes

of rotation, whereas the other entries are called Products of Inertia If we make the rotating frame

coincide with the principal axes of rotation so that their origins coincide with the center of mass,

then our expression for kinetic energy is greatly simplified:

Trot =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3) (4.51)

Note that the products of inertia terms vanished. This is because when our set of axes

coincides with the symmetry axes of the body, then for every mass located at (xi, yi), there will

be an equal mass at (xi,−yi). Hence the inertia term Ixy cancel out, and so do all other products

of inertia. Physically, the moment of inertia defines the amount of torque needed to obtain a

desired amount of angular acceleration. It is the equivalent of mass in translational mechanic.

Indeed, they both depend on the shape and geometry of the object, If we now multiply the

moment of inertia by angular velocity, then we get Angular momentum, analogous to traditional

momentum.

4.3.3 Angular Momentum

We will now closely follow D. Tong Lectures on Classical Dynamics.43 Let us define the angular

momentum of a rigid body to be:

L =
∑
i

mi(r′i × v′i) (4.52)

Differentiating:

dL
dt

=
∑
i

(vi × pi + rI ×
dpi
dt

) (4.53)

=
∑
i

[
v′i ×miv′ + r′i ×

(
Fext +

∑
i 6=j

Fij
)]

(4.54)

=
∑
i

r′i × Fext

︸ ︷︷ ︸
Net ext. torque

+
∑
i

∑
i 6=j

r′i × Fij (4.55)
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If we define the tet external torque as τ =
∑

i ri × Fext, then:

dL
dt

= τ +
∑
i

∑
j

r′i × Fij (4.56)

= τ +
∑
j

∑
i

r′j × Fji (4.57)

= τ −
∑
i

∑
j

r′j × Fij (4.58)

Summing 4.56 and 4.58, we get:

dL
dt

= τ − 1

2

∑
i

∑
j
���

���
��:0

(ri − rj)× Fij (4.59)

= τ (4.60)

This relationship we have derived is the Principle of Conservation of Angular momentum (anal-

ogous to the Principle of Conservation of momentum).

Conservation of Angular Momentum

dL
dt

= τ (4.61)

We can derive a similar relation in the rotating frame such that the origin coincides with the

center of mass of the body. Let us define the position vector of the center of mass in the fixed

frame to be R = 1
M

∑
imiri:

L′ =
∑
i

mir′i × vi (4.62)

=
∑
i

mi(ri −R)× (ṙi − Ṙ) (4.63)

=
∑
i

mri × ṙi −
∑
i

mRi × ṙi −
∑
i

miri × Ṙ +
∑
i

miR× Ṙ (4.64)

= L−R×MṘ−MR× Ṙ +MR× Ṙ (4.65)

= L−R×MṘ (4.66)
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Differentiating:

dL′

dt
=
dL
dt
−R×MR̈ (4.67)

= τ −MR× R̈ (4.68)

=
∑
i

ri × Fexti −
∑

miR× Fexti (4.69)

=
∑
i

(ri −R)× Fexti (4.70)

=
∑
i

r′i × Fexti (4.71)

= τ ′ (4.72)

We therefore have that in the rotating frame, where the origin coincides with the center of mass,

the conservation of angular momentum takes the same form as in the inertial frame:

dL′

dt
= τ ′ (4.73)

In general, the conservation of angular momentum tells us that if there is any net torque acting

on a rigid body, then its angular momentum will "chase it". This is because the torque acts

in the direction of change in angular momentum. For example, if the angular momentum acts

on the axis of rotation of a spinning disk, and the net torque points into of the paper, then

the angular momentum will start moving out of the paper, and the disk will nosedive from the

reader’s.

This is quite an interesting phenomenon. If we apply a force pointing downwards at the

eastern edge of a disk spinning anticlockwise, then the disk will not depress to the right, it will

depress backwards, as shown below. As we will see in the following sections, this phenomenon

explains precession, the "wobble" in flying discs, and even the mechanics of orbits!

4.3.4 Euler’s Equations

The principle of conservation of Angular Momentum tells us that:

τ =
dL
dt

(4.74)

=
dLa
dt

ea + La
ea
dt

(4.75)

=
dLa
dt

ea + La(ω × ea) (4.76)

=
dLa
dt

ea + (ω × La) (4.77)
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Expanding:

ω × L =

∣∣∣∣∣∣∣∣
e1 e2 e3

ω1 ω2 ω3

L1 L2 L3

∣∣∣∣∣∣∣∣ (4.78)

hence

ω × La =


(ω2L3 − ω3L2)e1 for a = 1

(ω1L3 − ω3L1)e2 for a = 2

(ω1L2 − ω2L1)e3 for a = 3

(4.79)

We finally get the Euler equations:

Euler Equations for Rigid Bodies
I1ω̇1 + ω2ω3(I3 − I2) = τ1

I2ω̇2 + ω3ω1(I1 − I3) = τ2

I3ω̇3 + ω1ω2(I2 − I1) = τ3

(4.80)

4.4 Gyroscopic Precession

We will now tackle the problem of determining a gyroscope’s equations of motion, following

Kleppner and Kolenkow (2014)41 and Lemos (2015)40 .

