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The enchanting charms of this sublime science
reveal only to those who have the courage to go
deeply into it.

—Carl Friedrich Gauss
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Analytical mechanics
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1Lagrangian mechanics

1.1 Generalized coordinates
Consider a N -body classical system. We define {q1, ..., qn} to be generalised coordinates
of the system if the position vector for each particle is completely described by these coor-
dinates (and explicitly time if necessary):

ri = ri(q1, ..., qn, t) (1.1.1)

In 3D for example we should expect 6N such coordinates. Not all 6N of these coordinates
however have to be independent of each other, varying just one of these could have an
effect on the other coordinates too. This may for example be due to constraints on the
system: an isolated system must conserve the position of the center of mass, thus fixing
3N coordinates by default. The number n of independent coordinates is known as the
degree of freedom of the system. The space of coordinates q = (q1, ..., qn) is known as the
configuration space or phase space. For example, a rigid body with three or more mass
points has six degrees of freedom, three for the center of mass and three for the Euler
angles. This choice however is not unique, we could have also chosen any other set of 6
independent coordinates. Note that this reduction was only possible because the system
was rigid, the masses are all connected to each other, giving us 3(N − 2) independent
constraints eliminating 3(N − 2) coordinates. Similarly, a compact disc rotating about a
fixed axis has 3 degrees for the center of mass and 2 Euler angles.
In general, if one can reduce via constraints the number of generalised coordinates in ri
to the degrees of freedom then the system is holonomic. More rigorously, a constraint is
said to be holonomic if it can be expressed as

f(qi, t) = 0 (1.1.2)

while it is non-holonomic otherwise. The constraint that a coin rolls without slipping for
example is non-holonomic, so is the constraint that all particles in a confined gas remain in-
side a box, while requiring that the distance between a bob on the end of a rigid pendulum
be fixed is holonomic. If t is eliminated in the process of imposing a holonomic constraint
then the system is said to be natural, while if it introduces explicitly a dependence on time
then it is forced.
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1.2. HAMILTON’S PRINCIPLE AND THE EULER-LAGRANGE EQUATIONS

To explore this further, let us differentiate (1.1.1)

ṙi =
∑
j

∂ri
∂qj

q̇j + ∂ri
∂t

(1.1.3)

Here q̇i’s are the generalised velocities and together with the general coordinates they
fully specify the configuration of the system at any future time. Note also that in the natural
constraint case, differentiating with respect to generalised velocity gives

∂ṙi
∂q̇j

= ∂ri
∂qj

(1.1.4)

which is a very useful identity! If the system is natural we also see that the kinetic energy
takes the form

T =
∑
i

1
2miṙ2i =

∑
i,j

1
2mi

(
∂ri
∂qj

q̇j + ∂ri
∂t

)2
(1.1.5)

is quadratic and homogeneous in q̇j , while if the system is forced it will also include non-
homogeneous terms.

1.2 Hamilton’s principle and the Euler-Lagrange equations
Every system has a characteristic function L(q, q̇, t), known as a Lagrangian, from which
we define the action functional

S[q] =
ˆ t2

t1

L(q, q̇, t) dt, q(t1) = q1,q(t2) = q2 (1.2.1)

for any given t1, t2. The constraint for the motion between t1 and t2 of the system is that it
minimizes the action functional, this is the Least action principle orHamilton’s principle.
Note that the Lagrangian does not depend on higher order derivatives because the evolu-
tion of a system is fully determined by calculating the generalised coordinates and veloci-
ties.
The question of minimising an integral functional along the path between two points is a
classic problem in the calculus of variations (see the Mathematical methods volume), and
can be readily solved. We consider a small variation δqi(t) in the coordinate qi(t) subject
to the boundary condition:

δqi(t1) = δqi(t2) = 0 (1.2.2)
necessary to ensure that the perturbed path crosses the given end-points of motion. We
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1.3. THE LAGRANGIAN

see that

δS[q] =
ˆ t1

t0

(
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

)
dt (1.2.3)

=
ˆ t1

t0

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqidt+

ˆ t1

t0

d

dt

(
∂L

∂q̇i

)
δqidt (1.2.4)

=
ˆ t1

t0

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqidt (1.2.5)

This must hold for arbitrary satisfying the boundary conditions, so the integrand must
vanish

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 (1.2.6)

These are theEuler-Lagrange equations, they are the equations ofmotionwhichminimise
the action as required by Hamilton’s principle.

1.3 The Lagrangian
Let’s consider a single particle under the influence of a net force F from time t0 to t1. We
are interested in the following integral

I[q] =
ˆ t1

t0

T (q, q̇, t) dt =
ˆ t1

t0

1
2mṙ2 dt (1.3.1)

and look at variations in the coordinate qi, such that δqi(t0) = δi(t1) = 0 so that the end-
points of the path are fixed. In other words we look at what happens to I whenwe slightly
deform the path integrated over. Using the same arguments as in the previous section, we
arrive at

δI[q] =
ˆ t1

t0

[
∂T

∂qi
− d

dt

(
∂T

∂q̇i

)]
δqidt (1.3.2)

Moreover, note that the Work-Energy theorem requires

δI[q] =
ˆ t1

t0

1
2mṙ · δṙ dt =

ˆ t

t0

δW dt (1.3.3)

so if we introduce the generalised forces Fi such that

δW =
∑
j

Fjδqj (1.3.4)

then we finally find that
ˆ t1

t0

[
∂T

∂qi
− d

dt

(
∂T

∂q̇i

)]
δqidt =

ˆ t1

t0

Fiδqidt (1.3.5)
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1.3. THE LAGRANGIAN

This must hold for any variation δqi(t) satisfying the necessary boundary conditions, so
both integrands must be equal to each other

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Fi (1.3.6)

Suppose that F can be split into a conservative component, Fc = −∇V 1, and a non-
conservative component Fnc. Then we see that

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fnci (1.3.7)

where L = T − V . But this is exactly the Euler-Lagrange equations (generalised to non-
conservative forces)! It follows that for the mechanical systems in consideration, the la-
grangian is given by

L(q, q̇, t) = T (q, q̇, t)− V (q, q̇, t) (1.3.8)
Note that sometimes even the non-conservative potential can be written as

Fnci = d

dt

(
∂V

∂q̇i

)
− ∂V

∂qi
(1.3.9)

in which case we get
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (1.3.10)

This derivation is easily extended to N -body systems, where i now runs over the degrees
of freedom rather than from 1 to 3.
Note that Lagrangians can differ by a total time derivative and still define the same phys-
ical system. Indeed, suppose that a system with n degrees of freedom has Lagrangian
L(qi, q̇i, t). Define a new Lagrangian by

L′(qi, q̇i, t) = L(qi, q̇i, t) + d

dt
F (qi, t) (1.3.11)

= L(qi, q̇i, t) + ∂F

∂t
+ ∂F

∂qi
q̇i (1.3.12)

Then we see that
∂L′

∂qi
= ∂L

∂qi
+ d

dt

(
∂F

∂qi

)
(1.3.13)

d

dt

∂L′

∂q̇i
= d

dt

∂L

∂q̇i
+ d

dt

(
∂F

∂qi

)
(1.3.14)

implying that
∂L

∂qi
= d

dt

(
∂L

∂q̇i

)
⇐⇒ ∂L′

∂qi
= d

dt

(
∂L′

∂q̇i

)
(1.3.15)

1we assume that V is independent of q̇i which is true for conservative forces, but not true in general. For
example the Lorentz force is velocity-dependent and so will its potential be too.
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1.4. EXAMPLES

as desired.
Moreover, we should also expect our equations of motion to be covariant under a change
of coordinates. Indeed the minimisation of the action along a path is independent of what
coordinates we use to describe the path, so even though the equation for the path will
change, it should do so only covariantly (so that the same physical path is described).
To check this, suppose we start with a Lagrangian L(q, q̇, t), and we perform a change of
variables so that q′ = q′(q, t) ⇐⇒ q = q(q′, t). Using the chain rule we see that

q̇i = ∂qi
∂q′j

q̇′j + ∂qi
∂t

=⇒ ∂q̇i
∂q′j

= ∂qi
∂q′j

(1.3.16)

We will also need the following identity

∂q̇j
∂q′i

= ∂

∂q′i

(
∂qj
∂q′k

q̇′k

)
+ ∂2qj
∂q′i∂t

(1.3.17)

= q̇k
∂

∂q′k

(
∂qj
∂q′i

)
+ ∂

∂t

(
∂qj
∂q′i

)
(1.3.18)

= d

dt

(
∂qj
∂q′i

)
= d

dt

(
∂q̇j
∂q̇′i

)
(1.3.19)

where we used (1.3.16) in going to the last step. Using the chain rule we also see that

∂L′

∂q′i
= ∂L

∂qj

∂qj
∂q′i

+ ∂L

∂q̇j

∂q̇j
∂q′i

(1.3.20)

and similarly

d

dt

(
∂L′

∂q̇′i

)
= d

dt

(
∂L

∂q̇j

∂q̇i
∂q′j

)
(1.3.21)

= d

dt

(
∂L

∂q̇j

)
∂q̇i
∂q̇′j

+ ∂L

∂q̇j

d

dt

(
∂q̇i
∂q′j

)
(1.3.22)

= d

dt

(
∂L

∂q̇j

)
∂qi
∂q′j

+ ∂L

∂q̇j

∂q̇j
∂q′i

(1.3.23)

(1.3.24)

Therefore the Euler-Lagrange equations for a Lagrangian transforms covariantly (as a
scalar):

d

dt

(
∂L′

∂q̇′i

)
− ∂L′

∂q′i
=
[
d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

]
∂qj
∂q′i

(1.3.25)

1.4 Examples
The bestway to learn howLagrangianmechanicsworks is solving a lot of problems. There-
fore, here we present some interesting examples of Lagrangians in action.
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1.4. EXAMPLES

Example 1: double yo-yo

Weconsider twohomogeneous cylinders ofmassm and radii r1, r2 connectedwith a string.
The first cylinder is fixed to a frictionless axis, while the lower one is allowed to fall so that
the string it is connected to unravels as it descends.

The first step is to set-up the coordinate system. At first it may seem like we have three
degrees of freedom, namely ϕ1, ϕ2 and z2. However, since the string is inextensible we
have the no-slip condition ż2 = r1ϕ̇1 + r2ϕ̇2, which we integrate to give z2 = r1ϕ1 + r2ϕ2.
Thus we really only have two degrees of freedom, ϕ1, ϕ2.
The second step is to obtain the Lagrangian. We see that the kinetic energy is

T = 1
2I1ϕ̇

2
1 + 1

2I2ϕ̇
2
2 + 1

2m(r1ϕ̇1 + r2ϕ̇2)2 (1.4.1)

while the potential energy is
V = −mg(r1φ1 + r2φ2) (1.4.2)

We also have a non-conservative force, the tension in the string, Consequently the La-
grangian is

L(ϕi, ϕ̇i) = 1
2I1ϕ̇

2
1 + 1

2I2ϕ̇
2
2 + 1

2m(r1ϕ̇1 + r2ϕ̇2)2 +mg(r1ϕ1 + r2ϕ2) (1.4.3)

The Euler-Lagrange equations then give the following equations of motion:

d

dt

(
(I1 +mr2

1)ϕ̇1 +mr1r2ϕ̇2

)
= mgr1 (1.4.4)

d

dt

(
(I2 +mr2

2)ϕ̇2 +mr1r2ϕ̇1

)
= mgr2 (1.4.5)

which we rewrite as a linear system{
(I1 +mr2

1)ϕ̈1 +mr1r2ϕ̈2 = mgr1

(I2 +mr2
2)ϕ̈2 +mr1r2ϕ̈1 = mgr2

=⇒
(
I1 +mr2

1 mr1r2
mr1r2 I2 +mr2

2

)
ϕ̈ = mg

(
r1
r2

)
(1.4.6)

− 10 −



1.4. EXAMPLES

The solution is found to be

ϕ̈1 = g
mr2 −

I2+mr2
2

r2

mr1r2 −
(I1+mr2

1)(I2+mr2
2)

mr1r2

(1.4.7)

ϕ̈2 = g
mr1 −

I1+mr2
1

r1

mr1r2 −
(I1+mr2

1)(I2+mr2
2)

mr1r2

(1.4.8)

For a homogeneous cylinder, we have that I1 = 1
2mr

2
1 and I2 = 1

2mr
2
2, so that

r1φ̈1 = r2φ̈2 = 2
5g =⇒ z̈ = 2

5g (1.4.9)

Hence the lower cylinder will fall down with an acceleration of 2
5g, which is less than the

expected g, meaning that the tension force in the string must have been equal to T = 3
5mg.

Example 2: particle sliding on rotating ring

A point particle of mass m is constrained to move on a frictionless circular wire of radius
R spinning with constant angular speed ω about the vertical axis.

Firstly, the azimuthal coordinate φ of the mass is given by φ̇ = ω =⇒ φ = ωt( mod 2π).
We expect θ to be the only remaining degree of freedom, the angle of the line between the
mass and the center of the ring with the vertical axis. The kinetic energy is

T = 1
2m(ωR sin θ)2 + 1

2m(Rθ̇)2 (1.4.10)

while the potential energy is
V = −mgR cos θ (1.4.11)

giving the following Lagrangian

L = 1
2mω

2R2 sin2 θ + 1
2mR

2θ̇2 +mgR cos θ (1.4.12)
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1.4. EXAMPLES

The Euler-Lagrange equation reads

mR2θ̈ = mω2R2 cos θ sin θ −mgR sin θ (1.4.13)

which simplifies to
θ̈ =

(
ω2 cos θ − g

R

)
sin θ (1.4.14)

Unfortunately this equation cannot be solved further. Nevertheless we can still find some
interesting solutions, one of which are stationary solutions where θ(t) = θ0, the mass is
still relative to the ring it is sliding on. These are given by solving θ̈ = 0:(

ω2 cos θ − g

R

)
sin θ = 0 (1.4.15)

One solution is when θ = 0, which corresponds to the mass starting at the bottom of the
ring. Similarly we also get θ = π which corresponds to the mass starting at the top of the
ring. Due to absence of friction there is no force pushing it away, thus explaining these
stationary solutions. Note however that any small perturbation will suddenly produce a
net force which will change θ, thus hinting that these solutions may be unstable. The other
solution occurs when g ≤ Rω2 in which case

cos θ = g

Rω2 , ω ≥
√
g

R
(1.4.16)

This corresponds to the bead starting at just the ring angle so that the its weight is perfectly
balanced by the centripetal force produced by the rotational motion.
Let’s now look at the sensitivities of these stationary values to small perturbations. For
θ = 0, let us define δθ to be a small perturbation in θ. It follows that θ̈ = δ̈θ and sin(δθ) ≈ δθ
and cos(δθ) ≈ 1. We then find that

δ̈θ =
(
ω2 − g

R

)
δθ (1.4.17)

Defining Ω =
√
ω2 − g

R , if ω2 > g
R we find that

θ(t) = δθ(t) = AeΩt +Be−Ωt (1.4.18)

yielding unstable exponential solutions with characteristic life-time of τ ∼ 1
Ω . If instead

ω2 < g
R then

θ(t) = δθ(t) = AeiΩt +Be−iΩt (1.4.19)
sowe get stable oscillationswith frequencyΩ. Similarly for θ = πwe find that sin δθ ≈ −δθ
and cos δθ = −1 so that

δ̈θ =
(
ω2 + g

R

)
δθ (1.4.20)

so defining ∆ =
√
ω2 + g

R we obtain another solution

θ(t) = π +Ae∆t +Be−∆t (1.4.21)
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1.4. EXAMPLES

which is always unstable due to the positivity of the root in ∆.

For θ = cos−1
(

g
Rω2

)
≡ θ0, we let δθ be a small perturbation. Again θ̈ = δθ, but this time

we also have that

sin(θ0 + δθ) ≈ sin θ0 + δθ cos θ0, cos(θ0 + δθ) = cos θ0 − δθ sin θ0 (1.4.22)

implying that

δ̈θ = −ω2δθ sin θ0

(
sin θ0 + δθ

g

Rω2

)
(1.4.23)

≈− δθ
(
ω2 − g

R

)
(1.4.24)

For ω2 > g
R , this is a simple harmonic oscillator with angular frequency Ω =

√
ω2 − g

R :

θ(t) = cos−1
(

g

Rω2

)
+AeiΩt +Be−iΩt (1.4.25)

while if ω2 < g
R we get an unstable solution

θ(t) = cos−1
(

g

Rω2

)
+AeΩt +Be−Ωt (1.4.26)

Example 3: pendulum attached to rotating disc

The pivot of a simple pendulum is attached to a disc of radiusR, which rotates in the plane
of the pendulum with angular velocity ω.

We start in cartesian coordinates, where the pivot has position (R sinωt,R cosωt) and the
mass has position (x, y) where

x = R sinωt+ l sin θ, y = R cosωt− l cos θ (1.4.27)

− 13 −



1.4. EXAMPLES

The kinetic energy then becomes

T = 1
2m

[
(ωR cosωt+ lθ̇ cos θ)2 + (ωR sinωt− lθ̇ sin θ)2] (1.4.28)

= 1
2m(ω2R2 + θ̇2l2 + 2ωθ̇Rl cos(θ + ωt)) (1.4.29)

while the potential energy is

V = mg(R cosωt− l cos θ) (1.4.30)

Therefore the Lagrangian can be written as

L = 1
2m(ω2R2 + θ̇2l2 + 2ωθ̇Rl cos(θ + ωt))−mg(R cosωt− l cos θ) (1.4.31)

yielding the following equation of motion

l2θ̈ − 2lωR(θ̇ + ω) sin(θ + ωt) = −gl sin θ − 2lωRθ̇ sin(θ + ωt) (1.4.32)

We can simplify it to
θ̈ − 2ω2R

l
sin(θ + ωt) + g

l
sin θ = 0 (1.4.33)

In the small angle limit, we can write sin θ ≈ θ and sin(θ + ωt) ≈ sinωt+ θ cosωt yielding

θ̈ −
(

2ω2R

l
cosωt− g

l

)
θ = 2ω2R

l
sinωt (1.4.34)

Example 4: particle gliding on cone

Consider a point particle of mass m gliding on the inside of a cone with aperture 2θ and
friction coefficient µ.

Firstly, it is important to realise that the friction force on the cone is not conservative, and
thus we will have to include it manually in the Euler-Lagrange equations. We adopt the
coordinates r (distance from tip of the cone) and φ (azimuthal angle). Using the definition
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1.4. EXAMPLES

of generalised forces we find

δW = Frδr + Fθδθ = −µmg sin θ(δr + r sin θδθ) (1.4.35)

implying that Fr = −µmg sin θ and Fθ = −µmgr sin2 θ. The kinetic energy is

T = 1
2m((φ̇r sin θ)2 + ṙ2) (1.4.36)

while the potential energy is
V = mgr cos θ (1.4.37)

Therefore, the Lagrangian can be written as

L = 1
2m((rφ̇ sin θ)2 + ṙ2)−mgr cos θ (1.4.38)

The Euler-Lagrange equations are

d

dt
(r2 sin2 θφ̇) = −µgr sin2 θ (1.4.39)

r̈ − rφ̇2 sin2 θ + g cos θ = −µg sin θ (1.4.40)

Firstly, note that Lz = mφ̇r2 sin2 θ so the first equation implies that

dLz
dt

= −µgr sin2 θ (1.4.41)

so if µ = 0, then Lz = lz is a conserved quantity. In absence of friction the first equation
simplifies to

mr2 sin2 θφ̇ = lz =⇒ φ̇ = lz
mr2 sin2 θ

(1.4.42)

so that
r̈ − l2z

m2r3 sin2 θ
+ g cos θ = 0 (1.4.43)

We seek solutions of constant radial distance r, and these are given by

r̈ = 0 =⇒ r =
(

l2z
m2g sin2 θ cos θ

)1/3
(1.4.44)

Example 5: sigma models

We consider a system with n degrees of freedom with a purely kinetic Lagrangian

L = 1
2gab(q)q̇aq̇b (1.4.45)
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1.5. THE ELECTROMAGNETIC LAGRANGIAN

where gab(q) is a coordinate-dependent symmetric metric in configuration space which
we can assume to be invertible gabgbc = δac . The Euler-Lagrange equation for qi reads

∂L

∂qi
= 1

2
∂gjk
∂qi

q̇j q̇k,
∂L

∂q̇i
= gij q̇

j =⇒ gij q̈
j + ∂gij

∂qk
q̇kq̇j = 1

2
∂gjk
∂qi

q̇j q̇k (1.4.46)

We now make use of the fact that ∂gij
∂qk

q̇kq̇j = ∂gik
∂qj

q̇kq̇k to write

gij q̈
j + 1

2

(
∂gij
∂qk

+ ∂gik
∂qj
− ∂gjk

∂qi

)
q̇j q̇k = 0 (1.4.47)

Dotting to the left with gai we are left with the equation of motion

q̈a + 1
2g

ai
(
∂gij
∂qk

+ ∂gik
∂qj
− ∂gjk

∂qi

)
q̇j q̇k = 0 (1.4.48)

The second term is a very familiar term from general relativity. Indeed we can define the
Christoffel symbol

Γajk = 1
2g

ai
(
∂gij
∂qk

+ ∂gik
∂qj
− ∂gjk

∂qi

)
(1.4.49)

and write the equation of motion as a geodesic equation

q̈a + Γabcq̇bq̇c = 0 (1.4.50)

This is not surprising at all, since the geodesic gives the shortest path between two points,
and the provided Lagrangian can be interpreted as the distance (squared) between two
points in configuration space when integrated over time.

1.5 The Electromagnetic Lagrangian
Suppose a particle of charge e (to avoid confusionwith the generalised coordinates)moves
in a region of electric field E and magnetic field B. Then it is a well known fact that the
force on this charge will be given by the Lorentz force law

F = e(E + v× B) (1.5.1)

In what follows we will work in the Coulomb gauge with potentials ϕ and A satisfying

E = ∇ϕ, B = ∇×A (1.5.2)

The standard Lagrangian which yields the correct equation of motion is then

L = 1
2mv2 + e(ϕ(r, t) + v ·A(r, t)) (1.5.3)

To see why, we employ index notation and write (1.5.3) as

L = 1
2mq̇iq̇

i + e(ϕ+ q̇iA
i) (1.5.4)
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It then follows that
∂L

∂qi
= e

(
∂ϕ

∂qi
+ q̇j

∂Aj
∂qi

)
(1.5.5)

d

dt

(
∂L

∂q̇i

)
= mq̈i + eȦi (1.5.6)

and using some identities from tensor algebra we also find that

(v× B)i = εijkq̇j(εklm∂lAm) = (δilδjm − δimδ
j
l )q̇j∂

lAm) (1.5.7)
= q̇j∂

iAj − q̇j∂jAi = q̇j∂
iAj − Ȧi (1.5.8)

Consequently we find that

∂L

∂qi
= e

(
Ei + (v× B)i + Ȧi

) (1.5.9)

and therefore
mq̈i = e(E + v× B)i (1.5.10)

1.6 Symmetries and Noether’s theorem
Wedefine a constant ofmotion/conserved quantity J(qi, q̇i, t) to be a quantitywhose total
time derivative vanishes

dJ

dt
=
(
∂J

∂qj
q̇j + ∂J

∂q̇j
q̈j

)
+ ∂J

∂t
= 0 (1.6.1)

for all qi solving the Euler-Lagrange equations. This condition is known as an on-shell
condition, it requires the qi, q̇i to lie on the shell of solutions to the equations of motion.
This definition does not necessarily mean that a conserved quantity is time-independent,
but rather that as we move along a path in phase space which solves to the equations of
motion there is no variation in this quantity.
Importantly, one can relate conserved quantities of a Lagrangian to a special set of its sym-
metries. To define what we mean by a symmetry, let us consider a one-parameter family
of maps

ϕ(λ) : qi(t)→ Qi(λ, t), m ∈ R (1.6.2)
with Qi(0, t) = qi(t). For an infinitesimal symmetry transformation we may define the
symmetry variation δqi(t) such that

qi(t) 7→ Qi(t) = qi(t) + δqi(t) (1.6.3)

We then say that ϕ is a continuous symmetry of a Lagrangian L if for infinitesimal varia-
tions

δL = L(Qi(λ, t), q̇i(λ, t), t)− L(Qi(λ, t), q̇i(λ, t), t) = dΛ
dt

(1.6.4)
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so that the overall action is invariant up to a constant

S =
ˆ tb

ta

dt L(qi, q̇i, t) dt =
ˆ tb

ta

dt L(Qi, Q̇i, t) dt+ Λ|tbta (1.6.5)

Noether’s theorem states that:

Noether’s Theorem: every continuous symmetry of a Lagrangian L gives rise
to a conserved constant of motion J .

Proof. Since ϕ is a continuous symmetry we can consider an infinitesimal transformation

qi(t) 7→ qi(t) + δqi(t) (1.6.6)

We need the change δL of the Lagrangian under this map to be at most a total time deriva-
tive, so that the action will only change by a boundary term. Thus

δL = ∂L

∂qi
δqi(t) + ∂L

∂q̇i
δq̇i(t) (1.6.7)

=
(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi(t) + d

dt

(
∂L

∂q̇i
δqi(t)

)
= dΛ

dt
(1.6.8)

Since this applies to (qi(t), q̇i(t)) on-shell, we must require that the Euler-Lagrange equa-
tions are satisfied

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1.6.9)

so substituting this into (1.6.8) we get that the first term vanishes, and thus

d

dt

(
∂L

∂q̇i
δqi(t)− Λ

)
= 0 (1.6.10)

We have found that the following quantity

J = ∂L

∂q̇i
δqi(t)− Λ, where dΛ

dt
= δL (1.6.11)

is a constant of motion, as required by Noether’s theorem.

Note that many textbooks actually use the stronger condition of requiring the Lagrangian
to be invariant under the symmetry, which usually occurs for systems with spatial trans-
lational and rotational symmetry. In this case we have that δL = 0 and therefore

J = ∂L

∂q̇i
δqi(t) (1.6.12)

There are a wide array of commonly found symmetries which lead to the typical conser-
vation laws one encounters in Newtonian mechanics. These will be explored below.
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Time translational symmetry

We will consider the following map

ϕ(λ) : qi(t) 7→ qi(t+ λ) (1.6.13)

and assume that this is a continuous symmetry of the Lagrangian, which is definitely the
case when it does not explicitly depend on t. Assuming this, the infinitesimal variation of
this symmetry is

δqi(t) = εq̇i(t) =⇒ δq̇i(t) = εq̈i(t) (1.6.14)
and since the Lagrangian only depends on qi, q̇i we also find that

δL = ∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i = ε

dL

dt
= dΛ

dt
=⇒ Λ = εL (1.6.15)

Finally, using Noether’s theorem we find that

J = ∂L

∂q̇i
q̇i − L = piq̇i − L (1.6.16)

is a conserved quantity, and is known as the Hamiltonian of the system correspondonging
to its total energy. Systems that conserve energy are known as conservative.

Space translational symmetry

We now consider space translations along the ith direction, defined by the following map

ϕ(λ) : qi(t) 7→ qi(t) + λ (1.6.17)

and assume that they are symmetries of a Lagrangian independent of the coordinate qi.
The infinitesimal symmetry variations are

δqi(t) = ε =⇒ δL = ε
∂L

∂qi
= 0 (1.6.18)

Noether’s theorem then gives us the conserved quantity

J = ∂L

∂q̇i
= pi (1.6.19)

so the momentum conjugate to the direction of translation will be conserved. Intuitively,
this follows from Newton’s second law. If the Lagrangian is independent of a coordinate
qi then the corresponding generalised force will also vanish, so

∂L

∂qi
≡ Fi = 0 =⇒ dpi

dt
= 0 (1.6.20)

by Newton’s second law, or equivalent the Euler-Lagrange equations ṗi = Fi.

− 19 −
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Rotational symmetry

We now consider rotations about the axis n defined by the following map

ϕ(λ) : q(t) 7→ q(t) + λq(t)× n (1.6.21)

and assume that they are symmetries of a Lagrangian. In an isotropic systemone can rotate
the coordinate system without affecting the Lagrangian. This can occur if for example the
Lagrangian only depends on q2,qi · qj etc...The infinitesimal variations are given by

δq(t) = θq(t)× n =⇒ δqi(t) = θεijkqj(t)nk (1.6.22)

Consequently we get that the Lagrangian variation is given by

δL = θεijk

(
∂L

∂qi
qj(t) + ∂L

∂q̇i
q̇j(t)

)
nk = d

dt

(
θεijk

∂L

∂q̇i
qj(t)nk

)
(1.6.23)

Requiring the Lagrangian to be invariant under rotations yields the following conserved
quantity

J = −εijkpiqjnk = n · (r× p) (1.6.24)
which is just the component of angular momentum along n. If space is isotropic then this
will hold for any n so angular momentum will be conserved.

1.7 Small oscillations, normal modes and stability
Once we find the equations of motion of a system using the Lagrangian, unless they are
analytically solvable the most interesting thing to look at is the existence of equilibria i.e.
solutionsq(t) = q0 which are constant in time. Determining the stability of these equilibria
is yet another important question: if the system is slightly perturbed from this equilibrium
point, does it return to its initial configuration or is it driven away from it? It turns out that
to answer this question we must look at the dynamics of small angle oscillations.
Let’s consider a natural, holonomic conservative system with n degrees of freedom de-
scribed by the Lagrangian

L = 1
2Tij(q)q̇iq̇j − V (q) (1.7.1)

where Tij is taken to be symmetric without loss of generality (positions commute). We
define {q} to be normal coordinates of the system if Tij is diagonal in these coordinates,
and since symmetricmatrices are always diagonalisable this can always be done bymoving
to the eigenbasis of Tij . By rescaling the normal coordinates one can then always write the
kinetic energy as

T = 1
2 q̇iq̇

i (1.7.2)

In the way we have written the Lagrangian, note that there can be terms in the potential
V (q) which actually arise from the kinetic energy, but are nevertheless independent of q̇i
e.g. a centrifugal barrier. The Euler-Lagrange equations are

d

dt
(Tij(q)q̇j)−

1
2
∂Tkj
∂qi

q̇kq̇j = −∂V
∂qi

(1.7.3)
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For q0 to be an equilibrium point we require all time derivatives of q to vanish so that

∂V

∂qi

∣∣∣∣
q0

= 0 (1.7.4)

We can always shift our reference frame so that q0 = 0, in which case a Taylor expansion
of the Lagrangian would yield

L ≈ 1
2Tij q̇iq̇j −

1
2
∂2V

∂qi∂qj

∣∣∣∣
q=0

qiqj + o(q3) (1.7.5)

where we ignored the potential at the equilibrium point V (0), since the Lagrangian is de-
fined up to additive constants. We have therefore derived an effective quadratic lagrangian
near the equilibrium point which we can express as

Leff = 1
2Tij q̇iq̇j −

1
2Vijqiqj , Tij = Tij(q = 0), Vij = ∂2V

∂qi∂qj

∣∣∣∣
q=0

(1.7.6)

or in matrix notation
Leff = 1

2 q̇
TT q̇− 1

2q
TVq (1.7.7)

The equation of motion now become

Tij q̈j = −Vijqj ⇐⇒ q̈ = −T −1Vq (1.7.8)

which is typical of a system of coupled oscillators. We therefore introduce the oscillator
ansatz q = Aeiωt consisting of all coordinates oscillating at the same frequency ω with
amplitudesAi. Such solutions are known as normal modes of the system, and any general
solution of the system can be written as a superposition all these modes. Substituting this
ansatz we see that

− ω2A = −T −1VA =⇒ (ω2T − V)A = 0 (1.7.9)
The non-trivial solutions A 6= 0 can be found by solving the characteristic equation

det
(
ω2T − V

)
= 0 (1.7.10)

and the corresponding eigenvectors A can then be found by solving

(ω2T − V)A = 0 (1.7.11)

Since both T and V are symmetric, they are always diagonalisable (by the spectral theorem
of linear algebra). Next note that T −1V is similar to T −1/2VT −1/2, which is symmetric, and
thus also diagonalisable with n real eigenvalues and n linearly independent eigenvectors.
Ifω2 > 0 thenwe obtain an oscillatingmode, ifω2 = 0weget a linear solution, while ifω2 <
0 we obtain an exponentially growing solution. It follows that if any of the eigenvalues of
T −1V are negative then the equilibrium point has a linear instability in the direction of the
corresponding eigenvector, while if all eigenvalues are positive then the equilibrium point
is stable.
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3The Canonical equations
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5Rotational kinematics and non-inertial
frames

5.1 Orthogonal transformations
A three dimensional rigid body has 6 degrees of freedom,
these could be for example 3 degrees from the center of mass
coordinates and another 3 degrees specifying the orientation
of the body relative to some coordinate axes. Therefore, to
specify a rigid body’s orientation it suffices to fix a set of axes
to the rigid body, which rotates with it, and find the angles
that it makes with a set of axes that are fixed in the laboratory
frame.
For example, let Σ be the lab coordinate system with coordi-
nates (x1, x2, x3) and corresponding unit vectors (e1, e2, e3).
Similarly let Σ′ be the coordinate system rotating with the rigid body, with coordinates
(x′1, x′2, x′3) and corresponding unit vectors (e′1, e′2, e′3). Given any vector g, it can be ex-
pressed as

g = giei = g′jej (5.1.1)
To relate the coordinates in the Σ and Σ′ frames, note that

g′j = g · e′j = giei · e′j = Rjigi, where Rji = e′j · ei (5.1.2)

Here Rij are known as the direction of cosines, and form a matrix R. However, Rij is a
matrix with 9 entries in total, but we know that only three of these should be independent
of each other. We solve this conundrum by noting that g2 should take the same value in
both Σ and Σ′:

g · g = g′ig
′
i = (Rijgj)(Rikgk) = RijRikgjgk = δjkgjgk (5.1.3)

implying that
RijRik = δjk ⇐⇒ RTR = 1 =⇒ det R = ±1 (5.1.4)

So the matrix R is orthogonal. It is a simple exercise to check that the set of orthogonal
3× 3 matrices form a group under matrix multiplication, known as the orthogonal group

− 25 −



5.1. ORTHOGONAL TRANSFORMATIONS

O(3). Using the fact that

Rji = e′j · ei =⇒ ei = Rjie′j and e′j = Rjiei (5.1.5)

we get that
e′i · e′j = (Rikek) · (Rjlel) = RikRjlδkl = RikRjk = δij (5.1.6)

so we see that orthogonal transformations maintain orthogonality.
Up until now we have been looking at the vector g as fixed in space, and the coordinate
frame as rotating with the rigid body. This is known as the passive point of view, and
corresponds to what the laboratory frame observer would see. Alternatively, one could
think of the coordinate axes as being fixed, and the vector as rotating. This is known as the
active point of view, and corresponds to what the observer on the rigid body would see.
These two points of views are perfectly equivalent, but are useful in different scenarios.
In the active point of view, we have that g = giei, and since the ei are fixed, we need to
transform g 7→ g′ = g′iei = Rijgjei where

g′i = Rijgj ⇐⇒ g′ = Rg (5.1.7)

Note that in the passive picture, the unit vectors transformed contravariantly as e′i = Rjiej ,
while in the active picture the coordinates transformed covariantly as g′i = Rijgj . The
fact that the two quantities transform oppositely is simple to understand, if we require
the axes to be fixed then the transformation of the coordinates must be the inverse of the
transformation of the axes required for the coordinates to be fixed.
Returning back to (5.1.4), note that an orthogonal matrix has a determinant of either +1
or −1. A typical orthogonal matrix with negative unit determinant is

I = −1 =

−1 0 0
0 −1 0
0 0 −1

 (5.1.8)

which symmetric and thus idempotent (due to its orthogonality). Since I−1 = I, it follows
that any matrix A can be written as A = IB where B = −A. Now suppose that A is an
orthogonal matrix with det A = +1. Then it follows that if B = −A then det B = −1.
Similarly, if det B = −1 then since B = IA we get that det A = 1. Therefore, there is a one-
to-one correspondence between positive and negative determinant orthogonal matrices.
Since I inverts the coordinates, this means that negative unit determinant transformations
are compositions of det{R} = +1 transformations and inversions, and are thus named
improper transformations since they convert left handed bases to right handed ones and
vice-versa. On the other hand, positive unit determinant transformations are called proper,
or rotations, because they maintain the parity of the coordinate axes. The latter form a
subgroup of the orthogonal group O(3), known as the special orthogonal group SO(3).
This cannot be said for improper rotations, since for example II = 1which is not improper,
violating the closure axiom of subgroups.
To understandwhy proper orthogonal transformations are the rotations we are so used to,
let’s consider two arbitrary vectors a and b. A rotation R can defined as a transformation
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such that

R(a) · R(b) = a · b (5.1.9)
R(a)×R(b) = R(a× b) (5.1.10)

Therefore let R ∈ SO(3) be a proper orthogonal transformation, and define

a′ = Ra, b′ = Rb (5.1.11)

It follows that

a′ · b′ = a′ib
′
i = RijRikajbk = δjkajbk = ajbj = a · b (5.1.12)

Similarly

(a′ × b′)i = εijka
′
jb
′
k = εijkRjlRkmalbm (5.1.13)

Now note that
εijkRilRjmRkn = (det R)εlmn = εlmn (5.1.14)

which implies
εijkRrlRilRjmRkn = εrjkRjmRkn = Rrlεlmn (5.1.15)

Substituting this into (5.1.13) we find that

(a′ × b′)i = εijkRjlRkmalbm = Rirεrlmalbm = (R(a× b))i (5.1.16)

as desired.
It turns out that rotations are the most general displacement that a rigid body can have
which fixes only one point. This is known as Euler’s theorem:

Euler’s Theorem: the most general transformation of a rigid body which leaves one
point fixed is a proper orthogonal transformation about an axis
through the fixed point.