4.4.1 Uniform Precession

Let us consider a gyroscope with massM and axle length l, spinning at rate ωs with spin angular

momentum Ls. Then, by the parallel axis theorem, the moment of inertia through the z axis

is Ip = Izz + Ml2 so that Lz = Ipωz. Similarly, the moment of inertia through the x axis is

Ip = Ixx +Ml2 so that Lz = Ipωx. Consider a gyroscope rotating about the z axis for θz << 1

with angular velocity ωz. Then, we can decompose the angular momentum into its components:

Lx = −Ls sin θz ≈ −Lsθz (4.81)

Ly = Ls cos θZ ≈ Ls (4.82)

Lz = Ipωz (4.83)

Similarly, for rotation about the x-axis:

Lx = Ipωx (4.84)

Ly = Ls cos θx ≈ Ls (4.85)

Lz = Ls sin θz ≈ Lsθx (4.86)
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Summing these contributions, we find:

Lx = Ipωx − Lsθz (4.87)

Ly = Ls (4.88)

Lz = Ipωz + Lsθx (4.89)

We can now differentiate, and equate L̇ = τxe1 = −lWe!:

Ipω̇x − Lsωz = −lW (4.90)

L̇s = 0 (4.91)

Ipω̇z + Lsωx = 0 (4.92)

Differentiating 4.90, and substituting 4.92:

Ip
d2ωx
dt
− L2

s

Ip
ωx = 0 (4.93)

from which we get the ODE:
d2ωx
dt
−
(Ls
Ip

)2
ωx = 0 (4.94)

Setting γ = Ls
Ip
, then the equations of motion for the gyroscope are:

ωx = A cos(γt+ ψ) (4.95)

ωz =
lW

Ls
−A sin(γt+ ψ) (4.96)

Integrating directly, and setting θx(0) = θ0:

θx = θ0 sin(γt) (4.97)

θz =
lW

Ls
t+ θ0 cos(γt) (4.98)

For uniform precession, we set θ0 = 0, so that the rate of precession Ωpre is

Ωpre =
lMg

Ls
(4.99)

Let us analyse this result physically. If we increase the torque acting on the flywheel, then

we expect the rate of precession to increase, because the rate at which the angular momentum

rotates around (hence the rate at which the axis of rotation of the flywheel precesses at) is equal

to the torque. The greater the torque, the faster the angular momentum rotates, which agrees

with our formula. If the angular momentum is greater however, then the flywheel will have a

smaller tendency of changing its axis of rotation. Hence, the precession frequency will decrease,

agreeing with our equation.
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This is a fundamental point. The spin angular momentum dictates the tendency of an object’s

axis of rotation to change. This gives insight as to how a Frisbee is stabilised. By spinning the

Frisbee, the angular momentum vector is large, and hence the Frisbee’s axis of rotation is less

likely to be affected by external torque. Not only, this also explains why faster spinning frisbees

have a less noticeable precession.

4.4.2 Torque-Free Precession

Consider a spinning flywheel with spin angular momentum Lω about its symmetry axis, such

that in the frame fixed to the body’s center of mass: θx << 1 and θy << 1. We assume that

the body isn’t acted upon by external torque. Splitting up the body’s angular momentum into

components, we find:

Lx = Ixx
dθx
dt

+ Lω sin θy (4.100)

Ly = Iyy
dθy
dt
− Lω sin θx (4.101)

Lz = Isωs cos θy (4.102)

We now use small angle approximations and the principle of conservation of angular momentum:

Ixx
d2θx
dt2

+ Lω
dθy
dt

= 0 (4.103)

Iyy
d2θy
dt2
− Lω

dθx
dt

= 0 (4.104)

Is
dωs
dt

= 0 (4.105)

Consider the first two equations. Differentiating (4.104), we get

Iyy
d2ωy
dt2

− Lω
dωx
dt

= 0 (4.106)

Substituting (4.103) into (4.106):

Iyy
d2ωy
dt2

+
L2
ω

Iyy
ωy = 0 (4.107)

IxxIyy
d2ωy
dt2

+ L2
ωωy = 0 (4.108)

I2
xx

L2
ω

d2ωy
dt2

+ ωy = 0 (4.109)

We finally get the equation:
d2ωy
dt2

+ γ2ωx = 0, γ =
L2
ω

I2
xx

(4.110)
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This is a standard differential equation. Letting the θ0x = θ0, then our solution is:

θx = θ0 cos γt

θy = θ0 sin γt
(4.111)

These equations clearly trace out a circle. Thus, the gyroscope will start precessing, and the

angular momentum vector will rotate following a circular path. It follows that we need not to

exert external torque on a spinning rigid body to observe precession.

In a gyroscope (uniform precession), this torque is gravity. No matter how perfectly we try

to balance the gyroscope, there will never be a non-zero angle between the axis of rotation of

the flywheel and the z-axis in the center of mass frame. Hence, a slight deviation will offset

the center of mass of the flywheel to a side, such that gravity will exert some torque. In our

"idealized" world, we assume that gravity is the only force acting on the gyroscope. Then, the

net torque at an instant t will perpendicular to the radius vector and the force vector. If gravity

is acting to the east of the flywheel, then torque will act out of the paper towards the reader.

Since angular momentum "chases" torque by the principle of conservation of angular mo-

mentum, the axis of rotation of the wheel will follow the torque, changing its orientation. In our

diagram, the gyroscope will depress towards the reader. The torque however is now acting to

the left, and hence the disk will depress to the left etc... As this process repeats itself, it is easy

to see that the gyroscope will precess.

Figure 4.7: Geometrical Interpretation of Gyroscopic Precession
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4.5 Spin Stabilised Disk and Precession

We will now extend our study of precession to the Frisbee. For sake of simplicity, we will ignore

external torque. Consider the Euler equations:
I1ω̇1 + ω2ω3(I3 − I2) = 0

I1ω̇2 + ω3ω1(I1 − I3) = 0

I1ω̇3 = 0

(4.112)

Let us define the variable Ωω3 = I3−I1
I1

ω3, so that:

ω̇1 + Ωω3ω2 = 0 =⇒ ω̇2ω3 + ω̇3ω2 + ω̈1
Ω = 0

ω̇2 = Ωω3ω1

(4.113)

from which we finally get:

ω̈1 + Ω2ω2
3ω1 +

Ωτ3

I1
ω2 = 0 (4.114)

For the sake of simplicity, we will assume that τ3 = 0, so that ω3 is constant (since τ3 acts to

reduce spin velocity). We get:

ω̈1 + Ω2ω2
3ω1 = 0 (4.115)

whose solutions are:

ω = ω0(sin Ωω3tẽ1 + cos Ωω3tẽ2) + ω3ẽ3 (4.116)

Since angular momentum is conserved, the angle θ must be conserved as well. Comparing it with

our expression of angular frequency in Euler angles, we get:

ψ̇ = Ωω3, ω3 = φ̇ cos θ + ψ̇, θ̇ = 0 (4.117)

We model the frisbee as a disk with half of its mass concentrated in a disk, and the rest of the

mass concentrated on the rim. Simplifying, we get the equations of motion for the disk:

ψ̇ = ω3, φ̇ =
2ω3

cos θ
, θ̇ = 0 (4.118)

In conclusion, this latter equation summarizes all our results about precession and the behaviour

of flying disks. A Frisbee maintains its trajectory without falling over thanks to its spin. The

greater the spin, the greater the spin angular momentum, which reduces the body’s tendency to

change orientation. Furthermore, the faster the Frisbee is spinning, the faster it will wobble, and

for small bank angles (θ << 1), the spin velocity is exactly half the precession frequency. All

these phenomena coincide with real life observations, suggesting that our mathematical model is

suitable.
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4.6 Conclusion

We have examined the kinematics of rotation, and digressed to study the effect of the Coriolis

force in the formation of hurricanes. We then derived the inertia tensor and the principle of

conservation of angular momentum. Both results were applied to construct Euler’s Equations

for Rigid Bodies, and analyzed uniform and free precession. Finally, the equations of rotational

motion for a Frisbee were derived, concluding our study of Frisbee physics.
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Appendix A

Python Codes

A.1 Code 1: Minimal Surface Plots

import matplotlib.pyplot as plt
import scipy
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

tht = scipy.linspace(−3,3,300)
r = scipy.linspace(−3,3,300)
[r,tht] = np.meshgrid(r,tht)

x = r ∗ np.cos(tht)
y = r ∗ np.sin(tht)
z = tht

fig = plt.figure()

ax = Axes3D(fig)

ax.plot_surface(x,y,z, rstride=1, cstride=1,

cmap=’viridis’, edgecolor=’none’)

ax.set_xlabel(r"$\mathrm{x−axis}$", fontsize = 15)
ax.set_ylabel(r"$\mathrm{y−axis}$", fontsize = 15)
ax.set_zlabel(r"$\mathrm{z−axis}$", fontsize = 15)
ax.set_title(r"Helicoid for $k = 1$", fontsize=20)

plt.show()

v = scipy.linspace(−5,5,300)
u = scipy.linspace(−np.pi,np.pi,300)
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[v,u] = np.meshgrid(v,u)

x = 3 ∗ np.cosh(v/3) ∗ np.cos(u)
y = 3 ∗ np.cosh(v/3) ∗ np.sin(u)
z = v

fig = plt.figure()

ax = Axes3D(fig)

ax.plot_surface(x,y,z, rstride=1, cstride=1,

cmap=’viridis’, edgecolor=’none’)

ax.set_xlabel(r"$\mathrm{x−axis}$", fontsize = 15)
ax.set_ylabel(r"$\mathrm{y−axis}$", fontsize = 15)
ax.set_zlabel(r"$\mathrm{z−axis}$", fontsize = 15)
ax.set_title(r"Catenoid for $c = 3$", fontsize=20)

plt.show()

v = scipy.linspace(−5,5,300)
u = scipy.linspace(−np.pi,np.pi,300)
[v,u] = np.meshgrid(v,u)