Suppose the rigid body starts out in some configuration, is transformed using a rotation R
to some final configuration. We need to show that there will always be some pointN with
position vector n that is fixed byR. This amounts to proving that there exists some n such
that

Rn = n =⇒ det(R− 1) = 0 (5.1.17)
or in other words, R is always diagonalisable. We show this by noting that

R− 1 = R(1− RT ) = −R(R− 1)T (5.1.18)
=⇒ det(R− 1) = −det R det(R− 1) = −det(R− 1) (5.1.19)

and therefore det(R− 1) = 0.
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5.2 Euler angles
We know that to specify the orientation of a rigid body, one needs to fix a coordinate frame
to the rigid body and find the angle that its axes make with a laboratory coordinate frame.
The Euler angles are a special set of angles that are practically very useful in defining
the orientation of a rigid-body. Consider a set of axes ea. Then, any fixed origin rotation
of these axes can be parametrised using Euler Angles. This parametrisation consists of a
rotation around each axis:

ea
R(φ)−−−→ e′a

R(θ)−−−→ e′′a
R(ψ)−−−→ ẽa (5.2.1)

Firstly, we rotate the axes by φ about e3, so that ea = R(φ)abeb where

R(φ) =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (5.2.2)

Secondly, we rotate the new axes by θ about e′1 so that e′′a = R(θ)abe′b where:

R(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (5.2.3)

Finally, we rotate the newest axes by ψ about e′′3 so that ẽa = R(ψ)abe′′b ,where:

R(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (5.2.4)

Visually this sequence of rotations amounts to

Figure 5.1. Specifying a body’s orientation using Euler Angles

Thus, the rotation (x1, x2, x3) 7→ (x̃1, x̃2, x̃3) is represented by the following proper, or-
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thogonal matrix

R =

 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sin θ sinψ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ sin θ

sinφ sin θ − sin θ cosφ cos θ

 (5.2.5)

Its inverse (which is just the transpose) is:

R−1 =

cosψ cosφ− cos θ sinφ sinψ − sinψ cosφ− cos θ sinφ cosψ sin θ sinφ
cosψ sinφ+ cos θ cosφ sinψ − sinψ sinφ+ cos θ cosφ cosψ − sin θ cosφ

cosψ sin θ cosψ sin θ cos θ


(5.2.6)

5.3 Infinitesimal rotations and SO(3) generators
Suppose g is some vector attached to a rigid-body rotating about an axis with unit vector
n. In an infinitesimal time the vector g will have rotated by some infinitesimal angle dθ to
a new vector g′ where

g′ = g + dθ × g =

 1 −n3dθ n2dθ
n3dθ 1 −n1dθ
−n2dθ n1dθ 1

g, dθ = dθn (5.3.1)

Letting dθ1 and dθ2 be two successive rotations then to first order

g′′ = g′ + dθ2 × g′ = g + (dθ1 + dθ2)× g + o(dθ2) (5.3.2)

implying that rotations about the same axis commute. Consequently, letting J = (J1, J2, J3)
be the generator of rotations then we see that

R(dθ) = 1 + dθn · J (5.3.3)

we see that orthogonality requires

RT (dθ)R(dθ) = (1 + dθn · JT )(1 + dθn · J) (5.3.4)
= 1 + dθn · (JT + J) = 1 =⇒ JTi = −Ji, i = 1, 2, 3 (5.3.5)

Thus the generator of rotations must be anti-symmetric, and its most general form must
therefore be

n · J =

 0 α β
−α 0 γ
−β −γ 0

 (5.3.6)

Comparison with (5.3.1) shows that

n · J =

 0 −n3 n2
n3 0 −n1
−n2 n1 0

 (5.3.7)

− 29 −



5.4. KINEMATICS IN ROTATING FRAMES

and since n1, n2, n3 are independent we can define the following generators of rotations
about the x1, x2, x3 axes respectively

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 (5.3.8)

One can compute that these matrices satisfy the SO(3) algebra

[Ji, Jj ] = εijkJk (5.3.9)

Note that we can build any rotation (not just infinitesimal) using the SO(3) generators. To
see how, consider a rotation by an angle θ about the axis n. Let us decompose this rotation
into N infinitesimal rotations by an angle dθ = θ

N . Each of these infinitesimal rotations
will take the form

R(dθ) = 1 + θ

N
n · J (5.3.10)

implying that
R(θ) = lim

N→∞

(
1 + θ · J

N

)N
(5.3.11)

Since successive, infinitesimal rotations commute, we can write this limit as an matrix ex-
ponential

R(θ) = eθ·J (5.3.12)

5.4 Kinematics in rotating frames
Let R be the vector pointing to the rigid body’s center of mass, r and r′ denote the position
of some P fixed in the rigid body relative to the lab frame S and the rigid body frame S′
respectively. Now consider an infinitesimal segment of the rigid body’s motion in which
it rotates about an axis n̂ (through the CM) by an angle dθ. This rotation produces a
displacement dθ · r of P in frame S′. The total displacement in S will thus be

dr = dR + dθ × r′ (5.4.1)

Dividing by dtwe get a relation for the velocities of P in the two frames

v = V + ω × r′ (5.4.2)

where V is the CM velocity and ω = dθ
dt is the angular velocity. This derivation worked

so well because we implicitly set our axes’ origin to lie on the center of mass about which
P must rotate. Suppose we instead placed the origin of S′ a distance d from the center of
mass, forming a new reference frame S′′. The position vector r′′ of P in the new S′′ frame
will be r′′ = r′ + d. Thus

v = V + ω × d + ω × r′′ (5.4.3)
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which suggests that we redefine the CM velocity in S′′ to be

V′ = V + ω × d (5.4.4)

while the angular velocity remains the same ω = ω′. This is a crucial point, it tells us
that the angular velocity of a rigid body is independent of where we place our frame of
reference (as long as the frame rotates with it).
Suppose we nowwish to describe the position vector r of some point P fixed in space (not
the rigid body). Then we have

r = riei = r′ie′i (5.4.5)
Taking the time-derivative we see that

ri = ṙiei = ṙ′ie′i + riė′i (5.4.6)

We now define ω, the angular velocity of the rotating axes e′i with respect to ei to satisfy

ė′i = ω × ei (5.4.7)

If we take ri = Rji(t)r′j then

de′i
dt

= dRij
dt

ej = dRij
dt

Rkje′k ≡ ωacec (5.4.8)

where we have defined ωik = ṘijRkj . Note that ωik defines an anti-symmetric 2-form ω
since

ωki = ṘkjRki = d

dt
(RkjRki)− ωik = −ωik (5.4.9)

since Rkj(t)Rki(t) = δji. Due to this anti-symmetry, the dual vector 1 ω of ωij is given by

ωi = 1
2εijkωjk =⇒ ω = 1

2εijkωjkei (5.4.10)

It follows that
ė′i = ω × e′i (5.4.11)

as desired. Consequently
ṙ = ṙ′ie′i + ω × r (5.4.12)

We define the velocity of the point P as seen from S to be

dr
dt

∣∣∣∣
S

= ṙiei (5.4.13)

and similarly the velocity of P as seen from S′ to be

dr
dt

∣∣∣∣
S′

= ṙ′ie′i (5.4.14)

1see differential geometry in Mathematical methods volume
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Consequently we see that
dr
dt

∣∣∣∣
S′

= dr
dt

∣∣∣∣
S

+ ω × r (5.4.15)

As expected, the difference in themeasured velocities is equal to the relative velocity of the
two frames. Differentiating (5.4.15) we find that the accelerations in S and S′ are related
as

r̈ = r̈′ie′i + 2ṙ′iė′i + r′ië′i (5.4.16)

= r̈′ie′i + 2ṙ′i(ω × e′i) + r′i
dω

dt
×e′i (5.4.17)

= r̈ie′i + 2ω × (ṙie′i) + ω̇ × (rie′i) + riω × (ω × e′i) (5.4.18)

and thus we have found a relation between the accelerations in S and S′

d2r
dt2

∣∣∣∣
S

= d2r
dt2

∣∣∣∣
S′

+ 2ω × dr
dt

∣∣∣∣
S′

+ ω̇ × r + ω × (ω × r) (5.4.19)

Using Newton’s second law, if the force experienced by P in frame S is F = md2r
dt2

∣∣
S
then it

follows that

F′ ≡ md2r
dt2

∣∣∣∣
S′

= F− 2mω × dr
dt

∣∣∣∣
S′︸ ︷︷ ︸

Coriolis force

− mω̇ × r︸ ︷︷ ︸
Euler force

−mω × (ω × r)︸ ︷︷ ︸
Centrifugal force

(5.4.20)

We see that in the rotating frame, particle S must experience three additional forces to
explain its motion. These are not physical forces, but merely an artifact of the fact that the
rotating frame is not an inertial frame of reference, and thus an additional set of fictitious
forces is required to agree Newton’s second law.

Centrifugal force

Not to be confused with the centripetal force which is very closely related to it, the cen-
trifugal force is the fictitious force which replaces the centripetal force in a rotating frame.
To understand the necessity of this force, consider a person standing on a rotating carousel.
From the lab frame’s point of view, the forces acting on the person are the gravitational
force pulling down, the normal force pushing up, and the friction force pulling in towards
the carousel’s center. The causes the person tomove in a circular fashionwith the carousel.
From the person standing on the carousel’s point of view, the non-fictitious forces acting
on it are again the weight, normal force and friction, which alone would cause the person
to drift towards the carousel’s center. This description does not match what the observer
sees, and indeed this is because there is an additional fictitious force, the centrifugal force
which pushes outwards. Since from the person’s point of view it is still relative to the
carousel, the centrifugal force must be equal to the friction force (the centripetal force) in
magnitude but opposite in direction:

Fcentrifugal = −Fcentripetal = mω2rer (5.4.21)
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As a more interesting example, consider what happens when we suspend a pendulum on
Earth at latitude π−θ, as shown below There will be a gravitational force pointing radially

inwards as well as an oblique centrifugal force of magnitude

F = −mRω2ẑ× (ẑ× êr) = −mRω2ẑ× (cos θ cosϕŷ− cos θ sinϕx̂) (5.4.22)
= mRω2(cos θ cosϕx̂ + cos θ sinϕŷ) (5.4.23)

We can without loss of generality set our axes so that ϕ = 0 without loss of generality, so
that F points in the x-direction, and the y-direction goes into the page. Then

F = mRω2 cos θ(cos θêr − sin θêθ) (5.4.24)

Consequently Newton’s second law implies that

mω2R cos θ sin θ = T sinφ and mω2R cos2 θ = mg − T cosφ (5.4.25)

The second equation implies that T = mg
cosφ −mω

2R cos2 θ
cosφ and thus

mg tanφ = mω2R(cos2 θ tanφ+cos θ sin θ) =⇒ tanφ(mg−mω2R cos2 θ) = mω2R cos θ sin θ
(5.4.26)

The angle φ the pendulum makes with the radial line is therefore

tanφ = ω2R cos θ sin θ
g − ω2R cos2 θ

(5.4.27)

Coriolis force

Tounderstand the origin of this fictitious force, consider an observer standing on a carousel
rotating with angular frequency ω. The observer starts to walk tangentially at constant
radius R around the carousel with speed V . From the laboratory POV, the observer is
moving at speed v + ωR, so the friction force acting on their feet must be the centripetal
contribution

Ffriction = −m(V + ωR)2

R
êr = −

(
mV 2

R
+mω2R+ 2mωV

)
êr (5.4.28)

Now consider the same situation from the observer’s point of view. The friction force
acting on them (which is the same in both frames) does not fully cancel out with the cen-
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trifugal forcemω2R so that
mV 2

R︸ ︷︷ ︸
ma

6= mω2R︸ ︷︷ ︸
Fcentrifugal

−Ffriction (5.4.29)

We are therefore in need of an extra fictitious force Fcoriolis = 2mωV êr in order forNewton’s
equations to give the correct acceleration.

Euler force

To understand why this force is necessary, let’s consider once more the rotating carousel.
Assume the carousel has angular acceleration ω̇. Then in the lab frame, if the observer on
the carousel is to remain fixed to it, there must be an additional friction force Ffriction =
mRω̇. In the observer’s frame this is not accounted for, just like in the centrifugal force’s
case.

5.5 Motion on Earth
There are several interesting consequences of the fact that we live on a rotating planet, and
thus in a non-inertial frame of reference where fictitious forces play non-intuitive tricks.

Deflection of falling object

Consider an object

Cyclones

Foucault’s pendulum

5.6 Lagrangian in rotating frames
5.7 Angular velocity using Euler-angles
We canwrite the angular velocity using the Euler angle parametrisation. Consider a rigid-
body which in time dt moves from (ψ, θ, φ) to (ψ + dψ, θ + dθ, φ + dφ). By definition we
must have that

ω = ψ̇e′′3 + θ̇e′1 + φ̇e3 (5.7.1)
where e3, e′1, e′′3 are shown in Figure 5.1. Using the rotation matrices, e3 is given in terms
of e′′i by looking at the third column of R, and similarly e′1 by looking at the first column of
R(ψ) so that

e3 = sin θ sinψe′′1 + cosψ sin θe′′2 + cos θe′′3 (5.7.2)
e′1 = cosψe′′1 − sinψe′′2 (5.7.3)

Similarly, in the lab frame we get

e′′3 = sin θ sinφe1 − sinφ sin θe2 + cos θe3 (5.7.4)
e′1 = cosφe1 + sinφe2 (5.7.5)
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Defining
ω = ωxe1 + ωye2 + ωze3 = ω̃xẽ1 + ω̃yẽ2 + ω̃z ẽ3 (5.7.6)

then we find that
ω̃x = φ̇ sin θ sinψ + θ̇ cosψ
ω̃y = φ̇ sin θ cosψ − θ̇ sinψ
ω̃z = ψ̇ + φ̇ cos θ

and


ωx = θ̇ cosφ+ ψ̇ sin θ sinφ
ωy = θ̇ sinφ− ψ̇ sin θ cosφ
ωz = φ̇+ ψ̇ cos θ

(5.7.7)
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6Rigid body dynamics

6.1 Rigid bodies
A rigid body is a body where the distance between its constituent particles does not vary.
This body may be initially viewed as a discrete set of point-particles, and the passage to
the continuous limit is achieved by replacing sums with integrals using a mass measure
ρdV replacing the individual particle masses.
We will use two reference frames, an inertial lab frame fixed in space and a non-inertial
frame fixed to the center of mass the of rigid body. Since the particles within the rigid body
maintain the distance between them, a rigid body has six degrees of freedom, three that
specify the position of the origin of the rotating frame relative to the lab, and three that
specify the orientation of its axes relative to the lab. Indeed it is easy to convince yourself
that given this data one could in principle draw a picture of the rigid body as seen from
the lab frame (the Euler angles).

6.2 The Inertia tensor
In order to write the Lagrangian of a rigid body, and thus investigate its dynamics, we
need to be able to write down its kinetic energy. Let the ith particle have mass m(i) and
velocity v(i) in the lab frame. From the previous chapter we know that

v(i) = V + ω × r(i) (6.2.1)

where V is the CM velocity and r(i) is the position of the ith particle in the rigid body
frame. We then have that

T = 1
2
∑
i

m(i)(v(i))2 = 1
2
∑
i

m(i)V2 +
∑
i

V · (ω ×m(i)r(i)) + 1
2
∑
i

m(i)(ω × r(i))2 (6.2.2)

For the middle term, we note that∑iV · (ω×m(i)r(i)) = V ·
(
ω×

∑
im

(i)r(i)
)

= 0 since by
definition the center of mass is set at the origin, so that R =

∑
im

(i)r(i) = 0. Consequently
we are left with

T = 1
2MV2 + 1

2
∑
i

m(i)[ω2(r(i))2 − (ω · r(i))2] (6.2.3)
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whereM =
∑
imi is the rigid-body’s mass. The kinetic energy has been decomposed into

a translational component due to the CM motion, and a rotational component. The latter
can be written more succintly using index notation by noting that

m(i)[ω2(r(i))2 − (ω · r(i))2] = m(i)[ωjωj(r(i))2 − (ωjr(i)
j )(ωkr

(i)
k )] (6.2.4)

= ωjωkm
(i)[δjk(r(i))2 − r(i)

j r
(i)
k ] (6.2.5)

Defining the inertia tensor I to be a rank-2 symmetric tensor with components

Ijk =
∑
i

m(i)[δjk(r(i))2 − r(i)
j r

(i)
k

] (6.2.6)

we then find that
T = 1

2MV2 + 1
2ω

T
↔

Iω (6.2.7)

Passing to the continuous case is not difficult, one replaces the sum over particles with an
integral

Ijk =
ˆ
ρ
[
δjk(r(i))2 − r(i)

j r
(i)
k

]
dV (6.2.8)

As a matrix,
↔

I can be written as

↔

I =


∑
m(y2 + z2) −

∑
mxy −

∑
mxz

−
∑
mxy

∑
m(x2 + z2) −

∑
myz

−
∑
mxz −

∑
myz

∑
m(x2 + y2)

 (6.2.9)

Moreover, note that since
↔

I is a second-rank symmetric tensor, it can be diagonalised by a
special choice of axes, known as principal axes of inertia. These can be found by solving
the eigenvector equation

↔

I ηj = Ijηj (6.2.10)
Here the eigenvalues Ij are the principalmoments of inertia and ηj are the vectors yielding
the principal axes of inertia (in the basis in which

↔

I was expressed originally). Letting
D = (η1 η2 η3) then one finds that

↔

I principal = DT
↔

I D =

I1 0 0
0 I2 0
0 0 I3

 (6.2.11)

The calculation of the principal moment of inertia is greatly facilitated if the rigid-body is
symmetric. Indeed, suppose the body has a plane of symmetry passing through the origin.
For simplicity let this plane be the xy-plane. Then we have that ρ(x, y, z) = ρ(x, y,−z) and
thus by symmetry

Ixz = −
ˆ
ρxz dxdydz = 0 (6.2.12)
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Similarly one finds that Iyz = 0 and so

↔

I =

Ixx Ixy 0
Ixy Iyy 0
0 0 Izz

 (6.2.13)

which clearly has an eigenvector

η =

0
0
1

 =⇒ z-axis is a principal axis (6.2.14)

So we see that the vector perpendicular to the plane of symmetry is a principal axis of
inertia.
We can use this result to prove a more powerful theorem. Suppose a rigid body has a
symmetry axis (it is a solid of revolution) through the origin, and consider two planes
containing this axis. Then the vectors perpendicular to these planes, which can be chosen
arbitrarily as long as they are mutually orthogonal, will also be principal moments of in-
ertia. Setting z to lie on the symmetry axis, and x, y-axes to be in the plane normal to ẑ.
Moreover, by symmetry ρ(x, y, z) = ρ(y, x, z) so we have that

Ixx = −
ˆ
ρ(y2 + z2) dxdydz = −

ˆ
ρ(x2 + z2) dx dy dz = Iyy (6.2.15)

where we changed coordinates x 7→ y. In the case of a planar lamina then

Iz =
ˆ
ρ(x2 + y2) dxdy = Ix + Iy (6.2.16)

which is known as the perpendicular axis theorem. If the lamina further has rotational
symmetry about the z-axis then letting Ix = Iy = I we get that Iz = 2I . To summarise:

Symmetry and
↔

I : if a rigid body has a plane of symmetry, the vector perpendicular to
this plane is a principal axes. Any two mutually orthogonal vectors in the
symmetry plane are also principal axes with the same moments of inertia.

In our derivation of the inertia tensor, we assumed that the origin of S′ was the center of
mass. If instead we decided to place it a distance d away from the center of mass then by
substituting x′i = xi + di one easily finds that

I ′jk = Ijk + µ(d2δjk − djdk) (6.2.17)

which is known as the parallel axis theorem.
From now onwewill ignore translational degrees of freedom unless otherwise stated, and
concentrate on the purely rotational motion.
The inertia tensor also allows us to write the angular momentum about the center of mass
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as

L =
∑
i

mir(i) × v(i) = V ·
∑
i

m(i)r(i) +
∑
i

m(i)r(i) × (ω × r(i)) (6.2.18)

=
∑
i

m(i)[(r(i))2ω − (r(i) · ω)r(i)] (6.2.19)

=
∑
i

m(i)[δjk(r(i))2 − r(i)
j r

(i)
k ]ωkej (6.2.20)

L =
↔

Iω (6.2.21)

which casts the rotational kinetic energy into

T = 1
2L · ω (6.2.22)

If we adopt the principal axes of inertia where L = I1ω1e1+I2ω2e2+I3ω3e3 then the kinetic
energy takes the particularly simple form

T = 1
2I1ω

2
1 + 1

2I2ω
2
2 + 1

2I3ω
2
3 (6.2.23)

Let’s assume the rigid body has an azimuthal symmetry such that I1 = I2 6= I3. Using the
Euler-angle formalism with the Euler axes {ẽi} aligned with the principal axes, then one
finds that

T = 1
2I1(φ̇2 sin2 θ + θ̇2) + 1

2I3(ψ̇ + φ̇ cos θ)2 (6.2.24)

6.3 Equations of motion for rigid bodies
Having discussed the energetics of rigid bodies we can now attempt to derive a set of equa-
tions of motion. Since a rigid body has at most 6 degrees of freedom we must seek for a
set of six equations. Three of these can come from applying Newton’s second law (conser-
vation of linear momentum) and another three can come from applying conservation of
angular momentum. The latter can be derived by differentiating L:

dL
dt

=
∑
i

m(i)dr(i)

dt
× v(i) +

∑
i

m(i)r(i) × dv(i)

dt
(6.3.1)

=
∑
i

m(i)v(i) × v(i) +
∑
i

r(i) × dp(i)

dt
(6.3.2)

=
∑
i

r(i) × fi (6.3.3)

where fi is the net force acting on the ith particle. Note that if no external forces act on the
rigid body then the torque due to internal forces will vanish by symmetry. Hence when
computing∑i r(i) × fi we can neglect internal forces. Letting the torque about the center
of mass be

τ =
∑
i

r(i) × f(i) (6.3.4)
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then we obtain
dL
dt

= τ (6.3.5)

This law, which looks eerily similar to Newton’s second law, expresses the conservation
of angular momentum. Using this law and the inertia tensor, we can find three equations
for the rotational degrees of freedom. For simplicity we align our axes with the principal
axes of inertia {ei}. This means that the frame we are working in is non-inertial, and the
time derivative of L = Lieiwill have two contributions since bothLi and ei evolve through
time. We find

dL
dt

= dLj
dt

ej + Lj
dej
dt

= dLj
dt

ej + Lj(ω × ej) (6.3.6)

implying that
Ijk

dωk
dt

+ εjmnωmInlωl = τj (6.3.7)

Here we used the fact that the principal moments of inertia are time-independent 1. Now
we use the fact that the inertia tensor is diagonal in our frame so Inl = Inδnl (no sum over
n) so that L1 = I1ω1, L2 = I2ω2, L3ω3. We find

Ij
dωj
dt

+ εjmnωmInωn = τj (6.3.8)

or in component form 
I1ω̇1 + ω2ω3(I3 − I2) = τ1

I2ω̇2 + ω3ω1(I1 − I3) = τ2

I3ω̇3 + ω1ω2(I2 − I1) = τ3

(6.3.9)

These are known as Euler’s equations.
We could havederived the lawof conservation of angularmomentumusing the Lagrangian
method too. Letting