x = 2 ∗ np.cos(v) ∗ np.sinh(u) + 2/3 ∗ np.cos(3∗v) ∗ np.sinh(3∗u)
y = 2 ∗ np.sin(v) ∗ np.sinh(u) + 2/3 ∗ np.sin(3∗v) ∗ np.sinh(3∗u)
z = 2 ∗ np.cos(2∗v) ∗ np.cosh(2∗u)

fig = plt.figure()

ax = Axes3D(fig)

ax.plot_surface(x,y,z, rstride=1, cstride=1,

cmap=’viridis’, edgecolor=’none’)

ax.set_xlabel(r"$\mathrm{x−axis}$", fontsize = 15)
ax.set_ylabel(r"$\mathrm{y−axis}$", fontsize = 15)
ax.set_zlabel(r"$\mathrm{z−axis}$", fontsize = 15)
ax.set_title(r"Schwarz Minimal Surface", fontsize=20)

plt.show()

A.2 Code 2: Streamlines for Vector Field
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import numpy as np
import matplotlib.pyplot as plt
# i f u s i n g a J u p y t e r n o t e b o o k , i n c l u d e :

x = np.arange(0, 2∗np.pi+2∗np.pi/20, np.pi/10)
y = np.arange(0, 2∗np.pi+2∗np.pi/20, np.pi/10)

X,Y = np.meshgrid(x,y)

u = np.sin(X)∗np.sin(Y)
v = np.cos(X)∗np.cos(Y)

fig, ax = plt.subplots(figsize=(15,15))

seeds = np.array([[3,3], [4,5]])

ax.quiver(X,Y,u,v)

plt.streamplot(X,Y,u,v, start_points = seeds, arrowsize=1, )

ax.xaxis.set_ticks([])

ax.yaxis.set_ticks([])

ax.axis([0,2∗np.pi,0,2∗np.pi])
ax.set_aspect(’equal’)

plt.show()

A.3 Code 3: Frisbee Flight Simulations

from pylab import ∗
import matplotlib.pyplot as plt
import numpy as np
from sympy import Symbol

def rk4(y, time, dt, derivs):
k1 = dt ∗ derivs(y,time)
k2 = dt ∗ derivs(y + 0.5∗k1, time + 0.5∗dt)
k3 = dt ∗ derivs(y + 0.5∗k2, time + 0.5∗dt)
k4 = dt ∗ derivs(y + k3, time + dt)
y_next = y + 1/6∗(k1 + 2∗k2 + 2∗k3 + k4)

return y_next
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N = 500

tau = 30

dt = tau/float(N−1)

g = 9.81

m = 0.18

rho = 1.23

d = 0.28

A = math.pi ∗(d/2)∗∗2
alpha = np.radians(10)

alpha_0 = np.radians(−4)

C_La = 1.4

C_L0 = 0.15

C_Da = 2.72

C_D0 = 0.08

k_L = 0.5∗A/m∗(C_L0 + alpha ∗ C_La)∗rho

k_D = 0.5∗A/m∗(C_D0 + C_Da ∗(alpha − alpha_0 )∗∗2)∗ rho

v0 = 15

v_0x = v0 ∗np.cos(alpha)
x0 = 0

v_0y = v0 ∗np.sin(alpha)
y0 = 1

y = zeros([N,4])

y[0,0] = x0

y[0,1] = v_0x

y[0,2] = y0

y[0,3] = v_0y

def frisbee(state, time):
g0 = state[1]

g1 = −k_D ∗ state[1] ∗ state[1]/(np.cos(alpha )∗∗2)
g2 = state[3]

g3 = k_L ∗ state[1] ∗ state[1]/(np.cos(alpha )∗∗2) − g
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return array([g0, g1, g2, g3])

for j in range(N−1):
y[j+1] = rk4(y[j], 0, dt, frisbee)

time = linspace(0, tau, N)

plt.plot(y[:,0], y[:,2])

plt.title("$v_0=15, \\alpha = 10\degree $")

plt.axis(’scaled’)

plt.xlim(0,30)

plt.ylim(0,20)

plt.grid(True)

xlabel("Distance (m)")

ylabel("Height (m)")

show()

print("The frisbee’s maximum height reached is:",
round(max(y[:,2]), 2) ,"m")

84



Bibliography

1 Gowlett J. A. J. “The discovery of fire by humans: a

long and convoluted process,” Phil. Trans. R. Soc.

B 371, no. 1696 (2016): 1, 3.

DOI : https://doi.org/10.1098/rstb.2015.0164

2 Faraday, Michael, and W. Crookes. “A Course of

Six Lectures on the Chemical History of a Candle,”

London: Griffin, Bohn & Co, 1861.

Retrieved from https://www.bartleby.com/30/7.

html

3 Cambridge Dictionary, “flame.” Cambridge Dictio-

nary

Retrieved from https://dictionary.cambridge.

org/dictionary/flame.

4 Cengel, Yanus A., Afshin Ghajar, “Heat and Mass

Transfer,” New York City: McGraw-Hill Education,

2014. p.562

ISBN 13: 9780073398181

5 Planck, Max. “On the Law of Distribution of Energy

in the Normal Spectrum.” Ann. Phys. (Berlin) 4 no.

(1901). p. 5-7

Retrieved from: http://bourabai.kz/articles/

planck/planck1901.pdf

6 Wein, Wilhelm. “Ueber die Energievertheilung im

Emissionsspectrum eines schwarzen Körpers,” Ann.

d. Phys, 294, no. 4 (1896). pp.656.

Retrieved from http://myweb.rz.uni-augsburg.

de/~eckern/adp/history/historic-papers/

1896_294_662-669.pdf

7 Tenn, J. S. “Planck’s Derivation of the Energy

Density of Blackbody Radiation,” University of

Sononoma, 2013.

Retrieved from http://web.phys.ntnu.no/

~stovneng/TFY4165_2013/BlackbodyRadiation.

pdf

8 Griffiths, J. David.“Introduction to Electrodynam-

ics,” Cambridge: Cambridge University Press, 2017.

p.383-384.

9 NRAO, “Essential Radio Astronomy, Chapter 2: Ra-

diation Fundamental & Chapter 7: Spectral Lines”,

Lecture notes, 2018.

Retrieved from https://www.cv.nrao.edu/

~sransom/web/

10 Tipler, A. Paul, and Llewellyn A. Ralph, “Modern

Physics”, New York: W. H. Freeman and Company,

2012. p. 40-41.

11 For further reading into the UV catastrophe, please

refer to: Boyer, H. Timothy. “Blackbody Radia-

tion in Classical Physics: A Historical Perspective,”

American Journal of Physics 86 no. 495 (2018).

Retrieved from the arXiv database: https://

arxiv.org/abs/1711.04179.

12 Einstein, Albert. “Concerning an Heuristic Point of

View Toward the Emission and Transformation of

Light,” Ann. d. Phys, 17 no. 132 (1905). p. 132-148.

Retrieved from https://alternativeenergy.

procon.org/sourcefiles/einstein_

photoelectric_paper1.pdf

13 Dermot O’Reilly, “Planck’s Radiation Law Derived

1.” Filmed May 2018, Youtube video.

Retrieved from https://www.youtube.com/watch?

v=VgJeJHiUa24.

14 See for better discussion of energy bounds: S.

Braun, J. P. Ronzheimer, M. Schreiber, S. S. Hodg-

man, T. Rom, I. Bloch, and U. Schneider. “Negative

Absolute Temperature for Motional Degrees of Free-

dom.” Science, 339 no. 6115 (2013). p.53-54.

Retrieved from the arXiv database: https://

arxiv.org/pdf/1211.0545v1.pdf

85

https://doi.org/10.1098/rstb.2015.0164
https://www.bartleby.com/30/7.html
https://www.bartleby.com/30/7.html
https://dictionary.cambridge.org/dictionary/flame
https://dictionary.cambridge.org/dictionary/flame
https://www.academia.edu/28446752/Cengel_heat_and_mass_transfer_5ed
http://bourabai.kz/articles/planck/planck1901.pdf
http://bourabai.kz/articles/planck/planck1901.pdf
http://myweb.rz.uni-augsburg.de/~eckern/adp/history/historic-papers/1896_294_662-669.pdf
http://myweb.rz.uni-augsburg.de/~eckern/adp/history/historic-papers/1896_294_662-669.pdf
http://myweb.rz.uni-augsburg.de/~eckern/adp/history/historic-papers/1896_294_662-669.pdf
http://web.phys.ntnu.no/~stovneng/TFY4165_2013/BlackbodyRadiation.pdf
http://web.phys.ntnu.no/~stovneng/TFY4165_2013/BlackbodyRadiation.pdf
http://web.phys.ntnu.no/~stovneng/TFY4165_2013/BlackbodyRadiation.pdf
https://www.cv.nrao.edu/~sransom/web/
https://www.cv.nrao.edu/~sransom/web/
https://arxiv.org/abs/1711.04179
https://arxiv.org/abs/1711.04179
https://alternativeenergy.procon.org/sourcefiles/einstein_photoelectric_paper1.pdf
https://alternativeenergy.procon.org/sourcefiles/einstein_photoelectric_paper1.pdf
https://alternativeenergy.procon.org/sourcefiles/einstein_photoelectric_paper1.pdf
https://www.youtube.com/watch?v=VgJeJHiUa24
https://www.youtube.com/watch?v=VgJeJHiUa24
https://arxiv.org/pdf/1211.0545v1.pdf
https://arxiv.org/pdf/1211.0545v1.pdf


15 Chu, Steven, Graybeal D. Jack, Stoner O. John,

Hurst S. George et al. Encyclopaedia Britannica, s.v.

“Spectroscopy.” Chicago: Encyclopaedia Britannica.

16 Science History Institute, “Robert Bunsen and Gus-

tav Kirchhoff,” updated December, 2017.