L = 1
2L · ω − U (6.3.10)

then
∂L

∂ω
= L, ∂L

∂θ
= −∂U

∂θ
≡ τ (6.3.11)

The Euler-Lagrange equations then yield the conservation of angular momentum. To un-
derstand why we can identify −∂U

∂θ with the torque, note that the the potential energy
change due to a system of particles each moving a distance δri under the influence of a net
force f(i) is

δU =
∑
i

f(i) · δr(i) =
∑
i

f(i) · (θ × r(i)) = δθ ·
∑
i

r(i) × f(i) =⇒ ∂U

∂θ
= τ (6.3.12)

1this is true for any frame rotating with the body, not just the principal axes
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6.4 Rolling coin
We begin by discussing the motion of a coin of mass m and radius R on a plane inclined
at an angle α to the horizontal. Throughout its motion the coin can be assumed to remain
upright (perpendicular to the table). By symmetry, we see that the coin has a principal
axis perpendicular to its face with I3 = mR2

2 . By symmetry we can choose the other two
principal axes to lie in the coin’s plane, with I1 = I2 = mR2

4 by the perpendicular axis
theorem.
Letting x, y lie in the plane of the incline, the Lagrangian takes the form

L = 1
2m(ẋ2 + ẏ2) + mR2

8 (ω2
1 + ω2

2 + 2ω2
3) +mgy sinα (6.4.1)

From the diagram we have that ω3 = φ̇ and ω2
1 + ω2

2 = θ̇2 so

L = 1
2m(ẋ2 + ẏ2) + mR2

8 θ̇2 + mR2

4 φ̇2 −mgy sinα (6.4.2)

We must also take into account the no-slip constraints

ẋ−Rφ̇ sin θ = 0, and ẏ −Rφ̇ cos θ = 0 (6.4.3)

which can be done using the method of Lagrange multipliers. We find

a1x = 1, a1θ = 0, a1φ = −R cos θ, a2y = 1, a2θ = 0, a2φ = −R sin θ (6.4.4)

L = 1
2m(ẋ2+ẏ2)+mR2

8 θ̇2+mR2

4 φ̇2+mgy sinα+λ1(x−Rφ̇ sin θ)+λ2(y−Rφ̇ cos θ) (6.4.5)

The Euler-Lagrange equations read
mẍ = λ1, mÿ = λ2 +mg sinα
mR2

4 θ̈ = 0
mR2

2 φ̈ = −R(λ1 sin θ + λ2 sin θ)
(6.4.6)

From the third equationwe quickly find that θ(t) = θ0+Ωt. Also, combining the constraint
equations with the first two equations of motion we get that

mẍ−mR(φ̈ sin θ + φ̇θ̇ cos θ) = λ1 −mR(φ̈ sin θ + φ̇θ̇ cos θ) = 0 (6.4.7)
mÿ −mR(φ̈ cos θ − φ̇θ̇ sin θ) = λ2 +mg sinα−mR(φ̈ cos θ − φ̇θ̇ sin θ) = 0 (6.4.8)

so that

λ1 = mR(φ̈ sin θ + φ̇Ω cos θ) (6.4.9)
λ2 = mR(φ̈ cos θ − φ̇Ω cos θ)−mg sinα (6.4.10)
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We substitute these values of the Lagrange multipliers into (6.4.6) and find

φ̈ = −2
(
φ̈− g

R
sinα cos θ

)
=⇒ φ̈ = 2g sinα

3R cos(θ0 + Ωt) (6.4.11)

which can be integrated to yield

φ = φ0 + ωt− 2g sinα
3Ω2R

cos(θ0 + Ωt) (6.4.12)

Similarly, for x and y one finds that

ẋ = R

(
ω + 2g sinα

3ΩR cos θ
)

sin θ (6.4.13)

ẏ = R

(
ω + 2g sinα

3ΩR cos θ
)

cos θ (6.4.14)

(6.4.15)

which can be integrated to yield

x = x0 + g sinα
3Ω t−

[
ωR

Ω + g sinα
3Ω2 sin(θ0 + Ωt)

]
cos(θ0 + Ωt) (6.4.16)

y = y0 +
[
ωR

Ω + g sinα
3Ω2 sin(θ0 + Ωt)

]
sin(θ0 + Ωt) (6.4.17)

(6.4.18)

6.5 Free spinning tops
Spinning disc

We consider a flat disc of massm and radius R thrown almost horizontally. By symmetry,
one principal axis will be normal to the frisbeewith I3 = mR2

2 while the other two principal
axes can be taken to lie inside the plane of the frisbee, with I1 = I2 = I = I3

2 . The Euler
equations of motion are

Iω̇1 + ω2ω3(I3 − I) = 0 (6.5.1)
Iω̇2 + ω1ω3(I − I3) = 0 (6.5.2)
I3ω̇3 = 0 (6.5.3)

From the last equation we immediately see that ω3 is constant, so the “spin” of the frisbee
will remain the same as expected from the conservation of angular momentum. We define

Ω = I − I3
I

ω3 (6.5.4)
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so that the first two equations become{
ω̇1 − Ωω2 = 0
ω̇2 + Ωω1 = 0

=⇒
{
ω̈1 + Ω2ω1 = 0
ω̈2 + Ω2ω2 = 0

(6.5.5)

Therefore the angular velocity in the body frame is

ω = (ω0 sin Ωt, ω0 cos Ωt,Ω) (6.5.6)

To find the precession frequency we need to find what this vector looks like in the space
frame. Comparing (6.5.6) with (5.7.7) we see that

φ̇ sin θ sinψ + θ̇ cosψ = ω0 sin Ωt
φ̇ sin θ sinψ − θ̇ sinψ = ω0 cos Ωt
ψ̇ + φ̇ cos θ = ω3

(6.5.7)

To simplify matters we align the lab frame axes so that L lies along the z-axis. Then since
the angle between ω3ẽ3 and ẑ, which is just θ, must be constant, we have θ̇ = 0. Also one
can see visually that ψ̇ = Ω. Therefore squaring the first two equations and summing them
we get

φ̇ = ω0
sin θ = ω3 − Ω

cos θ (6.5.8)

and substituting Ω = I−I3
I ω3 we get

φ̇ = I3ω3
I cos θ (6.5.9)

For a frisbee we have that 22I3 = 2I and if θ � 1 then the small-angle approximation
implies that φ̇ ≈ 2ω3, so the wobble of the frisbee will have twice the frequency of its spin.
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7Fluid properties

7.1 Simple fluids
As Batchelor puts it: “A” simple fluid is a material such that the relative positions of ele-
ments of thematerial change by an amountwhich is not small when suitable chosen forces,
however small in magnitude, are applied to the material. That is, a simple fluid is a sub-
stance that flows (i.e. deforms continuously) under an applied force, irrespective of how
small this force is. Such forces are known as shearing forces, they change the shape of the
fluid without changing its volume. A fluid may resist this deformation, but this resistance
cannot overcome the shearing force, so the “resisting force vanishes with the rate of de-
formation”. Luckily, many fluids that we encounter daily such as water and air may be
regarded as simple fluids quite accurately.
Simple fluids may also be understood on a microscopic scale. It is well known that two
molecules in a substance interact following a van-der-Waals-like potential shown below:
Fluids and solid are known to have an average separation of order r0, and thus strongly
interact repulsively, while gas molecules have a separation of order 10r0, and thus very
weakly interact attractively. So, while in statistical mechanics one can often model gases
as perfectly non-interacting, in fluid mechanics we are not afforded the same privilege,
interactions are key.
At this molecular scale themass distribution is very uneven, with spikes centered near nu-
clei, and large regions of emptiness betweenmoleculeswhere the electronicwave-functions
have decayed. Working with such non-uniform distributions is a hopeless task, so it is of-
ten helpful to regard the properties of a fluid as independent of the fact that the molecular
distributions are quasi-discrete or continuous. This is known as the continuum approxi-
mation, and in the classical regime where low density quantum effects are unimportant it
is very successful.
We are therefore allowed to consider a fluid as a mass distribution that is generally con-
tinuous in space and time.

7.2 Forces acting on fluids
We distinguish between two types of forces acting on matter. One type, known as long-
ranged, slowly decrease as the separation of the interacting bodies is increased. As a result,
long-ranged forces (or volume forces) are roughly constant over infinitesimal volume el-
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ements δ3r and proportional to the size of this element dV . An example of a volume force
is the gravitational force.
The second type, known as short-ranged, decrease rapidly as the separation of the inter-
acting bodies is increased. They are only relevantwhen the separation is on the order of the
molecular separation, and thus are appreciable when there is physical contact between the
interacting elements. Therefore, short-ranged forces are exerted by a fluid element on an-
other fluid element across their shared boundary surface. As a result, short-ranged forces
(or surface forces) are roughly constant over an infinitesimal plane surface element d2r 1

of the shared boundary, and proportional to its area dA. An example of a surface force is
surface tension.
The total volume force acting on a fluid’s volume element dV centered at rwith density ρ
at time t is:

dFvol = F(r, t)ρdV (7.2.1)
while the total surface force acting on a fluid’s surface element dA centered at rwith normal
n at time t is:

dFsurf = Σ(r,n, t)dA (7.2.2)
By convention, Σ is known as the stress exerted by the fluid lying on the surface element
that n points to, on the fluid lying on the side that n points away from. By Newton’s third
law Σ is an odd function in n, so Σ(−n) = −Σ(n).
Consider a tetrahedral volume element with orthogonal surfaces δA1, δA2, δA3 oriented
with unit normals −x,−y,−z respectively, and an inclined surface δA oriented with unit
normal n. Surface forces from the rest of the fluid will act on this tetrahedron across each
of these surfaces:

δFsurf = Σ(n)δA+ Σ(−x)δA1 + Σ(−y)δA2 + Σ(−z)δA3 (7.2.3)

Using the relations δA1 = x · nδA,δA2 = y · nδA,δA3 = z · nδAwe find that:

(δFsurf )i = [Σ(n)− (xjΣi(x) + yjΣi(y) + zjΣi(z))nj ]δA (7.2.4)

Now the total forces acting on the tetrahedral volume element are a combination of body
forces and surface forces:

(δm)a = δFvol + δFsurf (7.2.5)
As we make δV → 0, the LHS of (7.2.5) approaches zero, and so does the body force.
Therefore we need dFsurf → 0 as dV → 0:

Σi(n) = (xjΣi(x) + yjΣi(y) + zjΣi(z))nj (7.2.6)

This result tells us that the stress along a given normal can be decomposed into the stresses
along three orthogonal directions. We define the stress tensor:

Σij = xjΣi(x) + yjΣi(y) + zjΣi(z) (7.2.7)
1technically this should be a volume element but the penetration depth of most surface forces is small
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yielding:
Σi = σijnj (7.2.8)

The stress tensor σij gives the ith component of the stress exerted across a surface element
normal to the direction j. The diagonal elements σii give the diagonal stresses (compres-
sion or expansion), while the off-diagonal elements σij give the shearing stresses (defor-
mation while maintaining volume).
We now take the stress torque on a volume element’s boundary surface about a point O
within this element: ˆ (

r× σ
)
i
· dA =

ˆ
εijkrjσklnldA (7.2.9)

where r gives the displacement of the surface element ndA relative to our reference point
O. We can use the divergence theorem to simplify this integral:

ˆ
εijk

∂rjσkl
∂rl

dV =
ˆ
εijk

(
σkj + rj

∂σkl
∂rl

)
dV (7.2.10)

We let the volume collapse onto O by keeping the boundary surface fixed, so that V → 0.
The total moment and the rate of change of angular momentum scale as V 4/3 while the
first term scales as V . Therefore, we need this term to vanish:

εijkσkj = 0 (7.2.11)

This relation establishes the symmetry of the stress tensor: σij = σji. It is well known that
for any rank two symmetric cartesian tensor, three principal axes may be rotated so that
this tensor becomes diagonal in this basis. In other words, we can always orient our axes
so that the only stresses acting on the fluid are normal (such stress forces are known as
principal), a fluid can always be regarded as in a state of tension/compression in three
orthogonal directions.
Now consider a fluid of very small volume at rest. In the principal frame, the stress tensor
is diagonal, and we write it in the form:

σ =


1
3σii 0 0
0 1

3σii 0
0 0 1

3σii

+

σ11 − 1
3σii 0 0

0 σ22 − 1
3σii 0

0 0 σ33 − 1
3σii

 (7.2.12)

The first term is a uniform compressive (normal) stress. Thus it tends to change the vol-
ume of the fluid, and can be resisted. The second term however is a shearing stress, and
thus cannot be resisted by a fluid since it maintains its volume, it only changes its shape.
Consequently, for the fluid to be at rest we need the second term to vanish, making the
principal stresses equal to each other:

σ =


1
3σii 0 0
0 1

3σii 0
0 0 1

3σii

 (7.2.13)

Note that rotating away from the principal axes will give the same matrix due to the
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isotropicity of the principal stresses. As a result, , so only normal stresses are active! It
is thus useful to define the static fluid pressure as the normal stress p = −1

3 trσ = −1
3σii

where the minus sign by convention means that positive pressure is compressive. There-
fore

σij = −pδij (7.2.14)
The surface force across a plane element with normal n is given by −pn.

7.3 Static equilibrium in fluids
The total force on a static fluid is a sum of the body and surface forces. Newton’s first law
then yields: ˆ

ρFdV −
ˆ
pndA = 0 =⇒

ˆ
(ρF−∇p)dV = 0 (7.3.1)

for any volume V containedwithin the fluid. This is only possible if the integrand vanishes
inside the fluid, so the equilibrium condition in a fluid is:

∇p = ρF (7.3.2)

For a fluid the shear stresses are not necessarily zero, so the equilibrium condition reads

∇p+ ∂σ

∂r = 0 (7.3.3)

Suppose that the body force per unit mass F is conservative, with a potential Φ so that
F = −∇Φ. Then:

− ρ∇Φ = ∇p =⇒ (∇p)× (∇Φ) = 0 (7.3.4)
so the unit normal vectors to the level surfaces of ρ and Γ and pmust all be equal. Consider
for example the case of a gravitational force where F = g =⇒ Φ = −g · r = gz. Then:

∇p = ρg =⇒ p2 − p1 = ρg · (r2 − r1) =⇒ p2 + ρgz2 = p1 + ρgz1 (7.3.5)

This is just an energy conservation law stating that a change in potential energy ρgz2 must
come at the expense of a pressure difference (we can’t have kinetic energies since we are
at rest). This result also implies that there are no sudden jumps in pressure within a fluid
or within the interface between two fluids. It follows that the surface of a fluid must be
horizontal, since any variation in height would give a pressure difference.
Note that due to the arbitrariness of the reference point O, we can in general write:

p(z) = c− ρgz (7.3.6)

where z ismeasured vertically upwards from the reference point, and c = p(0) is a constant
given by the pressure at z = 0. Suppose for example that the reference point is chosen to be
on the interface between an incompressible fluid and the atmosphere. Then the pressure
at a depth h in the fluid is given by:

p(h) = p0 + ρgh (7.3.7)
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where p0 is the atmospheric pressure.
Example. An open vessel standing on a horizontal table contains a layer of an incompress-
ible fluid of density ρ1, floating on top of a layer of incompressible fluid of density ρ2. Let
S1 be the surface separating fluid 1 and the atmosphere, and let S2 separate fluid 2 from
fluid 1. Suppose Q is a point at a depth h below the surface S1. Let the reference point be

on S2. Then for any hwithin fluid 2:

p2 = p1 + ρ2g(h−H) (7.3.8)

but p1 = p0 + ρ1gH so we have that:

p2 = p0 + ρ1gH + ρ2g(h−H), H ≤ h ≤ z0 (7.3.9)

We often refer to the surface between two fluids as a free surface.

Submerged solids

Suppose a flat plate with sides of length a, b is submerged in a fluid of density ρ so that its
top edge is at a depth h0. We let the top-left corner A of the plate be the origin of our coor-
dinate frame. Consider an infinitesimal surface element dA with center Q = (x, y). Since
pressure acts uniformly on this static system, the force on this element will be df(x, y) =
−p(x, y)dA = −(p0 + ρg(h0 + x))dA. Integrating over the plate we have that:

f = −n
ˆ b

0

ˆ a

0
(p0 + ρg(h0 + x))dxdy = −b(p0a+ ρg

2 (2h0a+ a2)) (7.3.10)

= −ab
[
p0 + ρg

(
h0 + a2

2

)]
n (7.3.11)

Note that this is just equal to the pressure pM at the center of the plate times the area of
the plate:

f = −pMAn (7.3.12)

An interesting application of this result are canal lock gates. One can use the difference
in pressure between two bodies of water to block gates from opening in one direction.
Suppose we have a fluid of total depth H on side 1 of a gate of height H + c, and another
fluid of total depth h on side 2 of the gate. The gate has breadth b. Intuitively, we expect
the gate to be locked in the direction side 2 → side 1. Indeed the total force on side 1 is
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given by:

F1 =
ˆ b

0

ˆ H

0
[p0 + ρg(H − z)]dzdx+

ˆ b

0

ˆ H+c

H
p0 (7.3.13)

= b(H + c)p0 + 1
2ρgbH

2 (7.3.14)

where we note that the force due to the fluid pressure is again equal to the bH times the
pressure at the midpoint of the gate in contact with the fluid ρgH2 . By the exact same
calculations:

F2 = 1
2ρgbh

2 + bp0(H + c) (7.3.15)

giving a net force of:
F = 1

2ρgb(H
2 − h2) (7.3.16)

directed from side 1 to side 2. For b = 3m, h = 2m, H =5m, and if the fluid is water, then
F = 3 × 105N! If you ever find yourself in a sinking car, don’t try to open the doors right
away, wait for the water level to equalize and use the water pressure to your advantage.
Now suppose we fully submerge a cube of side length a so that its center of mass is at a
depth h0. The pressure force on the lateral sides of the cube cancel out. However, there
will be a net force due to the height difference between the top and the base of the cube:

f = ρga2((h0 + 2a)− h0)z = ρga3z (7.3.17)

where z points upwards.
This force is known as the buoyancy force, and is a general case of Archimede’s principle:
a body submerged in a liquid at rest will experience a resultant force directed upwards
equal to the weight of the liquid it has displaced.
Indeed, suppose a body V with boundary surface S is submerged. Then:

f = −
˛
S
pdS (7.3.18)

We also have that
Mg =

ˆ
V
ρgdV =

ˆ
V
∇pdV =

˛
S
pdS = −f (7.3.19)
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so we do indeed find that f = −Mg.