Retrieved from https://www.

sciencehistory.org/historical-profile/

robert-bunsen-and-gustav-kirchhoff

17 Where we followed the derivation : Kara M. Yedi-

nak, Jack D. Cohen, Jason M. Forthofer and Mark

A. Finney. “An examination of flame shape related

to convection heat transfer in deep-fuel beds” Int.

J. Wildland Fire, 19 no. 19 (2010). pp. 173

Retrieved from https://www.fs.fed.us/rm/pubs_

other/rmrs_2010_yedinack_k001.pdf

18 A. Alsairafi, J.S. T’ien, S.T. Lee, D.L. Dietrich and

H.D. Ross. “Modelling Candle Flame Behaviour in

Variable Gravity,” presented at the Seventh Inter-

national Workshop on Microgravity Combustion and

Chemically Reacting Systems, 2003. p. 261-264.

Retrieved from https://ntrs.nasa.gov/archive/

nasa/casi.ntrs.nasa.gov/20040053576.pdf

19 National Candle Association, "CANDLE SCI-

ENCE", Washington DC.

Retrieved from https://candles.org/

candle-science/

20 Lexico Dictionary, “surface tension,” Lexico Dictio-

nary.

Retrieved from https://www.lexico.com/en/

definition/surface_tension

21 Cabre, Xavier, “Elliptic PDE’s in probabilities in ge-

ometry and symmetry and regularity of solutions,”

Disc. Cont. Dynamical Systems, 20 no.3 (2007).

22 Brusspup, “Amazing Water & Sound Experiment 2.”

Filmed March 2013, Youtube video.

Retrieved from https://www.youtube.com/watch?

v=uENITui5_jU

23 Skjæveland, Svein. “Derivations of the Young-

Laplace equation.”, 2015. p.10-19.

Retrieved from https://www.researchgate.net/

publication/284338655_Derivations_of_the_

Young-Laplace_equation.

24 Presley, Andrew. “Gaussian, Mean and Principal

Curvatures.” Chapter 8 in Elementary Differential

Geometry, 2nd ed. London: Springer, 2012. p.188

25 Vella, J. R. Dominic. “The Fluid Mechanics of Float-

ing and Sinking,” Ph.D. diss. University of Cam-

bridge, 2007. p. 9-10

Retrieved from https://core.ac.uk/download/

pdf/1319141.pdf

26 Chin-Lin Chen, "Foundations for Guided-

Wave Optics", New Jersey: John Wiley

and Sons Inc. 2007 p.413-415. Retrived from

https://onlinelibrary.wiley.com/doi/pdf/10.

1002/9780470042229.app2

27 Pellicer, Julio, J. A. Manzanares, Salvador Mafé.

“The Physical Description of Elementary Surface

Phenomena - Thermodynamics Versus Mechanics,”

Amer. J. Phys. 63 no. 542 (1995). p. 544-546

Retrieved from https://www.academia.

edu/16906420/The_physical_description_

of_elementary_surface_phenomena_

Thermodynamics_versus_mechanics

28 Barozzi, Giovanni S., D. Angeli. “A Note on Cap-

illary Rise in Tubes,” Energy Procedia 45 (2014).

p.548-552

DOI: https://doi.org/10.1016/j.egypro.2014.

01.059

29 We loosely follow some methods and strategies in-

troduced in: Berg, John. “Fluid Interfaces and Cap-

illarity” Chapter 2 in An Introduction to Interfaces

and Colloids, World Scientific, 2009. p. 49-66

DOI: https://doi.org/10.1142/9789814293082_

0002

30 Lasse, Makkonen. “Young’s equation revisited.”

Condens. Matter Phys, 28 no.13 (2016). p.2-5

Retrieved from https://iopscience.iop.org/

article/10.1088/0953-8984/28/13/135001

31 Ray, Saroj. “Surface Tension: Capillary Length,”

filmed February 2018, Youtube video.

Retrieved from https://www.youtube.com/watch?

v=sJY5OYTm2-U

32 First presented in de Gennes, Pierre-Gilles, F.

Brochard-Wyart, D. Quere. “Capillarity and Wet-

ting Phenomena: Drops, Bubbles, Pearls, Waves”

Physics Today, 57 no. 12, 16.