Atmospheric pressure

Throughout our calculationswe have dealt rathermysteriouslywith the atmospheric pres-
sure p0.
We cannot simply model the atmosphere as a fluid of constant density, since this would
imply after a short calculation that the atmospheric pressure vanishes at a height of just
8.4km!
Let us model the atmosphere more realistically as an ideal gas with equation of state:

p = ρRT (7.3.20)

For an isothermal atmosphere, the temperature is constant implying p
ρ = p0

ρ0
where p0

and ρ0 are the atmospheric pressure and density at some reference point (e.g. sea level).
Conesquently:

dp

dz
= −ρg = − p

p0
ρ0g (7.3.21)

which can be integrated to give:

ln p = −ρg
p0
z + c =⇒ p(z) = Ae−ρgz/p0 (7.3.22)

and using the condition p(0) = p0 we find that:

p(z) = p0e
−ρgz/p0 (7.3.23)

The isothermal model is much more accurate than the constant density model, but still
differs from experimental data at large heights. Suppose we now model the atmosphere

as a perfect gas satisfying the power law p = kργ for some constants k, γ. Then:

p

ργ
= p0
ργ0

=⇒ ρ = ρ0

(
p

p0

)1/γ
(7.3.24)
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Then:
dp

dz
= kγργ−1dρ

dz
= −ρg (7.3.25)

=⇒
ˆ
ργ−2dρ = − gz

kγ
(7.3.26)

=⇒ ργ−1 = c− gz

kγ
(γ − 1) (7.3.27)

Using the ideal gas law:

p = ρRT =⇒ T (z) = kργ−1

R
= A− (γ − 1)g

γR
z (7.3.28)

and using the condition T (0) = T0 we find that:

T (z) = T0 −
(γ − 1)g
γR

z (7.3.29)

7.4 Liquid interfaces
We define an interface as the boundary between two media with distinct molecular struc-
tures. Consider an interface between a liquid and a gas. Recall from thermodynamics that
a reversible isothermal process which increases the interface surface area by dA will re-
quire γdA work, where γ is known as the surface tension. The tensile force is then γdl
along the perpendicular to dl.
The tensile force acting on a surface S along a curve Γ is given by:

Fγ = −γ
˛

Γ
n× dl (7.4.1)

To see where this comes from, note that:

dW = dF · dx = −γ(n× dl) · dx = −γ(dl× dx) · n = γdA (7.4.2)

as desired. Suppose the surface is defined by S : z − f(x, y) = 0 giving a normal n =(
− ∂f

∂x ,−
∂f
∂y , 1

).
Fγ = −γ

˛
Γ

(
− ∂f

∂x
dy + ∂f

∂y
dx

)
≈ γ

(
∂2f

∂x2 + ∂2f

∂y2

)
dA (7.4.3)

giving a pressure
p = γ

(
∂2f

∂x2 + ∂2f

∂2y

)
= γ

( 1
R1

+ 1
R2

)
(7.4.4)

Equilibrium is only achieved when this outwards pressure is countered by an equal in-
wards pressure, known as a Laplace pressure:

p = γ

( 1
R1

+ 1
R2

)
(7.4.5)
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We will discuss these effects due to surface tension more precisely in the next chapter.
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8Surface tension

8.1 Defining Surface Tension
It would be impossible for a person not to encounter the enthralling phenomenon that is
surface tension. From taking a shower to washing handswith soap, and even themovement
of foamwhenmaking tea, surface tension plays a central role, governing the dynamics and
statics of interactions between fluids.
To understand how surface tension occurs, imagine looking at a water droplet under
an immensely strong electron microscope, capable of clearly displaying individual wa-
ter molecules. Firstly, consider the water molecules at the center of the droplet. These will
feel cohesive forces from neighbouring water molecules. Hence, they will be "pulled" in
all directions and will experience no net force. Let us now consider water molecules at
the edge of the droplet, adjacent to the so-called "interface" surface (an imaginary surface
delimiting two phases, such as water and air). Clearly, these molecules will experience
both a cohesive force from neighbouring water molecules, but also adhesive forces from
the nearby air molecules. Due to the imbalance between cohesive and adhesive forces, a
net inward force will act on the outer layer of the droplet, giving it a spherical shape (see
Figure 2.1)

Figure 8.1. Diagram showing dynamics behind surface tension in a droplet

One might wonder why a droplet doesn’t take a rectangular shape, or a pyramidal shape.
The answer lies in surface optimization and the tendency of nature to minimize potential
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energy. Indeed, surface tension γ has units J
m2 , energy per unit area. It is the energy

needed to increase the droplet’s surface area. If insufficient force acts on the droplet trying
to increase its surface, then it will try to minimize it, "pushing" or "resisting" against any
such force.

To better illustrate this idea, consider an arbitrary volume of water. We are asked to create
a surface from that volume ofwater requiring the least effort. To do so, it is essential to note
that the molecules forming this surface will oppose resistance to any increase in surface
area due to cohesive forces, especially near the interface. In other words, the greater the
surface area of this surface, the more work will be done to construct it. To use the least
energy, the droplet will therefore have largest possible Volume-Surface ratio, trying to fit
in the volume of water in the smallest possible surface area (the problem of defining a
shape with the largest volume-surface ratio is known as the Isoperimetric Inequality). It can
be proven that the sphere has the largest V − S ratio. Any liquid will naturally rearrange
itself into a sphere, as it requires the least energy (more formally, it has the least surface
energy).

Figure 8.2. Analogy between surface energy and potential energy minimization.

By taking a spherical shape, the least work is required to increase surface area, the droplet
essentially minimizes its surface energy (the energy needed to create the surface). This is
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quite similar to a ball rolling up a hill. When we increase the surface area of a droplet, this
requires energy input, just like trying to roll a ball up a slope. If we release the ball on this
slope, it will try to minimize its potential energy, and fall back down. Analogously, the
droplet will try minimizing its surface energy, resisting against any attempt at increasing
surface area.

We can therefore define surface tension as the energy needed to increase the surface area
of a liquid by unit area. It may also be considered as the force acting against deforming the
surface per unit length. The higher the surface tension of a surface is, the less it is prone
to increasing its surface area.

As hinted earlier, surface tension governs several phenomenawe observe daily. As soon as
we wake up, we usually go to the bathroom, and wash our face/hands. The reason we use
soap is not only because of its antibacterial qualities, but also because it reduces surface
tension of water. Thus, when coming into contact with our hands, water will be more
easily deformed, entering into the crevices and wrinkles on our palms, and removing dirt.
Another commonway to observe surface tension is whenmaking tea or coffee. Indeed, the
reader has probably noticed the formation of foam and bubbles on the surface of the liquid.
Usually, this foam collects either at the center of the surface, or at its circumference, for
reasons we will allude to later on. The goal of this chapter will be to develop the physical
laws describing surface tension, and related phenomena.

8.2 Deriving the Young-Laplace Equation
We shall now derive the Young-Laplace equation, without which most of the results in the
rest of the chapter wouldn’t be known. We will closely following the derivation given in
Siqvel and Skjæveland, (2015). Surface tension can be defined as the force per unit length ex-
erted on any fluid against increasing its surface area. Consider a curved surface, as shown
below, representing the boundary between a liquid region and a gaseous region (known
as the interface). Recall that when crossing this surface, there will be a change in pressure,
called the Laplace Pressure (see Fig 1.3). As we can see, the internal pressure must coun-
teract the outer atmospheric pressure, as well as the surface tension acting tangentially on
its surface. This means that the pressure inside the droplet will obviously be larger than
the outer pressure. Furthermore, this discontinuity in pressure when crossing the inter-
face may also be seen as an explanation of why droplets try minimizing surface area. The
internal pressure will keep increasing until it counteracts both the outward pressure and
surface tension, which can be done by reducing the surface area of the droplet.
For an infinitesimal patch of this surface, the net forceFP caused by the pressure difference
∆P will be:

dFP = ∆PdS = ∆PdL1dL2 (8.2.1)
We can then use the fact that dL1 = 2R1dθ1 and dL2 = 2R2dθ2:

dFP = ∆PdS = ∆P (2R1dθ1)(2R2dθ2) (8.2.2)
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Figure 8.3. Pressure inside and outside of a spherical droplet or convex meniscus

Consider the surface tension force acting on the patch. Since we defined surface tension γ
to be the force per unit length acting on the patch, then the total surface tensile force acting
on it will be γ × infinitesimal length:

dF (1)
γ = γdL2, dF

(2)
γ = γdL1 (8.2.3)

We can now take the total components acting vertically against FP . Since there will be two
forces of magnitude dF (1)

γ and two forces of magnitude dF (2)
γ , we get that this component

is:
2dF (1)

γ sin θ2 + 2dF (2)
γ sin θ1 (8.2.4)

Recall that surface tension acts tangentially to the surface. Hence, dF (1)
γ acts on the princi-

pal line 2, and dF (2)
γ acts on the principal line 1.

We then use the small angle approximation sin x ≈ x for simplification, and substituting
our expressions for dL1, 2:

dFγ = γ(2(2R1dθ1)dθ2 + 2(2R2dθ2)dθ1). (8.2.5)

For a static droplet, we must have that: dFP = dFλ. Hence:

Nm−2︷︸︸︷
∆P = γ︸︷︷︸

Fm−1

R1 +R2
R1R2︸ ︷︷ ︸
m−1

(8.2.6)

and finally we reach the Young-Laplace equation:
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Figure 8.4. Infinitesimal patch over which surface tension acts along the edges

Young-Laplace Equation

∆P = γ
( 1
R1

+ 1
R2

)
(8.2.7)

Let’s stop a moment to analyze what this equation represents. The term on the right, ∆P ,
is the change in pressure when moving through the interface. On the right hand side, we
have an expression with unitsN ·m−2. This tells us that the more curved a surface is (the
smaller R1,2 are), the greater the Laplace pressure. This is expected, as we have a greater
component due to surface tension against which internal pressure must act against. This
widens the gap between pressure inside and outside.

Furthermore, asR1,2 −→∞ (we get a flat surface, a plane), we have that the Laplace pres-
sure decreases very quickly ∆P −→ 0. This makes sense, and agrees with the well known
result that the pressure difference acting on a flat surface must be zero for equilibrium to
be satisfied, a property that isn’t necessarily true for curved surfaces as demonstrated.

We extend our formula further, using some notions of differential geometry. Note that the
mean curvature of a surface at a point, H can be defined as the arithmetic mean of the
minimum and maximum curvature (principal curvatures):

H = 1
2(κ1 + κ2) (8.2.8)

where κ1, κ2, the principal curvatures of the surface. This then clearly yields for our patch:

H = 1
2
( 1
R1

+ 1
R2

)
(8.2.9)

where, as discussed earlier, R1 and R2 are the radii of principal curvatures at point P.

∆P = γ(2H) (8.2.10)
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Using Frenet-Serret equations, we know that the mean curvature is:

H = −1
2∇ · n̂ = −1

2 |∇ ·
( ∇f
|∇f |

)
| (8.2.11)

which allows us to write more generally:

∆P = −γ(∇ · n̂) (8.2.12)

This is a non linear partial differential equation, which relates the pressure difference
through an interface and the shape of the interface surface. For positive curvature (e.g.
concave meniscus), the Laplace pressure will be negative, whereas for negative curvature
(e.g. convex meniscus), the Laplace pressure will be positive. Oddly, for a convex menis-
cus, the pressure outside is actually greater than the pressure just under the meniscus. As
we will see later, the Young-Laplace equation is extremely powerful when solving prob-
lems for curved liquid surfaces. Three such problems are the floating body, the shape of
the meniscus and the profile of a water droplet. These can all be solved by utilizing the
Young-Laplace PDE.

Floating Bodies

We shall now adress the first problem introduced earlier, the statics of floating bodies,
using the approach in D. J. Vella, (2007).

Consider an object (such as a metal pin, which is denser than water) of sufficiently small
massm "suspended" on a liquid. This object is not submerged, assuming the surface ten-
sion forces Fγ between themolecules of the liquid are strong enough not to let the interface
surface rip. However, the object displaces water to its sides, and will therefore feel a buoy-
ant force FB .

Figure 8.5. Body placed on a fluid depresses its surface, but doesn’t necessarily sink due to surface
tension and buoyancy.

Hence, for equilibrium we must have that FB + Fγ‖ = mg, where Fγ‖ is the component
of Fγ acting vertically. Moreover, since pressure is defined as the force applied per unit
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surface area, F = −
˜
S PdA. Using the Laplace-Young equation:

k · Fγ = Fγ‖ = −γ
ˆ

¯Sxy
∇ · n̂ dA (8.2.13)

where S is the surface of contact between the floating body and the liquid, the interface
surface. Furthermore, Sxy is the projection of S on the x− y plane, and S̄xy is R2 \Sxy. We
could also derive this result using the definition of surface tension as the force per length
applied on the interface surface. Indeed, defining C as the contact line between the object
and water expressed as an arc parametrized vector function r = r(l), we get that:

Fγ = γ

ˆ
C
ṙ× n̂ dl (8.2.14)

We took the cross product ṙ× n̂ because the surface tension force is orthogonal to both the
vector tangent to r and the normal to the liquid surface n. Integrating over C then gives the
length and direction over which surface tension acts. We can now evaluate the component
of the tensile force acting vertically:

Fγ‖ = γ

ˆ
C
k · (ṙ× n̂) dl (8.2.15)

This is equivalent to projecting the contact line on the x− y plane, forming Cxy, and then
evaluating the component of the surface tension force acting vertically along n̂. This new
path will have arc length l′ and normal vector n’ (this can be seen as transforming the
integral using l −→ l′ and ṙ× n −→ n’) so that we get:

Fγ‖ = γ

ˆ
Cxy

n̂ · n̂′ dl′ = γ

ˆ
Cxy

n̂ · dl′ (8.2.16)

We can now use the two dimensional Divergence Theorem to simplify this integral.

[2D Divergence Theorem] Let S be a region enclosed by a smooth curve ∂S, with
normal vector n̂). Then, the following holds for any vector field F such that∇·F 6= 0:

¨
S
∇ · F dA =

ˆ
∂S

F · dn̂ (8.2.17)

Since Cxy is simply the boundary of Sxy, we can define S̄xy as R2 \Sxy, with boundary C̄xy
We then have that: ˆ

Cxy

n̂ · dl′ = −
ˆ
Cxy

−n̂ · dl′ = −
ˆ
S̄xy

∇ · n̂ dA (8.2.18)

so that we finally reach:
Fγ‖ = −γ

¨
S̄xy

∇ · n̂ dA (8.2.19)
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as required. By taking into account buoyant forces, we can then write by balancing forces:

−
¨
S̄xy

∇ · n̂ dA+ FB
γ

= mg

γ
(8.2.20)

Consider now the two fluids separated by an interface. Denoting the liquid density ρ, the
variation in vertical pressure between the two phases (liquid and gas) will be ∆P = ρgh,
where h is the depression in the liquid. We can then write:

¨
S̄xy

ρgh dA = mg − FB (8.2.21)

where we have used the Young-Laplace equation. Let us now evaluate FB , the buoyant
force acting on this object. We get using the Archimedean principle:

FB = ρghSx,y (8.2.22)

Taking the ratio between the two yields:

FB
Fγ

= Sxy

S̄xy
(8.2.23)

This demonstrates that as the size of the object decreases, Sxy will also decrease, and hence
this ratiowill decrease. For smaller objects, such as needle pins, contrary to common belief,
buoyancy is not the main reason they float, it is surface tension. Thus, we can conclude
that objects with greater density than water can still float as long as they are small enough.

8.3 Capillary Action
Capillary action is another mechanism caused by surface tension, and leads to various in-
teresting phenomena, such as the formation ofmenisci and the shapepuddles anddroplets.

When a liquid is placed in a narrow tube or cylinder of sufficiently small radius, this liquid
may "rise" upwards. The adhesive forces overcome the cohesive forces, then the liquid
molecules will be pulled by the walls of the container, rising.

Jurin’s Law

Before we adress the meniscus problem introduced earlier, it is important to allude to the
phenomenon of capillary action to truly understand themechanism behindwhichmenisci
actually form, using two standard arguments to derive Jurin’s Law.

Let us consider a cylinder filledwith water, of radiusR. Assuming that themeniscus has a
spherical shape (we’ll see later on how tomore accurately define the profile of ameniscus)
with contact angle θwith the cylinder’s walls. It can be shown that the radius of curvature
of the interface is R sec θ, so that the Laplace pressure is:

∆P = − 2γ
R sec θ (8.3.1)
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Furthermore, the Laplace pressure can also be defined as:

∆P = Patm − Pmen = − 2γ
R sec θ (8.3.2)

Let us now consider two communicating vases as shown below.

Figure 8.6. Capillary rise for a concave meniscus

Since pressure at equal heights in communicating vases must be equal, it follows that the
pressure at an arbitrary height s under the water level is:

Ps = Patm − ρgs (8.3.3)

for the "outer" vase. For the inner vase, the tube, we have that:

Ps = Pmen − ρgs0 (8.3.4)

where s0 is defined as shown in Figure, Pmen is the pressure at the meniscus. Equating
these two expressions finally gives:

Patm − Pmen = ρg(s− s0) = −ρgH (8.3.5)

Using the Young-Laplace equation, we arrive at:

ρlgH = 2γ
R sec θ (8.3.6)

Rearranging we get Jurin’s famous law for capillary rise
Jurin’s Law
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H = 2γ cos θ
Rρg

(8.3.7)

We could have also derived this result by equating forces as shown in J. Pellicer et al. (1995).
The weight due to the column of water must be equal to the surface tension forces acting
along the meniscus perimeter, causing the liquid to rise:

Fγ = 2πRγ cos θ = Fg = πρR2gH (8.3.8)

Again, we should check boundary conditions to see if our answer makes physically sense.
Jurin’s law tells us that H ∝ 1

Rρ . The denser the liquid, the higher it will rise (there are
some exceptions such as mercury). Moreover, the narrower the tube, the greater the rise.
Both sound physically intuitive and are correct.

The Concave Meniscus (θ < π
2 )

Notice that the size of the meniscus plays a huge role in the derivation of Jurin’s law. As
seen earlier, the balance between cohesive and adhesive forces determines the shape of a
meniscus (more specifically the contact angle formedwith a wall, which defines the shape
of a meniscus).

Consider once again a liquid placed in a tube. If liquid molecules are more attracted to
the walls than to other liquid molecules (when adhesive forces overcome cohesive forces),
one intuitively expects the meniscus to be concave. The molecules at the edges will be
"dragged" upwards by adhesive forces, similar to a water column in a capillary tubewould
rise. Nearby molecules will move alongside as a result of cohesive forces. This may be
easier to imagine if we interpret the cohesive forces as "chains": if the molecules at the
edges move upwards, nearby molecules will move too. As we get farther from the tubes,
these effects become more and more negligible, until they are null at the center of the
container.

Instead, if the cohesive forces overcome the adhesive forces, then the meniscus will have a
convex profile (similar to a droplet or puddle), since liquid molecules will try to "clump"
all together, amassing near the center of the meniscus. Another major consequence is that
we will have the "opposite" of capillary action, capillary fall. Instead of rising, the liquid
molecules will try to "stick together", and actually fall (often observed in mercury). It
follows that the equations governing puddles, droplets and menisci will be the same, as
the conditions leading to their formation are identical.

Observe the right side of a meniscus in a cylinder containing a liquid columns. We will
set z = 0 as the height at which the meniscus "converges" towards, and denote the contact
angle with the wall of the cylinder as θ, as shown below.
Using (8.3.5), and following Berg, 2009, we can write that:

γ∇ · n̂ = −ρgz (8.3.9)
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Figure 8.7. Profile of a concave meniscus

which can be used to define the shape of the meniscus. Indeed, if we define the surface of
the meniscus as f(x, z) = z − h(x), then:

ˆ̂n = ∇f
|∇f |

= ẑ− hx(x)x̂√
1 + hx(x)2 (8.3.10)

and we finally reach:
∇ · n̂ = −hxx(x)

(1 + hx(x)2)
3
2
≈ −hxx(x) (8.3.11)

for hx(x) < 1. Substituting into (8.3.9) we get the second order partial differential equa-
tion:

− γ ∂
2h

∂x2 = ρgh, hx(0) = − cot θ, (8.3.12)

whose solution is:
h(x) = λ cot θe−

x
λ (8.3.13)

where λ =
√

γ
ρg is the so called "Capillary length". This is another fundamental variable in

the study of capillarity.1 This expression gives the profile of ameniscus at a distance x from
the wall of the container. As the capillary length increases, we expect that meniscus to be
more curved (see next section), which agrees with our expression. A similar argument
holds for the contact angle θ.
Some profiles for concave menisci at different contact angles are given.

Capillary Length λ and the shape of puddles

Consider a water droplet or puddle on a solid surface. We then know that the Laplace
pressure at two points A, B inside this droplet, of radius of curvature RA, RB respectively

1We could have derived a similar result for a convex meniscus (θ > π
2 ), by applying the initial condition

hx(0) = tan θ, giving as a solution:

h(x) = −λ tan θe−
x
λ (8.3.14)
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Figure 8.8. Menisci for contact angles 40°, 50°, 70°, setting λ = 1

is then:
∆PA = 2γ

RA
, ∆PB = 2γ

RB
(8.3.15)

We then have that the pressure difference between these two points is:

∆PA −∆PB = 2γ
( 1
RA
− 1
RB

)
(8.3.16)

This is equal to the vertical hydrostatic pressure difference ρgh, where h is the height dif-
ference between the A and B. Equating the two yields:

( 1
RA
− 1
RB

)
= h

2 γ
ρg

(8.3.17)

Using dimensional analysis, we can conclude that the term γ
ρg must have units of [L]2, so

that we may define the capillary length as:

λ =
√
γ

ρg
(8.3.18)

The physical interpretation for this value is the distance over which a liquid-gas interface
is curved. Thus, it follows that capillary length plays a vital role in determining the shape
of a droplet or puddle. This is evident when analyzing cases where h ≷ λ.
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Case 1: h > λ

For droplets where h > λ, we then have using (8.3.17) that
1
RA
− 1
RB

>> 0 (8.3.19)

It follows that the radius of curvature at point B will be greater than at point A. This means
that the curvature decreases as we move upwards, and hence we expect the top part of the
droplet to be flat, and become more curved as we move downwards.

Case 2: h < λ

Using our physical intuition, for h < λ we expect the droplet to have a spherical shape.
Indeed, using the same procedure, we get that:

1
RA
− 1
RB
≈ 0 (8.3.20)

This means that the radius of curvature between any two arbitrary points A, B inside the
droplet is the same. Hence, we must have a spherical droplet.

Figure 8.9. Comparison between puddles with h > λ and h < λ.

One might now wonder how to calculate the maximum height of a droplet on an ideal
smooth hydrophobic surface. We have that the net energy density or net force per unit
length acting on the contour of the three phases(solid, liquid, gas), the interface, must be
null. If we denote the surface tension of the solid-liquid, liquid-gas and gas-solid interface
as γSLγLGγGS , and the contact angle as θ, then balancing force per unit length between
these three phases:

γSL + γLG cos θ = γGS (8.3.21)
which can be rearranged into the Young equation (not to be mistaken with the Young-
Laplace equation):

Young Equation

cos θ = γGS − γSL
γLG

(8.3.22)

As the surface tension between the liquid and gas phases increases, the angle of contact
must decrease. This agrees with Young’s equation. Since surface tension is essentially how
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much a surface pushes against increasing its surface area, if surface tension is greater, we
expect its surface area to get smaller and smaller, causing a decrease in contact angle.

Going back to the derivation in subsection 2.3.2, we can write:

− ρgx = γgxx(x)
(1 + gx(x)2)

3
2

(8.3.23)

Substituting q = gx(x), we can solve this ODE:

−1
2ρgh

2 = γq√
1 + q2 + C (8.3.24)

= γ cos θ + C (8.3.25)

We can now set initial conditions h(θ = 0) = 0, so thatC = −γ. Finally, we have the result:

h =
√

2γ
ρg

(1− cos θ) (8.3.26)

which can be rewritten using Young’s equation:

h =
√

2
ρg

(γ − γGS + γSL) (8.3.27)

The same result can be rewritten as

h = 2λ sin
(θ

2
)

(8.3.28)

Observing figure 2.9, notice that we can define a spread factor S as the difference between
the surface energies trying to "spread" the droplet (pointing outwards), and the surface
energies pointing inwards:

S = γ + γSL − γGS (8.3.29)
so that we finally reach:

h =
√

2S
ρg

(8.3.30)

This makes sense from a physical standpoint. Indeed, one would expect that for a puddle
of droplet to have a greater maximum height, it would be "pushing inwards" more than it
would be "pushing outwards". In other words, the greater the spreading parameter S is,
the more spherical we’d expect the droplet to be. This agrees with (8.3.30). To conclude,
we provide a table to summarize our results on menisci.
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Concave Meniscus Convex Meniscus

h(x) ≈ λ cot θe−
x
λ h(x) ≈ −λ tan θe−

x
λ

hmax =
√

2γ
ρg (1− sin θ) hmax =

√
2γ
ρg (1− cos θ)

hmax ≈ λ cot θ hmax ≈ λ tan θ

Table 8.1. Table Summarizing Shape of Menisci

2

8.4 Minimal Surfaces
Consider a soap film produced when immersing a frame into a water-soap solution. Since
we have no change in pressure when moving through the interface layer, it follows from
Laplace’s equation that the mean curvature of this soap film must be zero. Such types of
surfaces that minimize surface area by having zero mean curvature at all points are called
minimal surfaces. Indeed, A. Presley (2012) gives the definition of a minimal surface as:

A minimal surface is a surface whose mean curvature is zero everywhere.

They are given by the solutions to the minimal surface equation:
Minimal Surface Equation

∇ ·
( ∇f

(1 + |∇f |2)
1
2

)
= 0 (8.4.1)

Quite obviously, a simple plane would satisfy this equation. Another solution is the Heli-
coid, the second non-trivial solution to be discovered after the Catenoid (see Fig. 2.10).
Note that, except for the plane, all other solutions of theminimal surface equationwill have
non-zero curvature at some points. However, they average out at every point to be zero.

2We could have also derived the formula for a concave meniscus. Consider:

−1
2ρgh

2 = γq√
1 + q2

+ C = γ
tan θ√

1 + tan2 θ
+ C = γ sin θ

Using the initial condition that h(q =∞) = 0:

h =
√

2γ
ρg

(1− sin θ)

One could have also used trigonometric identities and have shown that:

h =
√

2
ρg

(1− cosψ =
√

2
ρg

(1− cos(90− π) =
√

2
ρg

(1− sin θ)
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Figure 8.10. a) Plot of a Catenoid b) Plot of Henneberg Surface c) Plot of Helicoid

Moreover, all these surfaces have a "soap film frame", the frame that contains the set of all
points the surface must contain, while still minimizing its surface area. For the Catenoid
and the Helicoid, these frames are quite easy to imagine. The former is generated when
immersing two elliptical rings parallel to each other in soap, whereas the latter is formed
when using a helix.
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9Fluid kinematics

9.1 Describing moving fluids
We now turn our attention to the non-static case. We will deal with the distribution of
the fluid velocity v = v(x, y, z, t), which together with the fluid pressure p(x, y, z, t) and
density ρ(x, y, z, t) fully determine all physical properties of the fluid. Indeed the funda-
mental equations of fluid dynamics which express conservation laws are expressed using
these quantities.

9.2 Mass conservation
One important conservation law that applies to fluids is the local conservation ofmass. Let
us consider a region V of space, so that ´V ρ d3r gives the total mass of the fluid contained
within this region. We also have that ρv represents the mass per unit area (cross-section)
per unit time passing through this region, so that ρv · dA gives the mass per unit time
flowing through the surface element dA. When integrated over ∂V this gives the total
fluid mass flux through the region. For mass to be conserved in V we need the rate of
change of the mass in V summedwith the mass flux out of V to be equal to zero. Therefore

∂

∂t

ˆ
V
ρ d3r +

˛
∂V
ρv · dA = 0 (9.2.1)

We can use the Divergence theorem to write the surface integral as a volume integral
ˆ
V

(
∂ρ

∂t
+∇ · (ρv)

)
d3r = 0 (9.2.2)

Since this must hold for any V , the integrand has to vanish

∂ρ

∂t
+∇ · (ρv) = 0 (9.2.3)

This equation is known as the continuity equation, it states that any local change in den-
sity must be accounted for by a net divergence of mass flux. In other words fluid must
be displaced out of a region for the mass within this region to change. Expanding the
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divergence allows us to write the continuity equation as

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0 (9.2.4)

The quantity ρv has played a fundamental role in this discussion and thus deserves its own
name. It is known as the mass flux density j, it is a vector field whose direction gives the
direction of the fluid’s motion, and whose magnitude yields the mass flux per unit time to
a surface perpendicular to v.

9.3 Velocity conservation
We again consider some arbitrary region V in the fluid. The total surface force acting on
this volume is given by

Fsurf = −
˛
∂V
p dA = −

ˆ
V
∇p d3r (9.3.1)

so using Newton’s second law one finds that

ρ
dv
dt

+∇p = 0 (9.3.2)

If we also had volume forces fvol e.g. gravity then we would find

ρ
dv
dt

+∇p = fvol (9.3.3)

This is a conservation law! It says that any local change in the velocity of the fluid must be
accounted for by a pressure gradient. Unlike previously however, we have a full derivative
in time rather than a partial derivative. This poses some problems because in general rwill
be time dependent, and therefore v = v(r(t), t).
We reason as follows: what we are interested in is the change in velocity dv in an infinites-
imal time interval dt. There will be two contributions, one due to the change dr in position
during dt yielding a change in v, and the other due to the change in time (at constant r)
directly/explicitly yielding a change in v. The second contribution is easiest to work out,
it is just ∂v∂t

∣∣
rdt. The first contribution, on the other hand, is given by

dx
∂v
∂x

+ dy
∂v
∂y

+ dz
∂v
∂z

(9.3.4)

which is just the inner product of the directional derivative and the displacement dr: 1

dr · ∇v (9.3.5)

Therefore we find that
dv = ∂v

∂t
dt+ (dr · ∇)v (9.3.6)

and therefore
1recall that n · ∇f gives the change in f along n
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dv
dt

= ∂v
∂t

+ (v · ∇)v (9.3.7)

We define d
dt in this context to be the convective derivative, it yields the time derivative of

anything as we travel along with the fluid. The convective derivative is extremely useful
as any local conservation law can be written as dA

dt = 0.
Substituting (9.3.7) into (9.3.3) we then get Euler’s equation of motion

∂v
∂t

+ (v · ∇)v + 1
ρ
∇p = 0 (9.3.8)

It is important to note that throughout this derivation we have not taken into account any
sources for energy dissipation such as viscosity. Therefore Euler’s equation only holds for
ideal fluids, which are completely characterised by p and ρ. Moreover, since there is no
heat exchange in the fluid the motion we have described is reversible and adiabatic, or in
other words isentropic: dS = 0. Since the entropy is constant we can write

dS

dt
= 0 =⇒ ∂S

∂t
+ (v · ∇)S = 0 (9.3.9)

which, together with the continuity equation yields the entropic equation of continuity

d(ρS)
dt

= ∂(ρS)
∂t

+∇ · (ρSv) = 0 (9.3.10)

For isentropic processes the specific enthalpy h satisfies the thermodynamic relation dh =
Tds+ dp

ρ = dp
ρ . Therefore, if the flow is steady (so that we are at equilibrium), then

∇h = 1
ρ
∇p (9.3.11)

This allows us to write Euler’s equation as

∂v
∂t

+ (v · ∇)v +∇h = 0 (9.3.12)

Yet another useful form of Euler’s equation comes from applying the vector identity 2

1
2∇v

2 = v× (∇× v) + (v · ∇)v (9.3.14)

then Euler’s equation takes the form (letting ω = ∇× v)

∂v
∂t

+∇
(
h+ 1

2v
2
)
− v× (∇× v) = 0 (9.3.15)

2Here’s the proof

[v× (∇× v)]i = εijkvjεklm∂
lvm = (δilδjm − δimδjl )vj∂

lvm = 1
2∂

i(vmvm)− vl∂lvi (9.3.13)
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or, taking the curl of both sides

∂ω

∂t
= ∇× (v× ω) (9.3.16)

In the presence of an external body force F then Euler’s equation takes the form

∂v
∂t

+∇
(
h+ 1

2v
2
)
− v× (∇× v) = F (9.3.17)

This equation holds for both compressible and incompressible fluids, but does not take
into account viscous flow.
As with all PDEs, a particular solution can only be found if we are also given sufficient
boundary and initial value conditions. For ideal fluids in contact with a solid surface with
unit normal n, it is implicit that n · v = w where w is the speed of the surface. If instead
we are dealing with two immiscible fluids forming a boundary, then we must require the
pressure and n · v to be continuous across the boundary.

9.4 Energy conservation
The energy per unit volume of a fluid is given by

1
2ρv

2 + ρε (9.4.1)

where ε is the specific internal energy. We are interested in the rate of change of this energy
with respect to time

∂

∂t

(1
2ρv

2 + ρε

)
= 1

2v
2∂ρ

∂t
+ ρv · ∂v

∂t
+ ∂(ρε)

∂t
(9.4.2)

To compute the last partial derivative we use the First law of thermodynamics

dε = Tds− pdv = Tds+ p

ρ2dρ (9.4.3)

to yield
d(ρε) = ρTds+

(
ε+ p

ρ

)
dρ = ρTds+ hdρ (9.4.4)

and thus
∂(ρε)
∂t

= h
∂ρ

∂t
+ ρT

∂s

∂t
(9.4.5)

We can use the entropic continuity equation to write this as

∂(ρε)
∂t

= h
∂ρ

∂t
− ρT (v · ∇)s (9.4.6)

− 73 −



9.5. BERNOULLI’S EQUATION

Similarly, we can massage the rest of (9.4.2) by using the continuity equation and Euler’s
equation:

∂

∂t

(1
2ρv

2
)

= −1
2v

2∇ · (ρv)− v · ∇p− ρv · ((v · ∇)v) (9.4.7)

= −1
2v

2∇ · (ρv)− ρv · ∇
(1

2v
2 + h

)
+ ρTv · (∇s) (9.4.8)

where we used ∇p = ρ∇h − ρT∇s. Finally, the condition for energy to be conserved
becomes

∂

∂t

(1
2ρv

2 + ρε

)
= −

(1
2v

2 + h

)
∇ · (ρv)− ρv · ∇

(1
2v

2 + h

)
(9.4.9)

or more simply
∂

∂t

(1
2ρv

2 + ρε

)
+∇ ·

[
ρv
(1

2v
2 + h

)]
= 0 (9.4.10)

This is yet another conservation law, it tells us that any change in the energy of the fluid
contained within a region must be accounted for by an energy flux divergence.

9.5 Bernoulli’s equation
In the case of steady flow (defined by a time-independent velocity field v(x, y, z)), Euler’s
equations simplify a great deal into

∇
(1

2v
2 + h

)
− v× ω = 0 (9.5.1)

We dot to the left with l, the unit vector tangent to the streamline at every point in the fluid,
and using the fact that ∂v∂t = ∂h

∂t = 0 we then find that

l · ∇
(1

2v
2 + h

)
= 0 =⇒ d

dl

(1
2v

2 + h

)
= 0 (9.5.2)

or in other words
1
2v

2 + h = cnst. along a streamline (9.5.3)

If we also add an external body force with potential Φ then we get

1
2v

2 + h+ Φ = cnst. (9.5.4)

which is known asBernoulli’s equation, it applies along any given streamline of a steady,
inviscid fluidwith a conservative body force acting on it. If we further add the constraint
of constant density then we end up with

1
2v

2 + p

ρ
+ Φ = cnst. (9.5.5)

− 74 −



9.6. MOMENTUM CONSERVATION

9.6 Momentum conservation
We can try to combine the mass conservation and velocity conservation to obtain a mo-
mentum conservation law. In index notation we find that

∂

∂t
(ρvi) = ρ

∂vi
∂t

+ vi
∂ρ

∂t
(9.6.1)

= −ρvk
∂vi
∂xk
− ∂p

∂xi
− ∂(ρvk)

∂xk
vi (9.6.2)

= − ∂

∂xk
(ρvivk)− δik

∂p

∂xk
= −∂σik

∂xk
(9.6.3)

where we used the stress tensor

σik = ρvivk + δikp ⇐⇒ σ = ρv⊗ v + p1 (9.6.4)

The physical interpretation of this stress tensor is best understood by integrating (9.6.3):

∂

∂t

ˆ
ρvid

3r = −
˛
σikdAk (9.6.5)

so just like the static case the stress tensor component σik gives the ith component of the
momentum flux per unit time passing through an area perpendicular to the xk-axis. This
time however, the presence of dynamics added a velocity term ρv ⊗ v. We therefore see
that

∂

∂t
(ρv) +∇ · σ = 0 (9.6.6)

is a conservation law for momentum!

9.7 Circulation conservation and Vorticity
Let Γ be a closed contour within the fluid at some instant in time, and let

C =
˛

Γ
v · dl (9.7.1)

be the velocity circulation around Γ. This curve will be composed of the fluid particles at
some instant, so as the particles move the contour will also move with the fluid. Since we
are interested in the time derivative of the circulation, it will be helpful to rewrite the line
integral as

C = lim
N→∞

∑
v · δrk (9.7.2)
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It follows that

dC

dt
= lim

N→∞

N∑
k=0

[
dvk
dt
· δrk + vk ·

d(δrk)
dt

]
(9.7.3)

= lim
N→∞

N∑
k=0

[
dvk
dt
· δrk + 1

2δ(v
2
k)
]

(9.7.4)

=
˛

Γ

dv
dt
· dl (9.7.5)

since the line integral of a full differential vanishes. Using dv
dt = −∇hwe then get that

d

dt

( ˛
Γ
v · dl

)
= −

˛
Γ
(∇h) · dl (9.7.6)

So we find that the velocity circulation is a conserved quantity

d

dt

( ˛
Γ
v · dl

)
= d

dt

( ˆ
S
ω · dA

)
= 0 (9.7.7)

Note that we used Euler’s equation to write dv
dt as a gradient, so this result again only holds

for ideal fluids. The quantity ω is known as vorticity.
The conservation of circulation also yields another important result. Consider pathline in
a fluid on which the vorticity vanishes at some point. Suppose we draw an infinitesimal
circular contour around this point, then by Kelvin’s theorem as this contour moves along
the pathline the vorticity will not change and be equal to zero. Importantly, in the case of
steady flows where streamlines and pathlines coincide, we find that if the vorticity van-
ishes somewhere on a streamline then it is zero on the entire streamline.A flow where ω
vanishes everywhere in space is described as irrotational. Note that the situation where
the fluid flow encounters a solid surface is more complicated because we can no longer
draw circular contours around pathlines sufficiently near this object.
If the fluid velocity field is irrotational, then it can be expressed as the gradient of a velocity
potential: v = ∇φ, which must satisfy Laplace’s equation:

∇2φ = 0 (9.7.8)

Consequently Euler’s equation becomes

∇
(
∂φ

∂t
+ 1

2v
2 + h

)
= 0 (9.7.9)

and thus dotting to the left by dr
ds , the tangent vector to an arbitrary curve in the fluid, we

find
∂φ

∂t
+ 1

2v
2 + h = c(t) (9.7.10)

where we can rescale the RHS by redefining the potential. For steady flows the potential
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does not vary in time and we get that
1
2v

2 + h = c(t) (9.7.11)

which is Bernoulli’s equation for potential flows. If we further assume constant density
and a body force F then

1
2v

2 + p

ρ
+ Φ = c (9.7.12)

Unlike the more general Bernoulli equation, (9.7.11) applies anywhere in the fluid! The
reason this happened was we did not have the pesky v × (∇ × v) term which would not
have vanished when dotted with the tangent vector to any arbitrary curve, but only to
streamlines.
To summarise, we have that at constant density, inviscid flowwith conservative body force

Type of flow b = 1
2v

2 + p
ρ + Φ

steady, rotational is constant along a streamline
steady, irrotational is constant along any curve in the fluid

unsteady, irrotational = −∂φ
∂t + c(t) along any curve in the fluid

9.8 Applications of Bernoulli’s equation
Let’s take a large tank containing an inviscid liquid at constant density ρ, depth zA, and
with the free surface at rest and at atmospheric pressure p0. We puncture a small hole in
the tank at a height zB from the bottom, and ask ourselves what the speed of the liquid is
as it exits this orifice.