86

https://www.sciencehistory.org/historical-profile/robert-bunsen-and-gustav-kirchhoff
https://www.sciencehistory.org/historical-profile/robert-bunsen-and-gustav-kirchhoff
https://www.sciencehistory.org/historical-profile/robert-bunsen-and-gustav-kirchhoff
https://www.fs.fed.us/rm/pubs_other/rmrs_2010_yedinack_k001.pdf
https://www.fs.fed.us/rm/pubs_other/rmrs_2010_yedinack_k001.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040053576.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20040053576.pdf
https://candles.org/candle-science/
https://candles.org/candle-science/
https://www.lexico.com/en/definition/surface_tension
https://www.lexico.com/en/definition/surface_tension
https://www.youtube.com/watch?v=uENITui5_jU
https://www.youtube.com/watch?v=uENITui5_jU
https://www.researchgate.net/publication/284338655_Derivations_of_the_Young-Laplace_equation
https://www.researchgate.net/publication/284338655_Derivations_of_the_Young-Laplace_equation
https://www.researchgate.net/publication/284338655_Derivations_of_the_Young-Laplace_equation
https://core.ac.uk/download/pdf/1319141.pdf
https://core.ac.uk/download/pdf/1319141.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470042229.app2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470042229.app2
https://www.academia.edu/16906420/The_physical_description_of_elementary_surface_phenomena_Thermodynamics_versus_mechanics
https://www.academia.edu/16906420/The_physical_description_of_elementary_surface_phenomena_Thermodynamics_versus_mechanics
https://www.academia.edu/16906420/The_physical_description_of_elementary_surface_phenomena_Thermodynamics_versus_mechanics
https://www.academia.edu/16906420/The_physical_description_of_elementary_surface_phenomena_Thermodynamics_versus_mechanics
https://doi.org/10.1016/j.egypro.2014.01.059
https://doi.org/10.1016/j.egypro.2014.01.059
https://doi.org/10.1142/9789814293082_0002
https://doi.org/10.1142/9789814293082_0002
https://iopscience.iop.org/article/10.1088/0953-8984/28/13/135001
https://iopscience.iop.org/article/10.1088/0953-8984/28/13/135001
https://www.youtube.com/watch?v=sJY5OYTm2-U
https://www.youtube.com/watch?v=sJY5OYTm2-U


33 Presley, Andrea. “Minimal Surfaces.” Chapter 12 in

Elementary Differential Geometry, 2nd ed. London:

Springer, 2012. p.306

34 D. Callegari, “Minimal Surfaces,” Lecture notes at

the University of Chicago, 2014. p. 1-4.

Retrieved from https://math.uchicago.edu/

~dannyc/courses/minimal_surfaces_2014/

minimal_surfaces_notes.pdf

35 Victor Ugaz, “Lecture 2: Introduction to Fluid Vis-

cosity” at Texas A&M University, 2015.

Retrieved from https://

cosmolearning.org/video-lectures/

introduction-fluid-viscosity/.

36 G.K. Batchelor, “An Introduction to Fluid Dynam-

ics,” New York: Cambridge University Press.

37 Coleman, Neal. “A Derivation of the Navier Stokes

Equations,” B.S. Undergraduate Mathematics Ex-

change, 7 no. 1 (2010).

Retrieved from https://lib.bsu.edu/

beneficencepress/mathexchange/07-01/

ADerivationoftheNavier-StokesEquations.pdf

38 Faculty of Khan, “Introduction to Tensors,” filmed

June 2018, Youtube video.

Retrieved from https://www.youtube.

com/watch?v=uaQeXi4E7gA&list=

PLdgVBOaXkb9D6zw47gsrtE5XqLeRPh27_

39 Following: Landau, Lev D., and Evgenij M. Lifshitz,

“Motion of a Rigid Body.” Chapter 7 in Course of

Theoretical Physics Volume 1: Mechanics, Oxford:

Elsevier Butterworth-Heineman, 1976.

40 N. A. Lemos, “Dynamics of Rigid Bodies” Chapter

4 in Analytical Mechanics, Cambridge: Cambridge

University Press, 2018.

41 Kleppner, David, and R. Kolenkow. “Non-Inertial

Systems and Fictitious Forces” Chapter 9 in An

Introduction to Mechanics, Cambridge: Cambridge

Univesrity Press, 2014.

42 Siklos, Stephen, “Rotating Frames,” lecture notes at

the University of Cambridge, p. 3-6, 2011.

Retrieved from https://www.dpmms.cam.ac.uk/

~stcs/dynamics.html

43 Tong, David. “Lectures on Classical Dynamics”, lec-

tures notes at the University of Cambridge, 2013.

Retrieved from https://www.dpmms.cam.ac.

uk/~stcs/courses/dynamics/lecturenotes/

section4.pdf

44 Schuurmans, Mace M. “Flight of the Frisbee”, New

Scientist 127 no.1727 (1990). p.37-40

Retrieved from https://www.researchgate.net/

publication/271264015_Flight_of_the_Frisbee

45 Hubbard, Mont, S.A. Hummel, “Simulation of Fris-

bee Flight”, presented at the 5th Conference on

Mathematics and Computers in Sport (2000).

Retrieved from https://www.researchgate.

net/publication/253842372_Simulation_of_

Frisbee_Flight

46 V.R. Morrison. “The Physics of Frisbees”, Journal

of Classical Mechanics and Relativity (2005).

Retrieved from http://scripts.mit.edu/

~womens-ult/frisbee_physics.pdf

47 Brian Storey. “The Stress Tensor”, Youtube video

published in October 2014.

Retrieved from https://www.youtube.com/watch?

v=uO_bW2zzrNU.

48 Motoyama, Eugene. “The Physics of Flying Disks”,

2002.

Retrieved from http://people.csail.mit.edu/

jrennie/discgolf/physics.pdf

49 K. F. Riley, M. P. Hobson, S. J . Bence. “Mathemat-

ical Methods for Physics and Engineering,” Cam-

bridge: Cambridge University Press, 2006.