Assuming that the water is constantly added so that the depth is constant at zA then the
flow is steady with the only body force being gravity, which is conservative. For such fluid
flows we know that Bernoulli’s theorem can be applied (only unsteady rotational flows
don’t have a Bernoulli-type relation). Let’s take point A to lie on the free surface so that it
can be connected to point B on the hole via a streamline. We then find that

1
2v

2
B + p0 + gzB = p0 + gzA =⇒ vB =

√
2g(zA − zB) (9.8.1)
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Let’s now assume that the tank is not replenished constantly so that the free surface moves
down at a constant speed żA = vA. Since the flow is no longer steady, we cannot expect
Bernoulli’s equation to apply anymore. However assuming that the free surface is suffi-
ciently large compared to the hole’s surface one can still approximately apply Bernoulli.
This time we find that

1
2v

2
B + p0 + gzB = 1

2v
2
A + p0 + gzA (9.8.2)

The continuity equation also requires that

vASA = vBSB (9.8.3)

where SA and SB are the areas of the free surface and of the hole respectively. Combining
the two equations we find that

1
2v

2
B

(
1− S2

B

S2
A

)
= g(zA − zB) =⇒ vB =

√
2g(zA − zB)

1− (SB/SA)2 (9.8.4)

Qualitatively we may phrase Bernoulli’s equation as

high (low) speed implies low (high) pressure (9.8.5)

We can demonstrate this principle quite easily by performing the following experiment.
We take a horizontal, uniform circular pipe which contracts for a short length, and is con-
nected via three small vertical tubes, two connecting in the large diameter region and one
connecting in the small diameter region. We then let a gas flow through the pipe and place
a small amount of fluid in the three small tubes. When the gas passes through the contrac-

tion of the pipe it must accelerate by the continuity equation. This implies that the middle
vertical tube will experience a smaller air pressure compared to the other two, causing the
fluid to rise. This basic experiment is a miniature model of a paint spray can. As air is
pumped through a contracted pipe, connected via a tube to a paint reservoir, the paint
will rise up the tube and be carried by the air flow forming droplets.
Let’s put these words into equations. Consider a pipe with cross section SA except for a
small region where it contracts to a cross section SB . As an ideal fluid flows through this
pipe the continuity equation imposes that

vASB = vBSB (9.8.6)
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where vA and vB are the fluid velocities at A and B. Along any streamline between A and
B we also find that

1
2ρv

2
A + pA = 1

2ρv
2
B + pB (9.8.7)

so that
pB − pA = 1

2ρv
2
A

(
1− S2

A

S2
B

)
(9.8.8)

This is the pressure difference between the free surface in the tube connecting toA and the
free surface in the tube connecting to B. If the fluid rises by a height h then pB − pA = ρgh
implying that

h = v2
A

2g

(
1− S2

A

S2
B

)
(9.8.9)

is the rise in height of the fluid in the middle tube.
As a final application let’s look at the flow of an inviscid fluid over a solid surface. For
example, the steady flow of an inviscid constant density liquid past a sphere of radius a is
given by

v(r, θ) = U cos θ
(

1− a3

r3

)
r− U sin θ

(
1 + a3

2r3

)
θ (9.8.10)

Note that as r →∞ then v→ U(cos θr− sin θθ). Also,

∇× v =

∣∣∣∣∣∣∣
r rθ r sin θφ
∂r ∂θ ∂φ

U cos θ
(
1− a3

r3
)
−U sin θ

(
r + a3

2r2
)

0

∣∣∣∣∣∣∣ (9.8.11)

= r sin θ
[
− U sin θ

(
1− a3

r3

)
+ U sin θ

(
1− a3

r3

)]
φ = 0 (9.8.12)

so the flow is irrotational. In the absence of body forces, and assuming that the pressure
at infinity is p0, then we may apply Bernoulli’s equation to the point (r, θ) along any curve

1
2(v(a, θ))2 + p(r, θ)

ρ
= 1

2U
2 + p0

ρ
(9.8.13)

Note that
(v(a, θ))2 = 9

4U
2 sin2 θ (9.8.14)

implying that the pressure distribution on the sphere is

p(r, θ) = p0 + 1
2ρU

2
(

1− 9
4 sin2 θ

)
(9.8.15)

9.9 Open channel flows
Open channel flows are fluid flows whose cross-section is not completely determined by
the shape of the solid boundary confining the liquid (usually a fluid flowing through an
open pipe). Open channel flows can get quite complicated, so we will assume that
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(i) the liquid is inviscid and has constant density
(ii) the flow is steady
(iii) the channel is straight with a rectangular cross-section of constant width
(iv) the flow is uniform
Suppose that the depth of the liqid is h, and the width of the channel is b. The continuity
equation implies that h1bv1 = h2bv2 along any point in the channel, and since the width b
is taken to be constant we get that the flow rate per unit width

Q = hv is constant (9.9.1)

Lets apply Bernoulli’s equation along a streamline on the free-surface of the liquid where
the channel is horizontally flat, then:

p0
ρ

+ 1
2v

2 + gh = cnst. (9.9.2)

and since p0, ρ are both constant, the first being equal to the atmospheric pressure, then
we find that

E = v2

2g + h is constant (9.9.3)

Here E is known as the specific energy. Using Q = hv as a constant of motion then we
alternatively get

E = Q2

2gh + h =⇒ h3 − Eh2 + Q2

2g = 0 (9.9.4)

This cubic equation has at most three real roots, one of which is always negative and thus
unphysical. Therefore for any given E and Q there are either two possible values of the
water depth, just one or none. If instead the channel slopes upwards then

H = v2

2g + h+ r (9.9.5)

where h, r are defined as shown below.

Plots of E as a function of h are known as specific energy curves. We see that usually E
takes a minimum value Emin at some critical height hc.
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If E > Emin then there are two physical solutions h1, h2 for
the water-depth. One, h2 corresponds to a deep but slowwa-
ter flow, while the other, h1, corresponds to a shallow but fast
water flow. If instead E = Emin there is only one physical
water depth, the critical depth hc with critical speed vc = Q

hc
.

Finally if E < Emin there is no possible flow.
Finding the critical depth is simple, one need only to mini-
mize E. In the case of a flat channel we find that

dE

dh
= 1− Q2

gh3
c

= 0 =⇒ hc =
(
Q2

g

)1/3
(9.9.6)

and therefore

vc = (gQ)1/3, Emin = 3
2

(
Q2

g

)1/3
(9.9.7)

The Froude number Fr is defined as

Fr = v√
gh

=
(
hc
h

)3/2(Q2

g

)−1/2
√
h2

g
v =

(
hc
h

)3/2
(9.9.8)

so if Fr < 1 then we get deep, slow flows, known as sub-
critical flowswhile if Fr > 1 then we get shallow, fast flows,
known as supercritical flows.
Let’s now consider the casewhere the channel is not horizon-
tal, as shown below

Once again the continuity equation requires

u1h1 = u2h2 (9.9.9)

Instead, Euler’s equation gives

Q2

2gh2
1

+ h1 = Q2

2gh2
2

+ h2 + r (9.9.10)

and defining E = Q2

2gh + h then
E1 = E2 + r (9.9.11)

− 81 −



9.9. OPEN CHANNEL FLOWS

Let A1 denote the specific energy E1 for an upstream subcritical flow. If r is sufficiently
small i.e. E1−Emin > r then the decrease in the specific energy by r yields a new pointA2
whose specific energy satisfies E2 > Emin, so that we get a downstream subcritical flow.

If instead r = E1 − Emin then A2 is on the critical point and the downstream flow will be
critical. If r is further increased beyond E1 − Emin then the upstream conditions are not
sufficient to sustain a critical flow downstream, thus breaking down the steady flow in the
figure above. Because all the fluid cannot go over the rise there will be an increase in the
upstream depth which will increase E1−Emin (pushing A1 to the right) until steady flow
can be re-established. This occurs when E1−Emin hits the value of r, which will induce a
critical downstream flow.

A similar argument can be used for supercitical flow. Note however that if E < Emin then
it is not possible to have any flow. So if the jump in the channel height is too large then
steady flow cannot be established anymore. In the case of subcritical flow this just resulted
in a . However, if the flow is supercritical this mechanism cannot work anymore. In such
cases the flow suddenly jumps to subcritical (this is known as a hydraulic jump).
As an example, consider the steady flow in a horizontal channel with a triangular cross-
section. The continuity equation requires

v1h
2
1 tanα = v2h

2
2 tanα =⇒ Q = vh2 = cnst. (9.9.12)

Therefore, using Bernoulli’s equation along a streamline on the fluid’s free surface then

E = v2

2g + h = Q2

2gh4 + h = cnst. (9.9.13)
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The critical depth can be found by minimising E

1− 2Q2

gh5
c

= 0 =⇒ hc =
(2Q2

g

)1/5
(9.9.14)

The critical velocity is then

vc = Q

h2
c

=
(
g2Q

4

)1/5
(9.9.15)

9.10 Vorticity
Let us construct amodel for the air flow in a tornado. Wemake the observations that inside
a tornado there is a cylindrical column of air undergoing rapid rotation, while outside this
column the air speed decreases dramatically. A suitable velocity vector field for such flows
is thus

u =
{

Ω1reθ, r ≤ a
Ω2
r eθ, r > a

(9.10.1)

where Ω1 and Ω2 are the angular velocities inside and outside the tornado respectively.
Note that the velocity vector field cannot be discontinuous at r = a in a steady state so

Ω1a = Ω2
a

=⇒ Ω2 = Ω1a
2 (9.10.2)

and therefore
u =

{
Ω1reθ
Ω1a2

r eθ
(9.10.3)

Let’s now take the limit A → 0 and Ω → ∞ while maintaining the circulation κ = 2πΩa2

constant. We are thereforemaking the vortex localised at the origin.In this limit the velocity
field reduces to

u = κ

2πreθ, r 6= 0 (9.10.4)

Note that∇×u = 0 for 6= 0, implying that the circulation of u about any path C not enclos-
ing the origin will vanish. Similarly, the circulation of u about any path C enclosing the ori-
gin will just be equal to κ. This can be seen by taking two paths C1 and C2 and making two
small cuts infinitesimally close to each other. The new closed path S ≡ A1A2D2B2B1D1A1
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with boundary C does not enclose the line-vortex, so that
˛
S
ω · dl = 0 =⇒

ˆ
C
u · dr =

ˆ
C1

u · dr−
ˆ
C2

u · dr = 0 (9.10.5)

since ω = 0 on S. Taking C2 to be a circle centered at the origin of radius r, so that its
circulation is κ, then we find that ˆ

C1

u · dr = κ (9.10.6)

This model of an infinitesimal localised vortex is known as a line vortex. The stream func-
tion for a line vortex is given by solving

1
r

∂ψ

∂θ
= 0 and ∂ψ

∂r
= − κ

2πr (9.10.7)

The first implies that ψ = c0 + f(r) and while the second implies that f(r) = − κ
2π ln r, so

that
ψ(r) = c− κ

2π ln r (9.10.8)

It will be convenient to consider the streamfunction with c = κ
2π ln a so that

ψ(r) = − κ

2π ln r
a

(9.10.9)

By the principle of superposition, given two line vortices then the overall streamfunction
will be the sum of the individual vortices’ streamfunctions.

(a) (b)

For example, if we have two vortices of circulations ±κ at (0,±a, 0), with axis of rotation
parallel to the z axis then

ψ = − κ

2π ln r1
r2

+ c (9.10.10)

where r1 and r2 are the distances from the top and bottom vortices respectively. To find
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the streamlines, let’s set c = 0 for simplicity, in which case

− κ

2π ln r1
r2

= M =⇒ r2
1
r2

2
e

4πM
κ (9.10.11)

In cartesian coordinates we find that r2
1 = x2 + (y − a)2 and r2

2 = x2 + (y + a)2, so letting
α = e

4πM
κ

x2 + (y − a)2 − α(x2 + (y + a)2) = 0 =⇒ x2 +
(
y + M + 1

M − 1a
)2

= 4Ma2

(M − 1)2 (9.10.12)

As long asM 6= 1 then the streamlines are functions with center at
(
0, M+1

1−M a
)
and radius

r =
∣∣2√Ma
M−1

∣∣. If M = 1 then r1 = r2, which is yet another streamline, and corresponds to
the x-axis.
Line vortices can also be used tomodel fluid flows past solid objects. For example, suppose
a fluid flows past a rigid cylinder of radius a. The fluid flow can be decomposed into a
streaming behaviour described by a stream function and the swirling motion described by
a line vortex.
For steady flow of an inviscid, constant density fluid, Bernoulli’s equation implies that the
pressure at a point B on the cylinder satisfies

p+ 1
2ρu

2 = p+ 1
2ρ
(

κ

2πa

)2
= M (9.10.13)

whereM is a constant. The pressure distribution thus reads

p(a, θ) = M − ρκ2

8π2a2 (9.10.14)

Since this pressure distribution is constant, the force due to fluid pressure on the cylinder
must be zero. Let’s now try to add the streaming motion to our study.
The streamlined flow past a cylinder is given by the following streamfunction

ψ = Ur sin θ − Ua2 sin θ
r

(9.10.15)

and the corresponding velocity vector field is

u = U

(
1− a2

r2

)
cos θer − U

(
1 + a2

r2

)
sin θeθ (9.10.16)

from which it follows that ω = 0.˛
C
u · dr =

ˆ
S
ω · dA = 0 (9.10.17)
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Adding the line vortex stream-function we find that

ψ = Ur sin θ − Ua2 sin θ
r

+ κ

2π ln r
a

(9.10.18)

and thus

u = U

(
1− a2

r2

)
cos θer − U

(
1 + a2

r2

)
sin θeθ −

κ

2πreθ =⇒
˛
C
u · dr = −κ (9.10.19)

around any pathC enclosing the origin. Now takingB to be the point (a, θ) on the cylinder
then we find

u(a, θ) = −
(

2U sin θ + κ

2πa

)
eθ (9.10.20)

so

p(a, θ) + 1
2ρu

2 = p(a, θ) + 1
2ρ
[
4U2 sin2 θ + κ2

4π2a2 + 2Uκ sin θ
πa

]
= M (9.10.21)

and thus
p(a, θ) = M − 1

2ρ
[
4U2 sin2 θ + κ2

4π2a2 + 2Uκ sin θ
πa

]
(9.10.22)

This pressure is not constant and homogeneous over the cylinder’s surface. Its upward
component will generate a lift force while its horizontal component will generate a drag
force. The lift force per unit length can be computed as

flift =
ˆ π

−π
−p sin θ adθ = 1

2ρa
2Uκ
πa

ˆ
sin2 θdθ = ρκU (9.10.23)

since the other terms in p are even in θ. This latter fact is important, because it means that
for the lift force to exist we need the term 2Uκ sin θ

πa which couples the swirling motion with
the streamlining behaviour, it cannot exist without both dynamics. Note that the constant
M is physically insignificant (as it should be) since it vanishes upon integration. Note
that the lift force is proportional to the fluid density, velocity and circulation as one would
expect.
Similarly the drag force per unit lengthis given by

flift =
ˆ π

−π
−p cos θ adθ = 0 (9.10.24)

9.11 Incompressibility
Another important case where equations of motion are simple enough is that if incom-
pressible fluids i.e. ρ is constant in time and space. The equation of continuity takes the
form

∇ · v = 0 (9.11.1)
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so the fluid velocity field must be divergenceless. For two-dimensional flow where v is
constant along one direction then

∂vx
∂x

+ ∂vy
∂y

= 0 (9.11.2)

This condition is satisfied by defining a streamfunction ψ such that

vx = ∂ψ

∂y
, vy = ∂ψ

∂x
(9.11.3)

The streamfunction allows us to compute the shape of streamlines, which we write math-
ematically as curves y(x) = x, by imposing that v be tangent to the streamlines:

dy

dx
= vy
vx

=⇒ dψ = 0 =⇒ ψ(x, y) = c (9.11.4)

Therefore, setting the streamfunction to an arbitrary constant will yield a streamline. The
constant is fixed by providing a point on the desired streamline.
The equation of motion also simplifies to

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p+ g (9.11.5)

Notice that dw = dp
ρ =⇒ w = p

ρ + c and thus Bernoulli’s equation becomes

1
2v

2 + p

ρ
+ gz = c (9.11.6)

Combining irrotational flowwith incompressible flowwe get Bernoulli’s equation over all
of space:

∂φ

∂t
+ 1

2v
2 + p

ρ
= 0 (9.11.7)

If g is constant then the maximum pressure pmax occurs at a stagnation point, where the
fluid velocity vanishes, and takes the form

pmax = p0 + 1
2ρu

2 (9.11.8)

where p0 and u are the fluid’s pressure and velocity at infinity.
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10Navier Stokes equation and Viscous
fluid flow

10.1 Reynolds number and convection vs diffusion
Suppose we have a fluid of density ρ and coefficient of viscosity µ flowing over a cylinder
of radius a, such that at long distances away from the cylinder the fluid speed is U . The
Reynolds number Re associated to this flow is given by

Re = ρUa

µ
(10.1.1)

Flows for different Reynolds numbers are shown below We see that as we increase the

Reynold’s number the flow becomes increasingly more complex and turbulent. One can
understand these different behaviours as competitions between convection and diffusion
transport processes of vorticity in the fluid, the former characterised by fluid elements
moving and transporting the vorticity with them, while the latter is characterised by the
viscosity (internal friction) between the fluid particles breaking away the vorticity of the
fluid.
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To understand how vortices can arise in the first place, consider the following flow past a
cylinder.

For a viscous fluid, the adhesive forces between the fluidmolecules and the solid boundary
particles are much stronger than the cohesive forces. As such, we can formulate a no-slip
condition where the fluid velocity at the solid boundary must vanish. Away from the
surface however the fluid velocity is non-zero, and this steep velocity gradient produces
vortices in the neighbourhood of the solid boundary. Once a vortex has formed, it can
be transported convectively by the fluid particles, or diffusively due to internal friction
mechanism, in which case it is dissipated away.
Suppose we hold µ, a, ρ constant and vary U , the main flow speed. At small U , there is
little difference the velocity gradient near the solid boundary is shallow so few vorticeswill
be generated. Furthermore, dissipation will be the principal transport process, far more
prevalent than convection as each fluid element will not travel far. Therefore the vortices
will generally have a very short lifetime. As a result the flow will look steady and orderly.
Let’s now increaseU . Now the velocity gradient is larger so vortices can start forming near
the solid boundary. Also, convection starts to become more prevalent and diffusion will
have less time to dissipate vorticity. This will produce a boundary layer where vortices are
confined to, outside of which diffusion is strong enough to dissipate them away.
A further increase in U will enhance convenction and reduce diffusion, leading to insta-
bilities in the bound vortices which will start to grow in side and interact with each other.
This will result in one of the vortices breaking off, and formingwhat’s known as aKarman
vortex streets:
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To put this analysis in quantitative terms let’s use dimensional analysis to find relevant
time-scales for vorticity according in the regimes where convection or diffusion dominate.
Let’s set

t = µαρβUγaδ (10.1.2)
We have three different units,M,L, T and four unknowns, implying that several different
combinations can be found. Noting that

[µ] = M · L−1 · T−1, [ρ] = M · L−3, [U ] = L · T−1, [a] = L (10.1.3)

we find that
α+ β = 0
−α− 3β + γ + δ = 0
−α− γ = 1

=⇒


α = −β
γ + δ = 2β
β = 1 + γ

=⇒


α = −β
δ = β + 1
γ = β − 1

(10.1.4)

Setting β = 1 then α = −1, δ = 2, γ = 0 so we get t = ρa2

µ . If β = 0 then α = 0, δ =
1, γ = −1 so we get t = a

U . Finally if β = −1 then α = 1, δ = 0, γ = −2 so that t = µ
ρU2 . To

summarise, we have found that the following time scales may be relevant

t = a2ρ

µ
,
a

U
,

µ

ρU2 (10.1.5)

To determine which one of these is characteristic of convenction, note that the time it takes
for a fluid particle with speed U to cross the cylinder is 2a

U so tc = a
U is the convective

time scale. For diffusion, we should expect the corresponding time scale to decrease with
viscosity, since the larger µ is the less it will take to dissipate a vortex. Consequently we
find that td = µ

ρU2 is the diffusive time scale. Note that

Re = tc
td

(10.1.6)

so the Reynolds number is a measure of the competition between convection processes
and diffusion processes. We now see that if we want the vorticity to remain confined near
the cylinder then we need the time it takes for vorticity to be transported convectively to
be much smaller than the time it takes for it to be dissipated. Therefore

tc � td =⇒ a

U
� µ

ρU2 =⇒ Re� 1 (10.1.7)

just as we explained previously in words.
Lets now look at vortex shedding in more detail. Suppose a vortex has been shed from a
fluid flow, and is carried by convective transport. Let’s also take a large curve surround-
ing both the cylinder and the shed vortex. By Kelvin’s theorem (applicable at the initial
stages), the circulation around this curve must remain constant. Since the shed vortex has
non-zero circulation once it reaches the large curve, the flow around the cylinder must
compensate with an opposite vortex. Since fluid mass will be moved upwards, this will
generate a downward force on the cylinder. This will in turn shed a vortex which swirls
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in the opposite direction to the first vortex, thus repeating the argument. Throughout this

process the cylinder experiences periodic forces moving it sideways. If the frequency of
this force matches the natural frequency of the cylinder then we achieve resonance. This
can lead to disastrous consequences, such as the collapse of the Tacoma bridge.

10.2 Newton’s model of viscosity
Consider a fluid flowing through a pipe steadily from left to right. At time t = 0 we place
a line of massless particles to keep track of the fluid flow, and observe that the fluid speed
seems largest near the middle of the pipe, and smallest near its solid boundary. This is
unccounted by the inviscid fluid theory where the particles should all move together and
maintain their shape. The explanation for this phenomenon lies in the fact that fluids are

viscous and there are internal friction forces acting within the fluid. We note that the par-
ticles form a parabolic shape and do not move at all at the edges of the pipe. Such pictures
of the velocity of the fluid against transverse position is known as a velocity profile. The
velocity profile is vertical in an inviscid fluid and parabolic in the viscous case.
Consider a viscous, incompressible fluid between two plates, the upper plate movingwith
speed U relative the the lower plate which is fixed. The continuity equation implies that
the fluid velocity obey u = ux(z)x.
Now consider two points P = (x, z) and Q(x, z + δz), and suppose that after time δt the
fluid particles originally at these points have moved to P ′ andQ′. We see that for small δα
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(so sufficiently small δt and δz) then

δα ≈ tanα = AQ′

PQ
= (u+ δu)δt− uδt

δz
== δu · δt

δz
(10.2.1)

Consequently the rate of deformation, dαdt is given by

dα

dt
= du

dz
(10.2.2)

Finally,assuming the shear stress σ is proportional to the rate of deformation, then

σ = µ
dα

dt
= du

dz
(10.2.3)

For unsteady flows it can be shown similarly that

σ = µ
∂u

∂z
(10.2.4)

This is Newton’s model of viscosity and fluids satisfying this law are known as Newto-
nian fluids. If a Newtonian fluid with velocity u = u(x)z is placed between two parallel
plates in the yz-plane, with the left plate held fixed and the right plate moving upwards
with constant speed U , then the fluid will start moving with the plate due to shear stress.
The shear stress on a surface parallel to the yz-plane at x = x0 is τ = µ∂u∂x

∣∣∣∣
x0

. The force
acting to the right of an area A of the plane is τAz, while the force acting to the left of the
plane is −τAz.
Now consider a Newtonian fluid with constant density and viscosity flowing between
two infinite horizontal plates a distance h apart, lying in the xy-plane. We assume that
the velocity and pressure are independent of y and the flow is in the x-direction only,
and dependent on z, t as required by the continuity equation. We can therefore write the
velocity field as u = y1(z, t)x. We will also ignore body forces for now and add them at
the end.
Let’s consider an infinitesimal fluid element centered atQ and its cross-section throughQ
The surface forces acting on each face of the element are either pressure forces, pointing

(a) (b)
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radially inwards, or shear stresses, pointing tangentially. The surface force acting on each
face of the block will be

F1 = [−p(x+ δx/2, z)êx + σ(x+ δx/2, z)êz]δyδz (10.2.5)
F2 = [τ(x, z + δz/2)êx − p(x, z + δz/2)êz]δxδy (10.2.6)
F3 = [p(x− δx/2, z)êx − σ(x− δx/2, z)êz]δyδz (10.2.7)
F4 = [−τ(x, z − δz/2)êx + p(x, z − δz/2)êz]δxδy (10.2.8)

Newton’s second law applied to the infinitesimal fluid element then gives

ρδxδyδz
dux
dt

êx = F1 + F2 + F3 + F4 (10.2.9)

Resolving this equation into components, we find that

ρ
dux
dt

= −∂p
∂x

+ ∂τ

∂z
(10.2.10)

0 = ∂σ

∂x
− ∂p

∂z
(10.2.11)

This describes the translational motion of the fluid, but the rotational degrees of freedom
have not been taken into account. The torques on each face are given by the shear stresses
only, they are given by

τ1 = −1
2σ(x+ δx/2, z)δxδyδz êy (10.2.12)

τ2 = 1
2σ(x, z + δz/2)δxδyδz êy (10.2.13)

τ3 = −1
2σ(x− δx/2, z)δxδyδz êy (10.2.14)

τ4 = 1
2σ(x, z + δz/2)δxδyδz êy (10.2.15)

Consequently letting the fluid element havemoment of inertia I = 1
12ρδxδyδz[(δx)2+(δz)2]

then
1
12ρ[(δx)2 + (δz)2]ω̇ = −1

2(σ(x+ δx/2) + σ(x− δx/2)) + 1
2(τ(x+ δx/2) + τ(x− δx/2))

(10.2.16)
Taking the limit as δx, δz → 0 we finally arrive at δ(x, z) = τ(x, z). Therefore

∂σ

∂x
= ∂τ

∂x
= µ

∂2ux
∂z∂x

= 0 (10.2.17)

since the speed ux only depends on z. It then follows that

∂p

∂z
= 0 (10.2.18)
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so pressure only varies along x. To conclude we find that

ρ
∂ux
∂t

= −∂p
∂x

+ ρFx + µ2∂
2ux
∂z2 (10.2.19)

where we included a body-force per unit mass F1 acting along êx.
If we consider a steady flow with a constant pressure gradient ∂p∂x = −C, then we see that

0 = C + µ2∂
2ux
∂z2 =⇒ ux(z) = − C2µz

2 +Az +B (10.2.20)

10.3 The Navier-Stokes equation
One can easily extend the discussion of the last section and obtain theNavier-Stokes equa-
tions

ρ
du
dt

= −∇p+ ρF + µ∇2u (10.3.1)

or alternatively

ρ

(
∂u
∂t

+∇
(1

2u
2
)
− u× ω

)
= −∇p+ ρF− µ∇× ω (10.3.2)

The Navier-Stokes equations alone are not sufficient to describe mathematically any New-
tonian fluid. Indeed one must also provide suitable boundary conditions. For example, if
the fluid is in contact with a solid boundary moving with speed U and with unit normal
n then we must require

u · n
∣∣
boundary = U · n (10.3.3)

or else the fluid would pass through the solid boundary. We also have another empirically
verified condition, known as the no-slip condition, which states that a viscous fluid has
no tangential velocity relative to a solid boundary next to it. Therefore

u× n
∣∣
boundary = U× n (10.3.4)

These two conditions combined together imply that

u
∣∣
boundary = U (10.3.5)

For example, consider a viscous fluid flowing in a stationary cylindrical pipe of radius a.
We find that

u(a, θ, φ) = 0∀θ ∈ [0, π), φ ∈ [0, 2π) (10.3.6)
There is one exception to these boundary conditions. Consider a fluid-fluid interface with
the upper fluid stationary relative the the fluid below. The stress-free boundary condition
implies that the shear stress at the interface be zero so that

∂ux
∂z

= 0 at interface (10.3.7)
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Fluid motion in a pipe

Consider a fluid flowing steadily through a pipe with circular cross-section and radius a.
Ignoring the influence of gravity, the azimuthal symmetry of the configuration suggests
that there should be no φ-dependence. Since the pipe is stationary, we find that

ur = uϕ = uz = 0 r = a (10.3.8)

There also can’t be a radial velocity component ur since the fluid is confined. Consequently
the continuity equation yields

∂uz
∂z

= 0 =⇒ uz = uz(r) (10.3.9)

Now the Navier-Stokes equation in cylindrical coordinates gives

− ∂p

∂r
+ ρFr = −1

r

∂p

∂θ
+ ρFθ = 0 (10.3.10)

ρ

(
∂uz
∂t

+ uz
∂uz
∂z

)
= −∂p

∂z
+ ρFZ + µ∇2uz (10.3.11)

which reduces to

− ∂p

∂r
= −1

r

∂p

∂θ
= 0 (10.3.12)

0 = −∂p
∂z

+ µ

(
d2uz
dr2 + 1

r

duz
dr

)
(10.3.13)

assuming body forces (such as gravity) are negligible. The first two equations imply that
p = p(z), and since uz depends on r only we find that the two terms in the third equation
must each be constants. Hence p(z) = p0 − Cz and

d2uz
dr2 + 1

r

duz
dr

+ C

µ
= 0 (10.3.14)

This is just a Cauchy-Euler equation 1 with general solution

uz(r) = −Cr
2

4µ +A ln r +B (10.3.15)

Since uz must be bounded at defined at r = 0, we have that A = 0. Moreover, uz(a) = 0
implies that B = Ca2

4µ and so
u(r) = C

4µ(a2 − r2) (10.3.16)

where C is given by the pressure variation in the pipe that is driving the fluid. To see how
well this fares with experimental results, let’s calculate the volume flow rate (velocity flux)

1see Mathematical methods volume
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through the pipe’s cross-section

Q =
ˆ a

0

ˆ π

−π
uzr dr dθ = πCa4

8µ (10.3.17)

Thus the flow rate is proportional to the pressure drop along the pipe and as the fourth
power of its radius. This matches the experimental observations made by Hagen and
Poiseuille.

10.4 Approximate Navier-Stokes
Fluid injection problem

Consider a viscous fluid of constant density ρ and viscosity µ flowing through a channel of
width h formed by two parallel porous plates. The fluid flows due to a constant pressure
gradientC, and is also injected through the bottomplatewith constant speedV and sucked
towards the top plate with the same speed.
We assume that the flow is steady since all external parameters causing the fluid flow are
constant. Also, we assume the plates are sufficiently large for edge effects to be negligible,
making the velocity field constant at different points along the plates. Finally, we also
ignore body forces. We set our axes so that the flow is along z and the plates are normal
to the z-axis. Consequently u = uxx + uzz and the boundary conditions are

u(z = 0) = u(z = h) = V z (10.4.1)

Since the fluid is incompressible we find that

∂ux
∂x

+ ∂uz
∂z

= 0 (10.4.2)

Since the fluid flow is the same along the plates, the first derivative must vanish, implying
that uz is independent of both x, z, and thus must be constant uz = V .
The Navier-Stokes equation along x is

ρ

(
ux
∂ux
∂x

+ uz
∂ux
∂z

)
= −∂p

∂x
+ µ

(
∂2ux
∂x2 + ∂2ux

∂z2

)
(10.4.3)

which simplifies to
ρV

dux
dz
− µd

2ux
dz2 = −∂p

∂x
(10.4.4)

The Navier-Stokes equation along z and y is

− ∂p

∂y
= −∂p

∂z
= 0 =⇒ p = p(x) (10.4.5)

Therefore, we find that since∇p = −C then

ρV
dux
dz
− µd

2ux
dz2 = C (10.4.6)
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This is a second order constant coefficient ODE, which together with the no slip condition
ux(z = 0) = ux(z = h) = 0 can be solved to give

ux = C

ρV

(
z − he

Rez/h − 1
eRe − 1

)
, Re = ρV h

µ
(10.4.7)

The solutions for different Reynolds numbers are shown below. We see that as we increase
Re the maximum velocity umax is achieved at larger and larger z-values, causing the drop
of ux(z) to 0 at z = h to get steeper and steeper. The solution far from the top plate also
starts looking more linear, as one would expect from an inviscid model.

Indeed in the large Reynolds number limit (that is in the inviscid limit) then

eRez/h − 1
eRe − 1 = e−Re

eRez/h − 1
1− e−Re = e−Re(1−z/h) − eRe

1− e−Re ≈ e−Re(1−z/h) (10.4.8)

so we get that
ux ≈

C

ρV

(
z − he−Re(1−z/h)) (10.4.9)

Thus when z � h the velocity component ux = C
ρV z varies linearly in z, and is the solution

to the inviscid Navier-Stokes equation:

ρV
duz
dz

= C, ux(0) = ux(h) = 0 (10.4.10)

There’s a problem here, the ODE is first order and yet we have two conditions to be satis-
fied. Note also that the general solution is

ux(z) = C

ρV
z +A (10.4.11)

so if ux(0) = 0 thenA = 0 in which case ux(h) 6= 0. Similarly if ux(h) = 0 thenA = −Ch
ρV in
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which case ux(0) 6= 0. Therefore the no-slip conditions cannot be simultaneously satisfied
in the inviscid model. Indeed, for a low-viscosity fluid the problem cannot be solved by
just setting µ = 0. This is because in the neighborhood of the plate at z = h, the second
order derivative d2ux

dz2 is very large and so even if µ is small the resulting term µd
2ux
dz2 still isn’t

negligible. This narrow region where µd2ux
dz2 is sufficiently large is known as a boundary

layer.

Dimensionless Navier-Stokes equation

We saw the significance of the Reynolds number in the fluid injection problem. Since in
most cases the Navier-Stokes equations cannot be solved exactly, obtaining a large Reyolds
number approximate Navier-Stokes equation can prove very useful.
The ODE for the fluid injection problem was

ρV
dux
dz
− µd

2ux
dz2 = C (10.4.12)

We choose the following characteristic variables

z∗ = z

h
and u∗x = ux

V
(10.4.13)

and get that
ρV 2

h

du∗x
dz∗
− µV

h2
d2u∗1
dz∗2

= C (10.4.14)

or equivalently
du∗x
dz∗

= C∗ + 1
Re

d2u∗1
dz∗2

(10.4.15)

where C∗ = hC
ρV 2 .

Flow past an object

We now consider the flow past an object such as a sphere with a characteristic length a,
such that far upstream the fluid has uniform speed U . We can define the following dimen-
sionless variables

u∗i = ui
U

and x∗i = xi
a

(10.4.16)

as well as t∗ = t/T and p∗ = p/P where T, P are undetermined for now. Then the Navier-
Stokes equation along x

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −1
ρ

∂p

∂x
+ µ

ρ

(
∂2ux
∂x2 + ∂2ux

∂y2 + ∂2ux
∂z2

)
(10.4.17)

becomes
a

UT

∂u∗x
∂t∗

+ux
∂ux
∂x

+uy
∂ux
∂y

+uz
∂ux
∂z

= − P

ρU2
∂p∗

∂x∗
+ 1

Re
(
∂2u∗x
∂x∗2

+ ∂2u∗x
∂y∗2

+ ∂2u∗x
∂z∗2

)
(10.4.18)
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It is clear that if we choose T = U
a and P = ρU2 then we find that

∂u∗x
∂t∗

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −∂p
∗

∂x∗
+ 1

Re
(
∂2u∗x
∂x∗2

+ ∂2u∗x
∂y∗2

+ ∂2u∗x
∂z∗2

)
(10.4.19)

Just like in the fluid injection problem, if we are in the high Reynolds number regime and
far away from the object then one can ignore the Laplacian term and find a solution to

∂u∗x
∂t∗

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −∂p
∗

∂x∗
(10.4.20)

Near the object however (within the boundary layer) the Laplacian term becomes too large
to be ommitted and a full solutionmust be found. Thismust then be stitched together with
the solution far from the object.

10.5 Dominant viscosity flow
Lubricants work thanks to viscosity. One important application of flows with dominant
viscosity is in slider bearings, where lubricants are important in reducing friction between
mechanical components.

We assume that the lubricant is a Newtonian viscous fluid with constant density and vis-
cosity. We also assume that the bearing is flat and that the fluid flows in the xz-plane with
no y-dependence and no velocity y-component uy. We also consider the steady state flow.
We set our axes so that the slider of length l has a profile defined by z = h(x) and where
the bearing guide moves with constant speed U .
The continuity equation is

∂ux
∂x

+ ∂uy
∂y

= 0 (10.5.1)

Instead the Navier-Stokes equations are

ρ

(
ux
∂ux
∂x

+ uz
∂ux
∂z

)
= −∂p

∂x
+ µ

(
∂2u1
∂x2 + ∂2ux

∂z2

)
(10.5.2)

ρ

(
ux
∂uz
∂x

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

(
∂2uz
∂x2 + ∂2uz

∂z2

)
(10.5.3)
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with boundary conditions

ux(x, 0) = −U, uz(x, 0) = uz(x, h(x)) = ux(x, h(x)) = 0 (10.5.4)

Moreover, ignoring edge effects then we also have that

p(0, z) = p(L, z) = p0 (10.5.5)

To reduce the Navier-Stokes equation into a dimensionless form, we introduce the follow-
ing variables

x∗ = x

L
, z∗ = z

h1
, u∗x = ux

U
, uz?∗ = uzL

Uh1
, p∗ = p

P
(10.5.6)

for some characteristic pressure P . We then obtain

h2
1
L2

(
u∗x
∂u∗x
∂x∗

+ u∗z
∂u∗x
∂z∗

)
= −h

2
1
L2

P

ρU2
∂p∗

∂x∗
+ µ

ρLU

(
h2

1
L2

∂2u∗x
∂x∗2

+ ∂2u∗x
∂z∗2

)
(10.5.7)

h2
1
L2

(
u∗x
∂u∗z
∂x∗

+ u∗z
∂u∗z
∂z∗

)
= − P

ρU2
∂p∗

∂z∗
+ µ

ρLU

(
h2

1
L2

∂2u∗z
∂x∗2

+ ∂2u∗z
∂z∗2

)
(10.5.8)

Assuming h1
L is small and recognising that µ

ρLU = 1
Re then we find that the approximate

Navier-Stokes equations are

0 = −h
2
1
L2

P

ρU2
∂p∗

∂x∗
+ 1

Re
∂2u∗x
∂z∗2

(10.5.9)

0 = − P

ρU2
∂p∗

∂x∗
+ 1

Re
∂2u∗z
∂z∗2

(10.5.10)

To determine what P is, we could make it equal to ρU2 just as in the case of a flow past
an object. However, in our case we have two characteristic length scales so we should not
make the characteristic pressure depend on U only (which is characteristic along the x-
direction). Any expression of the form P = ρU2Lα/hα1 will also do the job. If α > 2 then
the pressure gradient term will obviously dominate since h1 � L. One would then find
that the pressure gradient is constant ∂p

∂x = 0. Together with p(0, z) = p(L, z) = p0 this
implies that a constant pressure is predicted, which does not match observations. Indeed
it is the pressure generated by the flow that makes lubricants useful. If α < 2 then the
pressure gradient is negligible implying that ∂2ux

∂z2 = 0. This is unfortunately a violation of
conservation ofmass, aswe shall see soon. We are left withα = 2 and thereforeP = ρU2L2

h2
1

.

We are left with

0 = −∂p
∗

∂x∗
+ 1

Re
∂2u∗x
∂z∗2

(10.5.11)

0 = −L
2

h2
1

∂p∗

∂x∗
+ 1

Re
∂2u∗z
∂z∗2

(10.5.12)

Since L� h1, the second equation reduces to ∂p
∂z and therefore p = p(x). The first equation
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now looks like
∂u2

x

∂z2 = 1
µ

dp

dx
(10.5.13)

where we reverted back to dimensional variables. Since the LHS is dependent on x and z
while the RHS depends on x-only we find that

ux(x, z) = 1
2µ

dp

dx
z2 + f(x)z + g(x) (10.5.14)

Using the boundary conditions we get g(x) = −U and

f(x) = 1
h

(
U − h2

2µ
dp

dx

)
(10.5.15)

and so
ux(x, z) = −U

(
1− z

h

)
− h2

2µ
dp

dx

z

h

(
1− z

h

)
(10.5.16)

This is still not very useful as we don’t knowwhat p(x) is. To determine it we can calculate
the volume flow rate which, by the law of conservation of mass, must be constant. We get
that taking a cross-section at some xwith h = h(x) then

Q =
ˆ h

0
ux dz =

ˆ h

0

[
− U

(
1− z

h

)
− h2

2µ
dp

dx

z

h

(
1− z

h

)]
dz = −Uh2 −

h3

12µ
dp

dx
(10.5.17)

and thus
dp

dx
= − 12µ

h(x)3

(1
2Uh(x) +Q

)
(10.5.18)

We can integrate this with respect to x from 0 to L and note thatQmust be constant to find
that

p(L)− p(0) = 0 = −12µ
(1

2U
ˆ L

0

dx

(h(x))2 +Q

ˆ L

0

dx

(h(x))3

)
(10.5.19)

and hence
Q = −1

2U

´ L
0

dx
(h(x))2´ L

0
dx

(h(x))3

(10.5.20)

The volume flow rate can be completely determined by the shape of the bearing gap so it
can be assumed to be known. Then the pressure can be calculated by solving

dp

dx
= −6µ

(
U

h2 + 2Q
h3

)
(10.5.21)

which yields
p(x) = −6µ L

h1 − h2

(
U

h(x) + Q

(h(x))2

)
+ c (10.5.22)

If we take z = h(x) to be a straight line then h(x) = h1 + h2−h1
L x and hence

ˆ L

0

dx

(h(x))2 =
ˆ L

0

dx

(h1 + x(h2 − h1)/L)2 = L

h1h2
(10.5.23)
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and ˆ L

0

dx

(h(x))3 =
ˆ L

0

dx

(h1 + x(h2 − h1)/L)3 = L(h1 + h2)
2h2

1h
2
2

(10.5.24)

implying that
Q = − 1

U

L

h1h2

2h2
1h

2
2

L(h1 + h2) = − h1h2
h1 + h2

U (10.5.25)

Substituting this into our expression for p(x) one finds that

p(x) = −6µUL
(−h(x)(h1 + h2) + h1h2

(h(x))2(h2
2 − h2

1)

)
+ C (10.5.26)

Since p(0, h1) = p0 we find that
p0 = 6µUL

h2
2 − h2

1
+ C (10.5.27)

finally giving an expression for the pressure

p(x) = p0 − 6µUL(h(x)− h1)(h(x)− h2)
(h2

2 − h2
1)(h(x))2 (10.5.28)

The total load per unit length (along z) that the bearing can carry is given by
ˆ L

0
(p− p0) dx = 6µUL2

(h2 − h1)2

[
ln h2
h1
− 2(h2 − h1)

h2 + h1

]
(10.5.29)
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