50 Whitrow, Gerald J. “Einstein: The Man and His

Achievement,” New York: Dover Publications 1973.

p.42.

51 Feynman, Richard. “Fun to Imagine.” BBC TV,

1983.

Retrieve from https://www.youtube.com/watch?v=

P1ww1IXRfTA&t=63s

87

https://math.uchicago.edu/~dannyc/courses/minimal_surfaces_2014/minimal_surfaces_notes.pdf
https://math.uchicago.edu/~dannyc/courses/minimal_surfaces_2014/minimal_surfaces_notes.pdf
https://math.uchicago.edu/~dannyc/courses/minimal_surfaces_2014/minimal_surfaces_notes.pdf
https://cosmolearning.org/video-lectures/introduction-fluid-viscosity/
https://cosmolearning.org/video-lectures/introduction-fluid-viscosity/
https://cosmolearning.org/video-lectures/introduction-fluid-viscosity/
https://lib.bsu.edu/beneficencepress/mathexchange/07-01/ADerivationoftheNavier-StokesEquations.pdf
https://lib.bsu.edu/beneficencepress/mathexchange/07-01/ADerivationoftheNavier-StokesEquations.pdf
https://lib.bsu.edu/beneficencepress/mathexchange/07-01/ADerivationoftheNavier-StokesEquations.pdf
https://www.youtube.com/watch?v=uaQeXi4E7gA&list=PLdgVBOaXkb9D6zw47gsrtE5XqLeRPh27_
https://www.youtube.com/watch?v=uaQeXi4E7gA&list=PLdgVBOaXkb9D6zw47gsrtE5XqLeRPh27_
https://www.youtube.com/watch?v=uaQeXi4E7gA&list=PLdgVBOaXkb9D6zw47gsrtE5XqLeRPh27_
https://www.dpmms.cam.ac.uk/~stcs/dynamics.html
https://www.dpmms.cam.ac.uk/~stcs/dynamics.html
https://www.dpmms.cam.ac.uk/~stcs/courses/dynamics/lecturenotes/section4.pdf
https://www.dpmms.cam.ac.uk/~stcs/courses/dynamics/lecturenotes/section4.pdf
https://www.dpmms.cam.ac.uk/~stcs/courses/dynamics/lecturenotes/section4.pdf
https://www.researchgate.net/publication/271264015_Flight_of_the_Frisbee
https://www.researchgate.net/publication/271264015_Flight_of_the_Frisbee
https://www.researchgate.net/publication/253842372_Simulation_of_Frisbee_Flight
https://www.researchgate.net/publication/253842372_Simulation_of_Frisbee_Flight
https://www.researchgate.net/publication/253842372_Simulation_of_Frisbee_Flight
http://scripts.mit.edu/~womens-ult/frisbee_physics.pdf
http://scripts.mit.edu/~womens-ult/frisbee_physics.pdf
https://www.youtube.com/watch?v=uO_bW2zzrNU
https://www.youtube.com/watch?v=uO_bW2zzrNU
http://people.csail.mit.edu/jrennie/discgolf/physics.pdf
http://people.csail.mit.edu/jrennie/discgolf/physics.pdf
https://www.youtube.com/watch?v=P1ww1IXRfTA&t=63s
https://www.youtube.com/watch?v=P1ww1IXRfTA&t=63s

	Fire and its physical properties
	Introduction
	Overview on Black-Body radiation
	A catastrophe for Light: UV Catastrophe
	The resolution: a derivation of Planck's Law and Energy Quantisation
	Standard Derivation
	Bose-Einstein Statistics and a new derivation

	Wien's Approximation, Raleigh-Jeans Law and the Stephan Boltzmann Law
	Flame Spectroscopy: deriving Rydberg's formula
	Spectral Lines of Hydrogenic Atoms
	Flames in microgravity, and other phenomena of fire
	Conclusion

	Surface Tension
	Defining Surface Tension
	Deriving the Young-Laplace Equation
	Floating Bodies

	Capillary Action
	Jurin's Law
	The Concave Meniscus (< 2)
	Capillary Length  and the shape of puddles

	Minimal Surfaces
	Conclusion

	Frisbees and Disks
	Introduction
	A mathematical prelude on Summation Convention
	The Stress Tensor
	Deriving the Cauchy Momentum equation for Incompressible Flow
	The Bernoulli Principle and how Lift is generated
	Equation of Motion for a Frisbee in Flight
	Simulating Frisbee Flight

	Rotation and the Motion of Spin Stabilised Disks
	Introduction
	Kinematics of Rotation
	The Coriolis Effect
	Euler Angles

	Dynamics of Rigid Bodies
	What are Rigid Bodies?
	The Inertia Tensor
	Angular Momentum
	Euler's Equations

	Gyroscopic Precession
	Uniform Precession
	Torque-Free Precession

	Spin Stabilised Disk and Precession
	Conclusion

	Appendix Python Codes
	Code 1: Minimal Surface Plots
	Code 2: Streamlines for Vector Field
	Code 3: Frisbee Flight Simulations


